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8 Inverse functions

8.1 General remarks

In this context it is useful to think of a function y = f(x) as a machine (or black box) that
does something predictable to an input x to produce an output y. Recall the diagram

from §1.5.
The inverse function is supposed to undo what the function does (or do the reverse).

So the inverse function should send y back to x, if the function sends x to y. (Think of
reversing the arrows.)

You may also realise that the qth root function y 7→ y1/q is a kind of inverse of the qth

power function x 7→ xq (or y = xq). If you recall from the discussion earlier, this was no
problem for odd q, but it was a problem for even q. The problem was that many values of
y came from more than one x and so it is not clear how to choose which x to send such a
y back to.

What we need in order to have an inverse function is that no horizontal line crosses the
graph more than once. So the picture above does not have an inverse function and neither
does y = x2 (or y = x4 or y = x6) have a genuine inverse. When we define the square root
function to be the positive square root, we are (rather arbitrarily) deciding to cut down
the function y = x2 to the domain x ≥ 0. The cut-down function then has an inverse.

Here is a handy fact.

Proposition 8.1.1. If A ⊂ R and f : A → R is a strictly monotone function, then no
horizontal line crosses the graph y = f(x) more than once.

Proof. Let’s take the case where f is strictly monotone increasing. Say there are two points
on the graph y = f(x) which are also on the horizontal line y = y0. That means there
are two different points x1, x2 ∈ A with (x1, f(x1)) = (x1, y0) and (x2, f(x2)) = (x2, y0).
Since x1 6= x2 we must have either x1 < x2 or x2 < x1. If x1 < x2, then f(x1) < f(x2) by
definition of what it means for f to be strictly monotone increasing. But that is not so as
f(x1) = f(x2) = y0. On the other hand if x2 < x1, then f(x2) < f(x1) (which is again not
so).
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For the case where f is strictly monotone decreasing, we can repeat almost the same
argument, with small changes at the end.

There is in fact a theorem that says that the converse of the proposition is true for
certain nice functions on intervals (called continuous functions — differentiable functions
are included).

We concentrate then on strictly monotone functions f : A → R with A an interval.
Usually the range B = {f(x) : x ∈ A} will also be an interval. (Technically there is a
theorem that if f(x) is continuous on the interval A, then B will be an interval.) The
inverse function will be the function g(y) with domain B given by the rule

g(y) = x exactly when y = f(x).

It is usual to write f−1 rather than g for the inverse function. So we get

f−1(y) = x exactly when y = f(x).

Theorem 8.1.2. If y = f(x) is a function defined on an interval A and if f ′(x) > 0 for
all x ∈ A then x = f−1(y) is differentiable on its domain and has derivative

(f−1)′(y) =
1

f ′(x)
=

1

f ′(f−1(y))
.

If instead f ′(x) < 0 for all x ∈ A, then the same conclusion holds.

This rule is perhaps easier to remember as

dx

dy
=

1

dy/dx
=

1(
dy
dx

) .

We will not prove the theorem as it is quite tricky to prove it correctly. From implicit
differentiation is is quite easy to see that that formula for dx/dy has to be right IF we
already know that there is a derivative dx/dy for the inverse function.

Exercise 8.1.3. Check that the theorem gives the right result for the case of the function
y = xq where we restrict x > 0 (and q ∈ N).

8.2 The natural logarithm

The exponential function y = ex has strictly positive derivative for all x ∈ (−∞,∞) = R.
So it will have an inverse function. The domain of the inverse function will be (0,∞)
according to our earlier considerations of the exponential (and its graph).

Definition 8.2.1. The natural logarithm function ln : (0,∞) → R is the inverse of the
exponential function.
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Remark 8.2.2. So if we start with y = ex then

ln y = x means exactly that y = ex.

Exchanging the roles of x and y we get

ln x = y means exactly that x = ey.

Note that ln x only makes sense for x > 0.

Properties of the natural logarithm

(i) ln e = 1 (because e = e1).

(ii)
d

dx
ln x =

1

x
(for x > 0).

Proof. Write y = ln x, so that x = ey. That tells us

dx

dy
= ey

and so
dy

dx
=

1

ey
=

1

x
.

(iii) For a > 0, ln(1/a) = − ln a.

Proof. Let x = ln a so that ex = a. But then we know e−x = 1/ex = 1/a. So
−x = ln(1/a). That says − ln a = ln(1/a).

(iv) For a, b > 0, ln(ab) = ln a + ln b.

Proof. Let x = ln a and t = ln b. Then we know ex = a and et = b. From that we
have ab = exet = ex+t and then

ln(ab) = x + t = ln a + ln b.

(v) For x > 0 and r ∈ Q, ln(xr) = r ln x.

Proof. Put y = ln x so that ey = x. Then we know (ey)r = ery (from properties of the
exponential) and so xr = ery — which means exactly that ln(xr) = ry = r ln x.

(vi) The graph of the natural logarithm function is obtained by reflecting the graph of
the exponential in the diagonal line y = x. That is because the graph of y = ln x is
the same as the graph of ey = x.
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8.3 Arbitrary powers of positive numbers

We were able to prove above that ln(xr) = r ln x for x > 0 and r ∈ Q. Why did we not
prove it for r ∈ R?

The answer is that we have not yet defined xa for x > 0 and a ∈ R. We did define
ea = exp(a), and in that we thought we were on safe ground because er = exp(r) for r ∈ Q.

For x > 0 we do know
x = eln x

(because that is what inverse functions do — one undoes what the other does). So for
r ∈ Q we do know

xr =
(
eln x

)r
= er ln x.

Taking this as a guide we can make it into a definition for arbitrary powers, not just
rational powers.

Definition 8.3.1. For x > 0 and a ∈ R we define

xa = ea ln x (which may be easier to remember as xa = (eln x)a = ea ln x).

Proposition 8.3.2. With this definition the laws of exponents hold: For x, y > 0 and
a, b ∈ R we have

(i) 1/(xa) = x−a

(ii) (xa)b = xab

(iii) xaxb = xa+b

(iv) (xy)a = xaya

This is not hard to prove based on the above definition and the properties of the
exponential that we already know.

Examples 8.3.3. i) For x > 0 and a ∈ R

d

dx
xa =

d

dx

(
eln x

)a
=

d

dx
ea ln x = ea ln xa

1

x
= axax−1 = axa−1.

ii) For a > 0 and x ∈ R

d

dx
ax =

d

dx

(
eln a

)x
=

d

dx
ex ln a = ex ln a ln a = (ln a)ax.

Exercise 8.3.4. Find
d

dx
xx.
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8.4 Inverse trigonometric functions

The trigonometric functions y = sin x, y = cos x, y = tan x (and so on) do not have any
inverse in the ordinary way because horizontal lines often cut their graphs many times. In
fact they are all periodic with period 2π (and tan x has period π), which means that

sin(x + 2π) = sin x, cos(x + 2π) = cos x, tan(x + π) = tan x.

So if we know y = sin x, there is no way to know what x is, no inverse function.
We’ve seen this before. The function y = x2 has no inverse either, but we came up

with
√

y by taking the positive square root. That is probably unfair discrimination against
negative numbers, but it seems handy to have a square root function.

We do even more drastic things to come up with ‘inverse’ trigonometric functions.
Here is the graph of y = sin x (for −3π ≤ x ≤ 3π) and a graph of a very much restricted
y = sin x, restricted to −π/2 ≤ x ≤ π/2.

The restricted graph is a strictly monotone increasing graph and when we write sin−1 y
we mean the inverse function of this cut down y = sin x. (Some people use the notation
arcsin y instead of sin−1 y. That emphasises that it is not really an inverse function.)

In summary

x = sin−1 y means exactly that sin x = y and − π

2
≤ x ≤ π

2
.

Changing around the names of the variables, we get

Definition 8.4.1. The ‘inverse sin function’ (or arcsin function) is the function sin−1 : [−1, 1] →
[−π/2, π/2] given by

θ = sin−1 x means exactly that sin θ = x and − π

2
≤ θ ≤ π

2
.

Proposition 8.4.2. The derivative of y = sin−1 x is

d

dx
sin−1 x =

1√
1− x2

(−1 < x < 1).
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Proof. If y = sin−1 x, then sin y = x. Taking d/dx of both sides, we get

cos y
dy

dx
= 1

and so
dy

dx
=

1

cos y

(We could also use the result on derivatives of inverse functions to get the same thing.)
We want the answer in terms of x and we use

cos2 y + sin2 y = 1 ⇒ cos2 y = 1− sin2 y ⇒ cos y =

√
1− sin2 y

(which is true because cos y ≥ 0 when −π/2 ≤ y ≤ π/2). So

dy

dx
=

1

cos y
=

1√
1− sin2 y

=
1√

1− x2
.

We must exclude x = ±1 to avoid division by 0.

Note 8.4.3. Earlier, it was pointed out that sin2 x means (sin x)2. Now we see that sin−1 x
has nothing to do with a power of sin x. Rather it means the ‘inverse’ function. One might
argue that the notation is potentially misleading!

Exercise 8.4.4. What is the graph of y = sin−1 x?

Definition 8.4.5. The ‘inverse cos function’ (or arccos function) is the function cos−1 : [−1, 1] →
[0, π] given by

θ = cos−1 x means exactly that cos θ = x and 0 ≤ θ ≤ π.

Proposition 8.4.6. The derivative of y = cos−1 x is

d

dx
cos−1 x =

−1√
1− x2

(−1 < x < 1).

The proof is very similar to the one for (d/dx) sin−1 x. Here is the graph of y = cos x
(−3π ≤ x ≤ 3π) and the restricted part of which we take the inverse function.
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Here is the graph of y = tan x (−3π ≤ x ≤ 3π) along with the section −π/2 < x < π/2.
The apparently vertical parts of the graph of y = tan x should not be there at all. (That
is because tan x is not defined for x an odd multiple of π/2.)

The section for −π/2 < x < π/2 is strictly monotone increasing and has an inverse
function.

Definition 8.4.7. The ‘inverse tan function’ (or arctan function) is the function tan−1 : R →
(−π/2, π/2) given by

θ = tan−1 x means exactly that tan θ = x and − π

2
< θ <

π

2
.

Proposition 8.4.8. The derivative of y = tan−1 x is

d

dx
tan−1 x =

1

1 + x2
(x ∈ R).

The proof is again not that different (but relies on 1 + tan2 θ = sec2 θ).
Here is the graph y = tan−1 x.

8.5 Hyperbolic functions

You might argue that this subsection does not fit here, and indeed it is a bit out of place.
It relates to the exponential function.
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Definition 8.5.1. The hyperbolic cosine function is denoted cosh x and is defined by

cosh x =
ex + e−x

2

Definition 8.5.2. The hyperbolic sine function is denoted sinh x and is defined by

sinh x =
ex − e−x

2

Proposition 8.5.3. For every x ∈ R,

cosh2 x− sinh2 x = 1

Proof.

cosh2 x− sinh2 x =

(
ex + e−x

2

)2

−
(

ex − e−x

2

)2

=
1

4
(e2x + e−2x + 2exe−x − (e2x + e−2x − 2exe−x))

= exe−x = ex−x = e0 = 1

Remark 8.5.4. While (cos θ, sin θ) lies on the unit circle, the above says that (cosh t, sinh t)
lies on the standard hyperbola x2 − y2 = 1. Here is the graph of that hyperbola, and a
second version along with the two lines y = ±x (which are guiding lines that you can use
to sketch the hyperbola). Since cosh t > 0 always, (cosh t, sinh t) lies on right half of the
hyperbola. The value of t does not correspond to an angle in the picture.

Proposition 8.5.5.

d

dx
cosh x = sinh x and

d

dx
sinh x = cosh x.

Remark 8.5.6. A general principle is that for each formula about trig functions, there is
a very similar formula for hyperbolic functions (but often with minus signs in different
places). The hyperbolic functions are not periodic though.
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