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Ezamples 1.3.9. (1) Y.°°, 5 is convergent.

n=1 n2

1

Proof. By use of telescoping sums we saw in Examples 1.3.3 that > >, w2, con-
verges.
Now
1 1
> — (foralln>1)

n2+n — 2n?

[because n < n?] and so by the comparison test

=1
> om

n=1

must converge (smaller series of positive terms). Multiplying by 2 we see that Y > | &
must converge also (see question 2 on tutorial sheet 2). ]

. = 1
(ii) For any p > 2, z; p COnVerges.

Proof. Since for p > 2

1 < 1

n? = n?
the comparison test (together with the previous example) shows that y >, nip con-
verges. O]

o
1
(iii) For any p <1, E — does not converge.
n
n=1

Proof. In this case we have n” < n and so

1

>
nP

S|

(for all m > 1)
Therfore Y2 | 1/n? cannot converge by the comparison test — because the smaller
harmonic series Y >~ 1/n does not converge (Example 1.3.5). O

Notice that we have not dealt with Y 7 1/n? for 1 < p < 2. There is a way to settle
that with integrals, using the following result.
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Theorem 1.3.10 (Integral test). Suppose f: [1,00) — [0,00) is a decreasing continuous
function. Then the series

Z f(n) converges
n=1

if and only if there is a finite number u so that
b
/ f(x)dz < u holds for all b > 1
1

So the condition means that there is a finite upper bound for the integrals flb f(z)dx
(b>1).

(Note that since f(x) > 0 the integrals flb f(z)dz increase when b increases. If
these numbers are bounded above they have a least upper bound which coincides with
limy_ o0 flb f(z)dx. The test is often phrased in terms of this limit being finite.)

Proof. The proof is based on the fact that

fn) = f(z) = f(n+1)

forn <x <mn+1 (because f(z) is decreasing with z) and so

/:Hf(n) iz > /:Hf(x) de > /nnﬂf(m 1) de

which means _—
f(n)z/ flz)dx > f(n+1)

It follows that -
n n 7 n
SH) =Y [ f@de =3 pG+ )
j=1 j=1"17 j=1

and so
n

S0z [ ez 1) - (Z f(j)> - 1)

Jj=1

So if the series >~ | f(n) converges, there is a finite upper bound s for its partial sums

and we have " .
/1 Fa)de <3 FG) < s
j=1

for all n. For any b > 1 we can find n with b <n + 1 and then

b n+1 n
[ 1@< [ wde <Y f) <
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So the integrals must be bounded above if the serles converges.
On the other hand if there is u € R with f1 x)dr < wu for all b > 1, then we have

S s s+ [ @< g0+

The partial sums of the series Y~ | f(n) are bounded above (by f(1)+u) and so the series
converges (Theorem 1.3.7). O

Ezample 1.3.11. Y >° , 1/n? converges for p > 1.
Proof. Take f(x) = 1/xP in the integral test.

"1 ‘/b'wd {xPW}b pr 1 1wt
— aAr = s €r = = —_ = — <
1 2P 1 l-p}, 1=p 1-p p—-1 p—-1"p-—1

Since the integrals are bounded above, and f(x) is decreasing and positive for = > 1, the
integral test tells us that the series converges. ]

By the way we could use the integral test to give new proofs that the harmonic series
> oo, 1/n does not converge and more generally that >~ ° | 1/n” does not converge for p
in the range 0 < p < 1.

Proposition 1.3.12. If > x, and >~ | y, are two convergent series, then Y (x,+
Yn) is also convergent and has sum

D (@0t yn) = ZLﬁZ%
n=1

Proof. This is really simple using the fact that the sum of a series means the limit of the
partial sums, plus the fact that the n'™ partial sum of the series > - (z,, + yn) is

n

Y (@i+y) = (@4y)+ (@ tys)++ (T + yn)
j=1
= (@ 4zt tam)+ Mty t+ )

= D a5ty
j=1 j=1

The limit as n — oo of this is >~ @, + > -, yn according to the theorem on limits of
sums of sequences (Theorem 1.1.6 (iii)). O

Remark 1.3.13. An equally simple fact that if > | z,, converges and k is a constant, then

Z(k:xn) =k Z Ty

was on Tutorial 2 (and we used it above in Examples @).
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Notation 1.3.14. For a real number x we write

x ifx>0
Ty = .
0 fxr<0
and
0 if x>0
TrT_ =
—x ifr <0

We call x the positive part of x and x_ the negative part — though both parts are actually
positive.
Here are the key facts about them (true for each x € R):

r=xy—x_, x+2>0, x2_>0, zyz_=0,
x| =24 + 2 x :—’:CH_I x :_\x|—:c
+ — + D) ) - 9

Definition 1.3.15. A series Y | x, is called absolutely convergent if the series Y | |z,|
is convergent.

Theorem 1.3.16. Absolutely convergent series are convergent.
That is if Y-, |xn| converges, then so does 7 | xy.

Proof. Suppose > >, |z,| converges. Then notice that
0 < (@n)+ < |2nl
So, by comparison Y~ (x,)4+ must converge. Similarly (because 0 < (z,)- < |z,])

> (z,)- must converge too.

Multiplying that by —1 we get

NE

—(2n)-

converges. Adding that series to Y . (2,)+ we get that

D ((@)s = (2)) =D an
n=1 n=1
converges. O]
= cosn
Example 1.3.17. Z; "> converges.

Proof. Since |cosz| < 1 always,

|cosn| 1
_ <

‘ cosn ‘
n? n? T n?

. 00 2 . oo cosn
Since we know }_>° | 1/n? converges, the comparison test tell us that oo | [<3"| converges.

So now we know »_>°  (cosn)/n? is absolutely convergent, therefore convergent. O
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