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About MA1132 — Advanced calculus

Lecturer Richard M. Timoney richardt@maths.tcd.ie

Refer to http://www.maths.tcd.ie/~richardt/MA1132 for more information.
Prerequisites: MA1123 (Analysis on the real line I), MA1111 (Linear Algebra I)
2 lectures and 1 tutorial per week
Assessment: Regular aassignments and tutorial work. In class exams Friday February

24 and (to be confirmed) Monday April 2nd.
The entire grade will be based on continuous assessment.
For those who do not complete the module satisfactorily, there will be a supplemental

examination.

Outline

Sequences (definition and basic results on convergence). Series (definition of the sum, series
of positive terms, absolute convergence, tests for convergence). Power series and (use of)
Taylor’s theorem.

Differentiation of curves, tangent lines in 2 or 3 dimensions. Graphical represenation of
functions of 2 or 3 variables. Partial derivatives, gradients, directional derivatives, tangent
planes to graphs and level surfaces. Linear approximation for functions of 2 or 3 variables,
chain rule.

Linear and exact differential equations.
Double and triple integrals, computation via iterated integrals (Fubini theorem). Dou-

ble integrals in polar coordinates.
Integrals of vector fields (along curves). Greens theorem.

richardt@maths.tcd.ie
http://www.maths.tcd.ie/~richardt/MA1132
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1 Limits of sequences, sums of series

1.1 Sequences

Normally we think of a sequence (infinite sequence in our case) as an infinite list x1, x2, x3, . . ..
We will be dealing first with sequences of (real) numbers but it does make sense to consider
sequences of other things later (vectors, matrices, functions for example).

We can define a sequence as a function, though that is not the usual way to think of
them.

Definition 1.1.1. By a sequence (in R) we mean a function x : N→ R.

I use N = {1, 2, 3, . . .} for the positive integers (or natural numbers — some people
include 0 as a natural number but I don’t). Since a function x : N → R is a rule that
associates a value x(n) to each n in the domain N, it follows that we can think of a
sequence as a list of numbers x(1), x(2), x(3), . . .. It is usual though to write sequences
with subscript notation — so xn instead of x(n). We typically describe a sequence by the
notation

(xn)∞n=1

rather than the more elongated x1, x2, x3, . . ..
We refer to xn as the nth term of the sequence.
It will sometimes be convenient to write a sequence as a list like t0, t1, t2, . . . starting at

0, abbreviated (tn)∞n=0. That could be a function with domain {0} ∪ N or we could say it
was the sequence (xn)∞n=1 with nth term xn = tn−1.

Examples 1.1.2. Typically sequences are described by a rule giving the terms, such as

xn = (−1)n

yn = sinn

un =


3n2 + 2n− 5

n2 + n− 1
if n is odd

3n2 + 7n− 2

n2 − n− 1
if n is even

So the sequence (xn)∞n=1 is −1, 1,−1, 1, . . . (alternating minus ones and ones). We
could describe that sequence without giving any name xn for the terms as the sequence
((−1)n)∞n=1 and the second example as (sinn)∞n=1.

Our main concern will be limits of sequences (when they have limits). Informally
limn→∞ xn = ` means that xn will certainly be close to ` for all large n. More precisely we
define it be saying that once we decide how close we mean when we say ‘close to `’ there
must be a suitable interpretation of largeness for n to make the previous assertion true.

Definition 1.1.3. If (xn)∞n=1 is a sequence (of real numbers) and ` ∈ R then we say that
the sequence converges to ` (and write limn→∞ xn = `) if the following ε-N criterion is
satisfied:
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given any ε > 0 there is some N ∈ N such that

n ∈ N, n > N ⇒ |xn − `| < ε.

Remark 1.1.4. Notice that the N will (almost always) depend on ε and one could write Nε

for N to emphasise that. So the ε-N criterion would then read

given any ε > 0 there is some Nε ∈ N such that

n ∈ N, n > Nε ⇒ |xn − `| < ε.

Thinking back over the various kinds of limits you have seen for limits of functions,
such

lim
x→a

f(x) = `, lim
x→∞

f(x) = `, lim
x→a

f(x) =∞, lim
x→∞

f(x) =∞,

the definition for the limit of a sequence is most similar to the definition for limx→∞ f(x) =
`. In that case the setting is that f(x) must at least make sense on some interval (x0,∞)
and the criterion is

given any ε > 0 there is some R ∈ N such that

x ∈ R, x > R⇒ |f(x)− `| < ε.

So the difference with a sequence is that the domain we consider is only the natural
numbers, not a half line.

Examples 1.1.5. (i) (Limits of constant sequences) If xn = k ∈ R for all n, then

lim
n→∞

xn = lim
n→∞

k = k

(ii)

lim
n→∞

1

n
= 0

These need to be checked directly from the definition. (That is not so hard — try it
for yourself.)

We can work out a fair number of basic limits using these two examples plus the
following theorem.

Theorem 1.1.6. Suppose (xn)∞n=1 and (yn)∞n=1 are two convergent sequences with limn→∞ xn =
`1 and limn→∞ yn = `2.

(i) (Multiples) For k ∈ R a fixed number,

lim
n→∞

kxn = k`1
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(ii) (Sums)
lim
n→∞

xn + yn = `1 + `2

(iii) (Products)
lim
n→∞

xnyn = `1`2

(iv) (Quotients) Provided (yn is never 0 and) `2 6= 0

lim
n→∞

xn
yn

=
`1
`2

This fact about limits of sums, products and quotients is proved in a way that mimics
the proofs of the same results for limits of functions. We omit the proofs.

One thing to notice is that the limit of a sequence depends only on the terms for large
n. A formal way to express that is that if you change just a finite number of terms of
a sequence then you don’t change the limit. Also if the sequence was not convergent,
changing a finite number of terms will still give a sequence with no limit.

In the result about lmits of quotients, the hypothesis that `2 6= 0 is somehow more
important than the one about yn 6= 0 for all n. The reason is that if `2 6= 0 then it must
be that yn 6= 0 for all n large enough (large enough that |yn − `2| is smaller than |`2|). So
xn/yn will make sense for all large n if `2 6= 0. Of course then it is a problem that the
sequnce of fractions (xn/yn)∞n=1 might not make real sense if yn is ever 0. But we could
make some arbitrary convention about what to replace xn/yn by when yn = 0 and then
the result would hold as long as `2 6= 0.

Examples 1.1.7. (i) An example of a sequence with no limit is the alternating sequence
((−1)n)∞n=1.

Proof. This needs a proof (based on the definition 1.1.3), which I leave as an exercise
for you.

(ii) If xn is given by a rational function where the degree of the numerator is no larger
than the degree of the denominator, we can find limn→∞ xn by dividing above and
below by the highest power of n in the denominator and using the theorem 1.1.6 and
the examples 1.1.5 repeatedly.

For instance

lim
n→∞

4n3 − n2 + 11n+ 102

7n3 + n− 3
= lim

n→∞

4− 1
n

+ 11 1
n2 + 102 1

n3

7 + 1
n2 − 3 1

n3

=
limn→∞ 4− 1

n
+ 11 1

n2 + 102 1
n3

limn→∞ 7 + 1
n2 − 3 1

n3

using Theorem 1.1.6 (iv) — which will be justified once we can show that the limits
in the numerator and denominator do make sense. Looking first at the numerator,
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we know (by 1.1.5) limn→∞ 4 = 4 and limn→∞ 1/n = 0, hence limn→∞−11/n = 0
(by 1.1.6 (i) and so limn→∞(4 − 11/n) = 4 (by 1.1.6 (ii)). Next limn→∞ 1/n2 =
limn→∞(1/n)(1/n) = 0 (by 1.1.6 (iii)) and by the same result on limits of products
limn→∞ 1/n3 = limn→∞(1/n2)(1/n) = 0. Using 1.1.6 (i) and 1.1.6 (ii) again, we
deduce

lim
n→∞

(
4− 1

1

n
+ 11

1

n2

)
= lim

n→∞

(
4− 1

1

n

)
+ lim

n→∞
11

1

n2
= 4 + 11(0) = 4

and finally we have the limit of the numerator

lim
n→∞

(
4− 1

1

n
+ 11

1

n2
+ 120

1

n3

)
= lim

n→∞

(
4− 1

1

n
+ 11

1

n2

)
+ lim
n→∞

120
1

n3
= 4+120(0) = 4

Similarly, but compressing the various steps, we have the limit of the denominator

lim
n→∞

(
7 +

1

n2
− 3

1

n3

)
= 7 + 0− 3(0) = 7

and the limit of the original sequence is then justfied as a limit of a quotient

lim
n→∞

4n3 − n2 + 11n+ 102

7n3 + n− 3
=

limn→∞ 4− 1
n

+ 11 1
n2 + 102 1

n3

limn→∞ 7 + 1
n2 − 3 1

n3

=
4

7

We can describe limits of functions limx→a f(x) = ` using sequences, as follows. Recall
that for limx→a f(x) = ` to make sense we need f(x) to be defined near x = a but not at
x = a itself. The domain of f(x) must include a ‘punctured open interval’ about a, which
means a set (a0, a1) \ {a} = (a0, a) ∪ (a, a1) with a0 < a < a1.

Theorem 1.1.8. Let f : S → R be a function defined on a subset S ⊆ R that contains a
punctured open interval around a point a ∈ R. Suppose ` ∈ R.

Then limx→a f(x) = ` holds if and only if the following sequence criterion is valid

for all sequences (xn)∞n=1 of terms xn ∈ S \ {a} satisfying limn→∞ xn = a we
have limn→∞ f(xn) = `

Proof. There are two separate things to prove because this is an ‘if and only if’ theorem.
First we prove that if limx→a f(x) = ` then the sequence criterion holds. Next we prove
(in a separate argument) that if the sequence criterion holds then limx→a f(x) = `.
⇒: Suppose now limx→a f(x) = `. Consider an arbitrary sequence (xn)∞n=1 of terms

xn ∈ S \ {a} satisfying limn→∞ xn = a.
[First we will explain what we are going to do somewhat imprecisely. We know xn is

close to a (but not equal to a) for n big enough and if x is close enough to a (yet diferent
from a) then f(x) will be close to `. So if n is big enough, xn will be close to a and f(xn)
close to `. That is limn→∞ f(xn) = `. What we need though is to make these terms ‘close’
and ‘large’ more precise.]
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According to Definition 1.1.3 we should start with ε > 0 fixed and show that we can
find N so that

n > N ⇒ |f(xn)− `| < ε

So we now suppose that ε > 0 is given.
According to the ε-δ definition of what limx→a f(x) = ` means, we know we can find

δ > 0 so that
x ∈ R, 0 < |x− a| < δ ⇒ |f(x)− `| < ε

Applying the definition 1.1.3 of what limn→∞ xn = a means (applied with δ > 0 as the
‘epsilon’) there is N = Nδ so that

n > N ⇒ |xn − a| < δ.

Since we also know xn 6= a for each n we see that

n > N ⇒ 0 < |xn − a| < δ ⇒ |f(xn)− `| < ε

Since we can find suchN no matter which ε > 0 we begin with, we have shown limn→∞ f(xn) =
`.
⇐: Suppose now that the sequence criterion holds.
To make the notation of the proof easier, we need to work with a symmetric punctured

open interval about a that is contained in S, the domain of f . Since S contains (a0, a1) ∪
(a, a1) for some a0 < a < a1, if we take α = min(a− a0, a1− a) then α > 0 and S contains
(a− α, a+ α) \ {a} = {x ∈ R : 0 < |x− a| < α}.

To prove limx→a f(x) = `, we show that it cannot fail to be true. If it fails to be the
case that the limit is `, it means that there is some ε > 0 where no δ > 0 has the property

x ∈ R, 0 < |x− a| < δ ⇒ |f(x)− `| < ε

Since then δ = α/n does not work (and all x with 0 < |x− a| < α/n are in the domain
of f), there must be xn with

0 < |xn − a| <
α

n
and |f(xn)− `| ≥ ε

If we pick such xn for each n = 1, 2, 3, . . ., we end up with a sequence (xn)∞n=1 so that
xn ∈ S \ {a} for all n, limn→∞ xn = a but (f(xn))∞n=1 does not converge to `. That
contadicts our assumption and so we must be able to find δ > 0 to suit each ε > 0. We
have shown that limx→a f(x) = ` is true.

Example 1.1.9. limn→∞ 1/
√
n = 0 because limx→0

√
|x| = 0 and limn→∞ 1/n = 0. Similarly

limn→∞ sin(1/n) = 0.

MA1132 (R. Timoney)January 17, 2012[revised to change ` to a is a few places in the
statement of the last theorem and its proof.]
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