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‘
If the series

∑∞
n=1 xn is convergent then the limit of the partial sums, limn→∞

∑n
j=1 xj

is defined to be the sum of the series.
In a notation that is totally standard but also potentially confusing,

∑∞
n=1 xn is used

for two things. One is to say that we are discussing a series, wondering then whether or
not it converges, and the other is to represent the sum of the series when it does converge:

∞∑
n=1

xn = lim
n→∞

n∑
j=1

xj

Another term used for convergent series is summable series.

Examples 1.3.3. There are a small number of series where we can show that they are
convergent and also compute their sums by direct and elementary methods.

(i) (Telescoping sums)

Suppose the series
∑∞

n=1 xn has nth term

xn =
1

n
− 1

n + 1

which could also be rewritten

xn =
1

n
− 1

n + 1
=

(n + 1)− n

n(n + 1)
=

1

n2 + n

Then the partial sums are

sn =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

n
− 1

n + 1

)
= 1− 1

n + 1

So the sum of the series is

∞∑
n=1

xn = lim
n→∞

sn = lim
n→∞

1− 1

n + 1
= 1.

(ii) (not such a good example)

If xn = 1 for each n, then sn =
∑n

j=1 1 = n and so limn→∞ sn is infinite. The series

∞∑
n=1

1

does not converge.
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(iii) (Geometric series)

Suppose there there is a number r with |r| < 1 and xn = rn−1. The sequence
1, r, r2, . . . is called a Geometric Progression (or GP) and the corresponding series is
called a Geometric series. At least if r 6= 0 the ratio of successive terms is

xn+1

xn

=
rn+1

rn
= r

(constant ratio r, also known as a common ratio).

There is a formula for the partial sums

sn = 1 + r + r2 + · · ·+ rn−1 =
1− rn

1− r

There are various ways to prove this, for instance by induction on n, but a simple
proof is to write down

rsn = r + r2 + r3 + · · ·+ rn

and subtract that from sn (cancelling all the common terms in the sums) to get

sn − rsn = 1− rn

That gives (1 − r)sn = 1 − rn and then we can divide by 1 − r to get the formula.
[By the way that formula is good for r 6= 1, not just for |r| < 1.]

Now
∞∑
n=1

xn =
∞∑
n=1

rn−1 = lim
n→∞

n∑
j=1

rj−1 = lim
n→∞

1− rn

1− r
=

1

1− r

Here we are relying on limn→∞ rn = 0 for |r| < 1, which we will not prove.

The main point of the next few results is to get an understanding of which series are
convergent (or summable). However the short answer is that it is a rather subtle question,
with no simple method to decide about convergence — at least no method that always
works.

Theorem 1.3.4. (Terms must tend to 0)
If
∑∞

n=1 xn is a convergent series, then

lim
n→∞

xn = 0

Proof. Write sn as usual for the nth partial sum sn =
∑n

j=1 xj and s =
∑∞

n=1 xn =
limn→∞ sn.

Notice that

sn+1 − sn = (x1 + x2 + · · ·+ xn+1)− (x1 + x2 + · · ·+ xn) = xn+1
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Therefore we have

lim
n→∞

xn+1 = lim
n→∞

(sn+1 − sn) = lim
n→∞

sn+1 − lim
n→∞

sn = s− s = 0

It follows that limn→∞ xn = 0 (xn small for large n).

Notice that it is vital that s ∈ R (a finite sum). If we allowed series to have sum∞ (or
−∞ either) then we could not make sense of s− s.

The point of the next example is that the theorem tells us a property that every
convergent series has, but it does not work in reverse. If limn→∞ xn = 0 it may still be the
case that the series

∑∞
n=1 xn fails to be summable.

Example 1.3.5. The series
∞∑
n=1

1

n

is not convergent,
(This is a famous example and has a special name — it is called the harmonic series.

[It occurred to me to wonder why? The answer is related to music somehow, according to
Wikipedia.])

Proof. We can show by induction that the partial sums

sn = 1 +
1

2
+

1

3
+ · · ·+ 1

n

satisfy

s2n ≥ 1 +
n

2

For n = 1 we have s2 = 1 + 1
2
. (So the inequality holds for n = 1.)

Assuming as an inductive hypothesis that s2n ≥ 1 + n
2

we have

s2
n+1

=
2n+1∑
j=1

1

j
=

2n∑
j=1

1

j
+

2n+1∑
j=2n+1

1

j

= s2n +
2n+1∑

j=2n+1

1

j

> 1 +
n

2
+

2n+1∑
j=2n+1

1

2n+1

= 1 +
n

2
+ (2n+1 − 2n)

1

2n+1
= 1 +

n

2
+

1

2
= 1 +

n + 1

2

It is clear from this that the sequence of partial sums s1, s2, s3, . . . is not bounded above
and the limit limn→∞ sn cannot be any finite s. (One way to argue this is that if there was
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a finite limit s then for all large enough n we would have |sn−s| < 1, so s−1 < sn < s+1.
But if we choose m large enough we would have s + 1 < (m + 1)/2 and

s + 1 <
m + 1

2
< s2m

This shows for sure that the limit of the partial sums is not finite.)

Proposition 1.3.6. (Link to monotone sequences)
If
∑∞

n=1 xn is a series of nonnegative terms then its sequence of partial sums is monotone
increasing.

Proof. As usual we will write sn =
∑n

j=1 xj = x1 + x2 + · · ·+ xn for the nth partial sum.
We can then observe that sn+1 − sn = xn+1 ≥ 0 and so sn ≤ sn+1 always.
This says that (sn)∞n=1 is monotone increasing.

Theorem 1.3.7. If
∑∞

n=1 xn is a series of nonnegative terms then it is convergent if and
only if its sequence of partial sums is bounded above.

Proof. Since this is an if and only if statement there are two things to show.
⇒: Assume first that

∑∞
n=1 xn is convergent. Write sn =

∑n
j=1 xj and s = limn→∞ sn.

Taking ε = 1 in the definition of limit, there is N so that

n > N ⇒ |sn − s| < 1⇒ sn < s + 1

For n ≤ N we have sn ≤ sN+1 < s + 1 also holds and so sn ≤ s + 1 for all n. (Recall
that we have a series of nonnegative terms.) That says that the number s + 1 is an upper
bound for the partial sums. So the partial sums are bounded above.
⇐: Suppose now

∑∞
n=1 xn is a series (of nonnegative terms) with partial sums bounded

above. By Proposition 1.3.6 the sequence of partial sums is monotone increasing and so
we know it has a limit (by Theorem 1.2.3, since it is a bounded monotone sequence).

Theorem 1.3.8 (Comparison test for series of positive terms). Suppose
∑∞

n=1 xn and∑∞
n=1 yn are two series with nonnegative terms (xn ≥ 0 and yn ≥ 0) and suppose xn ≤ yn

for each n. Then

(a) if the larger series
∑∞

n=1 yn converges then so does the smaller series
∑∞

n=1 xn;

(b) if the smaller series
∑∞

n=1 xn does not converge then neither does the larger one
∑∞

n=1 yn.

Proof. Notice that the partial sums of the smaller series are smaller than those of the
larger:

∑n
j=1 xj ≤

∑n
j=1 yj for each n. Using Theorem 1.3.7, if

∑∞
n=1 yn converges then

there is u ∈ R so that
∑n

j=1 yj ≤ u for all n. But then
∑n

j=1 xj ≤ u also and so
∑∞

n=1 xn

converges (using Theorem 1.3.7). That shows (a). And (b) follows from (a).
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