8.6 Inverse hyperbolic functions

The hyperbolic sine function $y = \sinh x$ is strictly monotone increasing because $\frac{d}{dx} \sinh x = \cosh x = (e^x + e^{-x})/2 > 0$ always. So it has an inverse function. For x > 0 we have $\sinh x = (e^x - e^{-x})/2 > (e^x - 1)/2$ (since $e^{-x} < e^0 = 1$ for x > 0, or -x < 0). This shows that $\lim_{x\to\infty} \sinh x = \infty$. As $\sinh(-x) = -\sinh x$, we also have $\lim_{x\to-\infty} \sinh x = -\infty$.

The hyperbolic cosine function $y = \cosh x$ is always positive. In fact $\cosh x \ge \cos 0 = 1$. We have $\frac{d}{dx} \cosh x = \sinh x$. For x > 0, we have $\sinh x > \sinh 0 = 0$ and so $\cosh x$ is strictly monotone increasing for x > 0. On the other hand, for x < 0, $\sinh x < \sinh 0$ and so $\cosh x$ is strictly monotone decreasing for x < 0. Also we have

$$\cosh x > \frac{1}{2}\max(e^x, e^{-x}) = \frac{1}{2}e^{|x|}$$

so that $\lim_{x\to\infty} \cosh x = \infty$ and also $\lim_{x\to-\infty} \cosh x = \infty$. In fact $\cosh x$ grows very rapidly, comparably fast to the exponential.

Here are graphs of $y = \sinh x$ and $y = \cosh x$.

The function $y = \sinh x$ has an inverse function $\sinh^{-1} \colon \mathbb{R} \to \mathbb{R}$. We can say then that

 $y = \sinh^{-1} x$ means exactly the same as $\sinh y = x$

and the graph of $y = \sinh^{-1} x$ is the reflection of the graph of sinh in the line y = x. We can find dy/dx for $y = \sinh^{-1} x$ by the theorem on derivatives of inverse functions:

$$\frac{dy}{dx} = \frac{1}{\left(\frac{dx}{dy}\right)} = \frac{1}{\cosh y}$$

and we can express that in terms of x using $\cosh^2 y - \sinh^2 y = 1$, $\cosh^2 y = 1 + \sinh^2 y = 1 + x^2$, to get

$$\frac{dy}{dx} = \boxed{\frac{d}{dx}\sinh^{-1}x = \frac{1}{\sqrt{1+x^2}}}$$

(and it is right to have the square root because $\cosh y > 0$ always).

Proposition 8.6.1. We can express $\sinh^{-1} x$ in terms of the natural logarithm as

$$\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$$

Proof. We can solve $\sinh y = x$ for y in terms of x as follows.

$$\frac{e^{y} - e^{-y}}{2} = x$$
$$e^{y} - e^{-y} - 2x = 0$$
$$(e^{y})^{2} - 2xe^{y} - 1 = 0$$

This is a quadradic equation for e^y . We get

$$e^y = \frac{2x \pm \sqrt{4x^2 + 4}}{2} = x \pm \sqrt{x^2 + 1}$$

Since $\sqrt{x^2 + 1} > \sqrt{x^2} = |x|$, the minus sign would certainly make e^y negative — which is not possible. So we must have $e^y = x + \sqrt{x^2 + 1}$, and that means $y = \ln(x + \sqrt{x^2 + 1})$ as we required.

For \cosh^{-1} , we have to interpret what we mean by the inverse because horizontal lines can cross the graph of cosh more than once.

Definition 8.6.2. By \cosh^{-1} we mean the function $\cosh^{-1}: [1, \infty) \to [0, \infty)$ given by the rule

$$y = \cosh^{-1} x$$
 means $\cosh y = x$ and $y \ge 0$

We can find the derivative (as long as we don't go to the end point x = 1) in a similar way to the way we did above for $\sinh^{-1} x$. It is

$$\frac{d}{dx}\cosh^{-1}x = \frac{1}{\sqrt{x^2 - 1}} \quad (x > 1).$$

We can also express \cosh^{-1} via the natural logarithm as

$$\boxed{\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1})} \ (x \ge 1).$$

Remark 8.6.3. There is an inverse for $y = \tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. It is given by

$$\tanh^{-1} x = \frac{1}{2} \ln \frac{1+x}{1-x} \qquad (-1 < x < 1),$$

and it has derivative

$$\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2} \qquad (-1 < x < 1).$$

Remark 8.6.4. It may be of interest to know that the graph of $y = \cosh x$ has the shape of a 'catenary', meaning the shape of a hanging chain (undisturbed by wind). By a 'chain' is meant something like a cable, but one that bends without reistance, yet still has mass.

MA1131 (R. Timoney)

October 20, 2010