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10.3.2 Integration by parts

If we integrate both sides of the product rule

d

dx
(uv) =

du

dx
v + u

dv

dx

we get ∫
d

dx
(uv) dx =

∫
v
du

dx
dx +

∫
u

dv

dx
dx

or

uv =

∫
v
du

dx
dx +

∫
u

dv

dx
dx

This allows us a way of transforming integrals that take the form of a product of one
function times the derivative of another∫

u
dv

dx
dx = uv −

∫
v
du

dx
dx

into a different integral (where the differentiation has flipped from one factor to the other).
The advantage of this comes if we know how to manage the new integral (or at least if it
is simpler than the original). The integration by parts formula is usually written with the
ds’s cancelled ∫

u dv = uv −
∫

v du

Examples 10.3.2.1. (a)

∫
x ln x dx

Solution: The two most obvious ways to use integration by parts are

• u = x, dv = ln x dx (Problem with this is we can’t find v very easily)

• u = ln x, dv = x dx
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It turns out that the second is good.∫
x ln x dx Let u = ln x dv = x dx

du = 1
x
dx v = x2

2∫
x ln x dx =

∫
u dv

= uv −
∫

v du

= (ln x)
x2

2
−

∫
x2

2

1

x
dx

= (x2/2) ln x−
∫

x

2
dx

= (x2/2) ln x− x2

4
+ C

(b)

∫ e

1

ln x dx

Solution: This is one of a very few cases which can be done by taking dv = dx and
u = the integrand. Every integral takes the form

∫
u dv in that way, but it is rarely a

good way to start integration by parts.

Here we can make use of the definite integral form of the integration by parts formula∫ b

a

u dv = [uv]ba −
∫ b

a

v du

which arises in the same way as the indefinite integral formula (take definite integrals
of the product rule for differentiation).

∫ e

1

ln x dx Let u = ln x dv = dx
du = 1

x
dx v = x∫ e

1

ln x dx =

∫ e

1

u dv

= [uv]e1 −
∫ e

1

v du

= [(ln x)x]e1 −
∫ e

1

x
1

x
dx

= e ln e− ln 1−
∫ e

1

1 dx

= e− [x]e1
= e− (e− 1) = 1
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(c)

∫
x2 cos x dx

Solution: ∫
x2 cos x dx Let u = x2 dv = cos x dx

du = 2x dx v = sin x∫
x2 cos x dx =

∫
u dv

= uv −
∫

v du

= x2 sin x−
∫

sin x(2x) dx

= x2 sin x−
∫

2x sin x dx

The point here is that we have succeeded in simplifying the problem. We started
with x2 times a trigonometric function (cos x) and we have now got to x times a
trigonometric function (sin x this time, but that is not so different in difficulty to
cos x). If we continue in the same (or similar) way and apply integration by parts
again, we can make the problem even simpler. We use U and V this time in case we
might get confused with the earlier u and v.1∫

2x sin x dx Let U = 2x dV = sin x dx
dU = 2 dx V = − cos x∫

2x sin x dx =

∫
U dV

= UV −
∫

V dU

= 2x(− cos x)−
∫

(− cos x)2 dx

= −2x cos x +

∫
2 cos x dx

= −2x cos x + 2 sin x + C

Combining with the first stage of the calculation∫
x2 cos x dx = x2 sin x + 2x cos x− 2 sin x− C

and, in fact −C is plus another constant. Since C can be any constant, the answer∫
x2 cos x dx = x2 sin x + 2x cos x− 2 sin x + C

is also good.

1One thing to avoid is U = v and V = u because this will just unravel what we did to begin with.
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Remark 10.3.2.2. We will not in fact learn any other techniques than these which are
purely integration methods. We will spend some time explaining how to make use of these
techniques in specific circumstances (as it is often not at all obvious how to do so). There
is one other method we will come to called partial fractions, a method for integrating
fractions such as ∫

x + 2

(x− 1)(x2 + 2x + 2)
dx

However, the thing we have to learn about is algebra — a way to rewrite fractions like
this as sums of simpler ones — and there is no new idea that is directly integration. The
algebra allows us to tackle problems of this sort.

10.3.3 Trigonometric Integrals

(i) Powers of sin x times powers of sin x with one power odd

Method: For ∫
sinn x cosm x dx

• if n = the power of sin x is odd, substitute u = cos x

• if m = the power of cos x is odd, substitute u = sin x

Example 10.3.3.1.

∫
sin3 x cos4 x dx

Solution: Let u = cos x, du = − sin x dx, dx =
du

− sin x∫
sin3 x cos4 x dx =

∫
sin3 xu4 du

− sin x

=

∫
− sin2 xu4 du

=

∫
−(1− cos2 x)u4 du

=

∫
−(1− u2)u4 du

=

∫
u6 − u4 du

=
1

7
u7 − 1

5
u5 + C

=
1

7
cos7 x− 1

5
cos5 x + C

(ii) Powers of sin x times powers of sin x with both powers even
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Method: use the trigonometric identities

sin2 x =
1

2
(1− cos 2x), cos2 x =

1

2
(1 + cos 2x)

Example 10.3.3.2.

∫
sin4 x cos2 x dx

Solution: ∫
sin4 x cos2 x dx =

∫
(sin2 x)2 cos2 x dx

=

∫ (
1

2
(1− cos 2x)

)2 (
1

2
(1 + cos 2x)

)
dx

=
1

8

∫
(1− 2 cos 2x + cos2 2x)(1 + cos 2x) dx

=
1

8

∫
1− cos 2x− cos2 2x + cos3 2x dx

Now
∫

1 dx is no bother.
∫

cos 2x dx is not much harder than
∫

cos x dx = sin x + C.
If we look at

d

dx
sin 2x = (cos 2x)2

we can see that
∫

cos 2x dx = 1
2
sin 2x + C. (This can also be done by a substitution

u = 2x but that is hardly needed.) Next∫
cos2 2x dx =

∫
1

2
(1 + cos 4x) dx =

1

2

(
x +

1

4
sin 4x

)
+ C

(using the same ideas as for
∫

cos 2x dx).

For
∫

cos3 2x dx we are in a situation where we have an odd power of cos times a
zeroth power of sin. So we can use the earlier method (the fact that the angle is 2x
doe snot make a big difference) of substituting u = sin 2x. Then du = 2 cos 2x dx,
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dx =
du

2 cos 2x
, ∫

cos3 2x dx =

∫
cos3 2x

du

2 cos 2x

=
1

2

∫
cos2 2x du

=
1

2

∫
1− sin2 2x dx

=
1

2

∫
1− u2 du

=
1

2

(
u− 1

3
u3

)
+ C

=
1

2
sin 2x− 1

6
sin3 2x + C

Putting all the bits together∫
sin4 x cos2 x dx =

1

8

∫
1− cos 2x− cos2 2x + cos3 2x dx

=
1

8

(
x− 1

2
sin 2x− 1

2
x− 1

8
sin 4x +

1

2
sin 2x− 1

6
sin3 2x

)
+ C

=
1

16
x− 1

64
sin 4x− 1

48
sin3 2x + C

(iii) Powers of sin x and cos x

Method: Use the previous two methods treating∫
sinn x dx =

∫
sinn x(cos x)0 dx

and similarly for
∫

cosm x dx (that is treat the second power as the zeroth power).

Examples 10.3.3.3. •
∫

cos3 x dx

Solution:
∫

cos3 x dx =
∫

(sin x)0 cos3 x dx. Power of cos odd. Substitute u =

sin x, du = cos x dx, dx =
du

cos x∫
cos3 x dx =

∫
cos3 x

du

cos x

=

∫
cos2 x du

=

∫
1− u2 du

= u− 1

3
u3 + C

= sin x =
1

3
sin3 x + C
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•
∫

sin4 x dx

Solution: Use even powers method.∫
sin4 x dx =

∫
(sin2 x)2 dx

=

∫ (
1

2
(1− cos 2x)

)2

dx

=
1

4

∫
1− 2 cos 2x + cos2 2x dx

Note: still have one even power

=
1

4

∫
1− 2 cos 2x +

1

2
(1 + cos 4x) dx

=
1

4

∫
3

2
− 2 cos 2x +

1

2
cos 4x dx

=
1

4

(
3

2
x− sin 2x +

1

8
sin 4x

)
+ C

=
3

8
x− 1

4
sin 2x +

1

32
sin 4x + C

10.3.4 Inverse trigonometric substitutions

We now consider a class of substitutions which seem quite counter intuitive.
Recall these

d

dx
sin−1 x =

1√
1− x2

d

dx
tan−1 x =

1

1 + x2

d

dx
cosh−1 x =

1√
x2 − 1

d

dx
sinh−1 x =

1√
x2 + 1

The corresponding substitution methods are:

• integrals involving
√

1− x2, substitute θ = sin−1 x (or it is often more convenient to
write it x = sin θ).

More generally, integrals involving
√

a2 − u2 (with a constant) — try substituting
u = a sin θ (or θ = sin−1(x/a)).

• integrals involving
1

a2 + u2
— try substituting u = a tan θ

• integrals involving
√

u2 − a2 — try substituting u = a cosh t
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• integrals involving
√

u2 + a2 — try substituting u = a sinh t

Examples 10.3.4.1. (i)

∫ √
9− 4(x + 2)2 dx

Solution: In this case, we have
√

a2 − u2 with a2 = 9, a = 3, u = 2(x + 2) and so our
method says to try u = a sin θ or

2(x + 2) = 3 sin θ

2 dx = 3 cos θ dθ

dx =
3 cos θ

2
dθ∫ √

9− 4(x + 2)2 dx =

∫ √
9− 9 sin2 θ

3 cos θ

2
dθ

=

∫ √
9 cos2 θ

3 cos θ

2
dθ

=

∫
3 cos θ

3 cos θ

2
dθ

=
9

2

∫
cos2 θ dθ

=
9

4

∫
1 + cos 2θ dθ

=
9

4
(θ +

1

2
sin 2θ) + C

To get the answer in terms of x, we need θ in terms of x

2(x + 2) = 3 sin θ
2

3
(x + 2) = sin θ

θ = sin−1

(
2

3
(x + 2)

)
and we could get a correct answer by replacing θ by this everywhere in the answer
above.

There is a way to simplify the answer but we won’t go into that.

(ii)

∫ √
−4x2 − 16x− 7 dx

Solution: For quadratics inside a square root like this, what we should do first is
complete the square. That is, rearrange the x2 and x terms so that (with a suitable
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constant) we get a multiple of a perfect square

−4x2 − 16x− 7 = −4(x2 + 4x)− 7

= −4(x2 + 4x + 4− 4)− 7

= −4(x2 + 4x + 4) + 9

= 9− 4(x + 2)2

This means that not only is this problem similar to the previous one, it is in fact the
same problem again (now that we completed the square).

Remark 10.3.4.2. There are in fact many more tricks we could go into.

10.3.5 Partial Fractions

Partial fractions are a technique from algebra, but our reason for dealing with them is that
they can in principle help find every integral of the form∫

p(x)

q(x)
dx

where p(x) and q(x) are polynomials.
Except in a few special cases, we don’t yet know how to find such integrals. One special

case, where we don’t need partial fractions, is where q′(x) = p(x) or q′(x) = αp(x) for some
constant α, because in these cases we can make a substitution u = q(x), du = q′(x) dx and
it will work out nicely. In fact substitution would also work if q(x) = r(x)n for some n ≥ 1
and r′(x) = αp(x) for a constant α — we can substitute u = r(x), du = r′(x) dx = αp(x) dx,∫

p(x)

q(x)
dx =

∫
p(x)

r(x)n
dx =

∫
p(x)

un

du

αp(x)
=

∫
(1/α)

1

un
du

The idea of partial fractions is to rewrite p(x)
q(x)

as a sum of fractions with simple denom-
inators and numerators that are somehow small compared to the denominator. We need
to explain exactly how it goes.

We need to talk about factoring polynomials as much as possible.
To start with, a polynomial is an expression you get by taking a finite number of powers

of x with constant coefficients in front and adding them up. For example

p(x) = 4x2 − x + 17

or
p(x) = 27x11 + 15x10 − x9 + x8 + 11x2 + 5

are polynomials. The highest power of x that has a nonzero coefficient in front is called
the degree of the polynomial. The examples above have degree 2 and degree 11.

What is handy to know is that when we multiply polynomials, the degrees add. So
(x+1)(x+5)(x2 +x+11) will have degree 1+1+2 = 4 when it is multiplied out. Constant
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polynomials have degree 0, except the zero polynomial — we are best not giving any degree
to the zero polynomial.

Now, what kind of polynomial can be factored? For this purpose we don’t consider
constant factors as genuine factors. So

2x2 + 4 = 2(x2 + 2) =
1

3
(6x2 + 12)

will not be counted as factorisations.
Anything of degree 1 certainly cannot be factored then. Some things of degree 2 can

be factored, such as
x2 + 5x + 4 = (x + 1)(x + 4)

but other quadratics cannot be factored if we don’t allow complex numbers to be used.
We cannot factor

x2 + 2x + 2 = (x− α)(x− β)

because if we could then the roots of x2 +2x+2 would be α and β. The roots of x2 +2x+2
are

−b±
√

b2 − 4ac

2a
=
−2±

√
4− 8

2
= −1±

√
−1

and these are complex numbers. So α and β would have to be these complex numbers.
A remarkable fact is that every polynomial of degree 3 or more can be factored, at

least in theory. It does not mean it is easy to find the factors, unfortunately. What you
can sometimes rely on to factor polynomials is the Remainder Theorem. Recall that
it says that if p(x) is a polynomial and you know a root x = a (that is a value a so that
p(a) = 0), then x− a must divide p(x).

Using the theory, just as in principle whole numbers can be factored as a product of
prime numbers, so polynomials p(x) with real coefficients can be factored as a product
of linear factors like x − a and quadratic factors x2 + bx + c with complex roots. If the
coefficient of the highest power of x in p(x) is not 1, then we also need to include that
coefficient. So a complete factorisation of

2x2 + 8x + 2 = (2x + 4)(x + 2) = 2(x + 2)(x + 2) = 2(x + 2)2.

For 3x3 + 3x2 + 6x + 6 = 3(x3 + x2 + 2x + 2), you can check that x = −1 is a root and so
x− (−1) = x + 1 must divide it. We get

3x3 + 3x2 + 6x + 6 = 3(x + 1)(x2 + 2)

from long division.
Now we can outline how partial fractions works for a fraction p(x)

q(x)
of two polyno-

mials:
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Step 0: (preparatory step). If the degree of the numerator p(x) is not strictly smaller
than the degree of the denominator q(x), use long division to divide q(x) into p(x)
and obtain a quotient Q(x) and remainder R(x). Then

p(x)

q(x)
= Q(x) +

R(x)

q(x)

and degree(R(x)) < degree(q(x)).

We concentrate then on the ‘proper fraction’ part R(x)/q(x).

Step 1: Now factor q(x) completely into a product of linear factors x − a and quadratic
factors x2 + bx + c with complex roots.

Gather up any repeated terms, so that if (say) q(x) = (x− 1)(x + 2)(x2 + 3)(x + 2)
we would write it as q(x) = (x− 1)(x + 2)2(x2 + 3).

Step 2: Then the proper fraction
R(x)

q(x)
can be written as a sum of fractions of the following

types:

(i)
A

(x− a)m

(ii)
Bx + C

(x2 + bx + c)k

where we include all possible powers (x − a)m and (x2 + bx + c)k that divide q(x).
The A, B, C stand for constants.

As examples, consider the following. We just write down what the partial fractions look
like. In each case, we start with a proper fraction where the denominator is completely
factored already. So some of the hard work is already done.

(i)
x2 + x + 5

(x− 1)(x− 2)(x− 3)
=

A1

x− 1
+

A2

x− 2
+

A3

x− 3

(ii)
x3 + 2x + 7

(x + 1)2(x− 4)
=

A1

x + 1
+

A2

(x + 1)2
+

A3

x− 4

(iii)
x2 + x + 11

(x + 1)(x2 + 2x + 2)
=

A

x + 1
+

Bx + C

x2 + 2x + 2

(iv)
x4 + x + 11

(x + 1)(x2 + 2x + 2)2
=

A

x + 1
+

B1x + C1

x2 + 2x + 2
+

B2x + C2

(x2 + 2x + 2)2

To make use of these, we have to be able to find the numbers A, B, C, . . . that make
the equation true. Take the first example

x2 + x + 5

(x− 1)(x− 2)(x− 3)
=

A1

x− 1
+

A2

x− 2
+

A3

x− 3
.
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To find the appropriate A1, A2, A3, we multiply across by the original denominator (x −
1)(x− 2)(x− 3). This has the effect of clearing all the fractions.

x2 + x + 5 =
A1

x− 1
(x− 1)(x− 2)(x− 3) +

A2

x− 2
(x− 1)(x− 2)(x− 3)

+
A3

x− 3
(x− 1)(x− 2)(x− 3)

= A1(x− 2)(x− 3) + A2(x− 1)(x− 3) + A3(x− 1)(x− 2)

There are two avenues to pursue from here. In this case, method 1 seems easier to me,
but in general method 2 can be as good.

Method 1. Plug in the values of x that make the original denominator (x − 1)(x −
2)(x− 3) = 0.

x = 1 :

1 + 1 + 5 = A1(1− 2)(1− 3) + A2(0) + A3(0)

7 = 2A1

A1 = 7/2

x = 2 :

11 = A1(0) + A2(1)(−1) + A3(0)

= −A2

A2 = −11

x = 3 :

17 = 0 + 0 + A3(2)(1)

A3 = 17/2

So we get
x2 + x + 5

(x− 1)(x− 2)(x− 3)
=

7/2

x− 1
+

−11

x− 2
+

17/2

x− 3
.

Our interest in this is for integration. We can now easily integrate∫
x2 + x + 5

(x− 1)(x− 2)(x− 3)
dx =

∫
7/2

x− 1
+

−11

x− 2
+

17/2

x− 3
dx

=
7

2
ln |x− 1| − 11 ln |x− 2|+ 17

2
ln |x− 3|+ C

Method 2. Multiply out the right hand side.

x2 + x + 5 = A1(x− 2)(x− 3) + A2(x− 1)(x− 3) + A3(x− 1)(x− 2)

= A1(x
2 − 5x + 6) + A2(x

2 − 4x + 3) + A3(x
2 − 2x + 2)

= (A1 + A2 + A3)x
2 + (−5A1 − 4A2 − 2A3)x + (6A1 + 3A2 + 2A2)
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and compare the coefficients on both sides to get a system of linear equations

A1 + A2 + A3 = 1
−5A1 − 4A2 − 2A3 = 1

6A1 + 3A2 + 2A2 = 5

These can be solved (by Gaussian elimination, for example) to find A1, A2, A3.
Method 1 is certainly magic in this case, but there are examples where Method 1 does

not get all the unknown so easily.
Another example. Here is one of our previous examples with the numbers worked out.

x2 + x + 11

(x + 1)(x2 + 2x + 2)
=

11

x + 1
+
−10x− 11

x2 + 2x + 2

To find the integral of this,∫
x2 + x + 11

(x + 1)(x2 + 2x + 2)
dx =

∫
11

x + 1
dx−

∫
10x + 11

x2 + 2x + 2
dx

= 11 ln |x + 1| −
∫

10x + 11

x2 + 2x + 2
dx

To work out the remaining integral, we use the method of completing the square x2 +2x+
2 = x2 + 2x + 1 + 1 = (x + 1)2 + 1 and there is a trick. The trick is inspired by the fact
that the substitution u = x2 + 2x + 2, du = (2x + 2) dx = 2(x + 1) dx would work if the
numerator was a multiple of x + 1. What we can do is write∫

10x + 11

x2 + 2x + 2
dx =

∫
10x + 10

x2 + 2x + 2
dx +

∫
1

x2 + 2x + 2
dx

and make the u = x2 + 2x + 2 substitution in the first half, while the second is an inverse
tan example. (By substituting w = x + 1, dw = dx, the second part becomes∫

1

(x + 1)2 + 1
dx =

∫
1

w2 + 1
dw = tan−1 w = tan−1(x + 1)

or we might be able to guess that.) We get∫
10x + 11

x2 + 2x + 2
dx =

∫
10x + 10

u

du

2(x + 1)
+

∫
1

(x + 1)2 + 1
dx

=

∫
5

u
du + tan−1(x + 1)

= 5 ln |u|+ tan−1(x + 1) + C

= 5 ln(x2 + 2x + 2) + tan−1(x + 1) + C

Finally, our integral works out as∫
x2 + x + 11

(x + 1)(x2 + 2x + 2)
dx = 11 ln |x + 1| − 5 ln(x2 + 2x + 2)− tan−1(x + 1) + C

Richard M. Timoney December 1, 2010
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