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‘

Examples 1.3.9. (i)
∑∞

n=1
1
n2 is convergent.

Proof. By use of telescoping sums we saw in Examples 1.3.3 that
∑∞

n=1
1

n2+n
con-

verges.

Now
1

n2 + n
≥ 1

2n2
(for all n ≥ 1)

[because n ≤ n2] and so by the comparison test

∞∑
n=1

1

2n2

must converge (smaller series of positive terms). Multiplying by 2 we see that
∑∞

n=1
1
n2

must converge also (see question 2 on tutorial sheet 2).

(ii) For any p ≥ 2,
∞∑
n=1

1

np
converges.

Proof. Since for p ≥ 2
1

np
≤ 1

n2

the comparison test (together with the previous example) shows that
∑∞

n=1
1
np con-

verges.

(iii) For any p ≤ 1,
∞∑
n=1

1

np
does not converge.

Proof. In this case we have np ≤ n and so

1

np
≥ 1

n
(for all n ≥ 1)

Therfore
∑∞

n=1 1/np cannot converge by the comparison test — because the smaller
harmonic series

∑∞
n=1 1/n does not converge (Example 1.3.5).

Notice that we have not dealt with
∑∞

n=1 1/np for 1 < p < 2. There is a way to settle
that with integrals, using the following result.
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Theorem 1.3.10 (Integral test). Suppose f : [1,∞) → [0,∞) is a decreasing continuous
function. Then the series

∞∑
n=1

f(n) converges

if and only if there is a finite number u so that∫ b

1

f(x) dx ≤ u holds for all b ≥ 1

So the condition means that there is a finite upper bound for the integrals
∫ b

1
f(x) dx

(b > 1).

(Note that since f(x) ≥ 0 the integrals
∫ b

1
f(x) dx increase when b increases. If

these numbers are bounded above they have a least upper bound which coincides with
limb→∞

∫ b

1
f(x) dx. The test is often phrased in terms of this limit being finite.)

Proof. The proof is based on the fact that

f(n) ≥ f(x) ≥ f(n + 1)

for n ≤ x ≤ n + 1 (because f(x) is decreasing with x) and so∫ n+1

n

f(n) dx ≥
∫ n+1

n

f(x) dx ≥
∫ n+1

n

f(n + 1) dx

which means

f(n) ≥
∫ n+1

n

f(x) dx ≥ f(n + 1)

It follows that
n∑

j=1

f(j) ≥
n∑

j=1

∫ j+1

j

f(x) dx ≥
n∑

j=1

f(j + 1)

and so
n∑

j=1

f(j) ≥
∫ n+1

1

f(x) dx ≥
n+1∑
j=2

f(j) =

(
n+1∑
j=1

f(j)

)
− f(1)

So if the series
∑∞

n=1 f(n) converges, there is a finite upper bound s for its partial sums
and we have ∫ n+1

1

f(x) dx ≤
n∑

j=1

f(j) ≤ s

for all n. For any b ≥ 1 we can find n with b ≤ n + 1 and then∫ b

1

f(x) dx ≤
∫ n+1

1

f(x) dx ≤
n∑

j=1

f(j) ≤ s
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So the integrals must be bounded above if the series converges.
On the other hand if there is u ∈ R with

∫ b

1
f(x) dx ≤ u for all b ≥ 1, then we have

n+1∑
j=1

f(j) ≤ f(1) +

∫ n+1

1

f(x) dx ≤ f(1) + u

The partial sums of the series
∑∞

n=1 f(n) are bounded above (by f(1)+u) and so the series
converges (Theorem 1.3.7).

Example 1.3.11.
∑∞

n=1 1/np converges for p > 1.

Proof. Take f(x) = 1/xp in the integral test.∫ b

1

1

xp
dx =

∫ b

1

x−p dx =

[
x1−p

1− p

]b
1

=
b1−p

1− p
− 1

1− p
=

1

p− 1
− bp−1

p− 1
≤ 1

p− 1

Since the integrals are bounded above, and f(x) is decreasing and positive for x ≥ 1, the
integral test tells us that the series converges.

By the way we could use the integral test to give new proofs that the harmonic series∑∞
n=1 1/n does not converge and more generally that

∑∞
n=1 1/np does not converge for p

in the range 0 < p ≤ 1.

Proposition 1.3.12. If
∑∞

n=1 xn and
∑∞

n=1 yn are two convergent series, then
∑∞

n=1(xn +
yn) is also convergent and has sum

∞∑
n=1

(xn + yn) =
∞∑
n=1

xn +
∞∑
n=1

yn

Proof. This is really simple using the fact that the sum of a series means the limit of the
partial sums, plus the fact that the nth partial sum of the series

∑∞
n=1(xn + yn) is

n∑
j=1

(xj + yj) = (x1 + y1) + (x2 + y2) + · · ·+ (xn + yn)

= (x1 + x2 + · · ·+ xn) + (y1 + y2 + · · ·+ yn)

=
n∑

j=1

xj +
n∑

j=1

yj

The limit as n → ∞ of this is
∑∞

n=1 xn +
∑∞

n=1 yn according to the theorem on limits of
sums of sequences (Theorem 1.1.6 (iii)).

Remark 1.3.13. An equally simple fact that if
∑∞

n=1 xn converges and k is a constant, then

∞∑
n=1

(kxn) = k
∞∑
n=1

xn

was on Tutorial 2 (and we used it above in Examples 1.3.9 (i)).
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Notation 1.3.14. For a real number x we write

x+ =

{
x if x ≥ 0

0 if x < 0

and

x− =

{
0 if x ≥ 0

−x if x < 0

We call x+ the positive part of x and x− the negative part — though both parts are actually
positive.

Here are the key facts about them (true for each x ∈ R):

x = x+ − x−, x+ ≥ 0, x− ≥ 0, x+x− = 0,

|x| = x+ + x−, x+ =
|x|+ x

2
, x− =

|x| − x

2
.

Definition 1.3.15. A series
∑∞

n=1 xn is called absolutely convergent if the series
∑∞

n=1 |xn|
is convergent.

Theorem 1.3.16. Absolutely convergent series are convergent.
That is if

∑∞
n=1 |xn| converges, then so does

∑∞
n=1 xn.

Proof. Suppose
∑∞

n=1 |xn| converges. Then notice that

0 ≤ (xn)+ ≤ |xn|
So, by comparison

∑∞
n=1(xn)+ must converge. Similarly (because 0 ≤ (xn)− ≤ |xn|)∑∞

n=1(xn)− must converge too.
Multiplying that by −1 we get

∞∑
n=1

−(xn)−

converges. Adding that series to
∑∞

n=1(xn)+ we get that
∞∑
n=1

((xn)+ − (xn)−) =
∞∑
n=1

xn

converges.

Example 1.3.17.
∞∑
n=1

cosn

n2
converges.

Proof. Since | cosx| ≤ 1 always, ∣∣∣cosn

n2

∣∣∣ =
| cosn|
n2

≤ 1

n2

Since we know
∑∞

n=1 1/n2 converges, the comparison test tell us that
∑∞

n=1

∣∣ cosn
n2

∣∣ converges.
So now we know

∑∞
n=1(cosn)/n2 is absolutely convergent, therefore convergent.
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