MA1311 (Advanced Calculus) Tutorial sheet 7
[November 17 — 18, 2010]

Name: Solutions.

Let (zo,%0) = (1,—1) and
ey
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for these problems.

1. Find the directional derivative D,, f(xo, yo) for the function f(z,y), the point (x¢, 3o), and
u = (uq, ug) any unit vector.

Solution: We could work out the directional derivative from the definition D, f(xo, y0) =
% li=o f((x0,yo) + tu) but it is simpler to rely on the formula

or the version evaluated at (zo,yo) = (1, —1)
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We need the partial derivatives
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2. For the same f(z,y), the same (z,yo) and the corresponding point (zg, Yo, 29) on the
graph z = f(z,y), find parametric equations for the line which is tangent to the graph at
(20, Yo, 20) and perpendicular to the z-axis.



Solution: The line will be tangent to the curve where the graph z = f(x,y) intersects the
plane x = x, and so tangent to the curve

r = Xy
= Yo+t
z = f(zo,y0+1)

at ¢ = 0. The tangent vector to that curve is
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So the line is
r = X9
= Yo+t
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and zo = f(xo,y0) = % = 1/(2e). Thus the answer is
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. For the same f(x,y), the same (¢, o) and the corresponding point (¢, yo, z9) on the
graph z = f(z,y), find the normal vector to the tangent plane to the graph z = f(z,y) at
(%0, Yo, 20)- And then find the equation of that plane.

Solution: The normal vector to the tangent plane is
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and we have those values already. So the normal vector is
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The equation of the tangent plane must then have the form
ar + By +vz=c
where (a, 8,7) = (32, 2, —1). So the equation has the form

—ix+3 —z=c
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Also (g, Yo, 20) = (1, —1,1/(2¢)) must satisfy the equation and so we have
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or —7/(2¢e) = c. That means the equation is
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or we might prefer
3r — 3y +2e2=7
4. Find the linear approximation formula for f(x,y) centered at (z,y) = (o, ¥o)-

Solution: The formula we want is

~ of of
f(xu y) = f(1‘07y0) + % |(zo,yo) (x - 950) + 8_y ’(xo,yo) (?J - ?Jo)'

We need f(xo,y0) = f(1,—1) = 1/(2¢) and the values of the partials evaluated at (1, —1)
(which we have already).

So we end up with
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(which we expect to be a good approximation for (z, y) close to (1, —1)).
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5. Find the gradient vector V f | (5, ) (evaluated at (xo, 3o)).

Solution: We know V f = (0f/0x,df/0y) and we already had the values of the partials
evaluated at (zg,yo) = (1, —1). We get
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