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• It follows that f(x) > 0 for all x.

Proof. This is not that easy. It really needs a result called the Intermediate Value
theorem. That theorem concerns well-behaved functions on intervals (called contin-
uous functions) that are positive somewhere and negative somewhere else and the
conclusion is that the function must be zero in between. Since f(1) = 1 > 0, our
function could never be negative.1

• Since f ′(x) = f(x) > 0 for all x, it follows that f(x) is strictly monotone increasing
on R = (−∞,∞).

In particular 1 = f(0) < f(1).

• For r ∈ Q,

d

dx
f(rx)(f(x))−r = rf ′(rx)(f(x))−r + f(rx)(−r)(f(x))−r−1f ′(x)

= rf(rx)(f(x))−r − rf(rx)(f(x))−r−1f(x) = 0

can be checked.

So
f(rx)(f(x))−r = constant.

For x = 0 we get
f(0)(f(0))−r = constant

and since f(0) = 1, this tell us that the constant is 1. So

f(rx)(f(x))−r = 1 (all x ∈ R).

Thus f(rx) = (f(x))r (for r ∈ Q).

• In particular f(r) = f(1)r for r ∈ Q.

We define the number e to be e = f(1) and define ex by

ex = f(x).

Note that for x ∈ Q (where we had a sensible way to define ex previously) this is no
change.

Another notation that is commonly used is exp(x) = f(x).

• With this definition, we have the law of exponents ex+a = exea valid for all x, a ∈ R.

1Differentiable functions such as our f(x) are continuous.
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Proof. Look at

g(x) =
ex+a

ex
=

f(x + a)

f(x)
= f(x + a)f(−x)

(with a fixed) and check that g′(x) = 0. So g(x) is constant. But g(0) = f(a) and so
g(x) = f(a) for all x. Then we have f(x + a)/f(x) = f(a) or f(x + a) = f(x)f(a),
as we wanted.

• We can compute

d

dx

ex

x
=

exx− ex

x2
=

ex(x− 1)

x2
> 0 for x > 1

So ex/x is (strictly) monotone increasing for x > 1. In particular, for x > 2

ex

x
>

e2

2

and that means that with c = e2/2 we have

ex > cx (x > 2).

As c > 0, we can say that f(x) = exp(x) becomes larger and larger with x.

Using a notation which we did not actually explain, it is in fact true that

lim
x→∞

ex = ∞

(The meaning of this statement is this: if we fix any number M [which we think of
as a ‘large’ number], then we can find x0 so that ex > M holds whenever x > x0. In
less precise terms: we can ensure that ex is close to ∞ [or ‘large’] by making sure x
is close enough to ∞ [or just by making x larger than some x0].)

• Since e−x = 1/ex, we can then conclude that ex becomes very small as x becomes
large and negative. Using another notation we have not explained

lim
x→−∞

ex = 0

(The meaning of this statement is this: if we fix any number ε > 0 [which we think of
as a ‘small’ positive number], then we can find x0 so that |ex−0| < ε holds whenever
x < x0.)

• Since we now know ex > 0 always, ex is strictly monotone increasing and taking
account of the two previous points, we can say that the graph of y = ex must look
something like this
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We have not come up with any way to estimate the value of e = f(1), which influences
the graph. The graph seems to run off the page quite quickly to the right and merge
into the x-axis to the left. This is something we can check, at least roughly.

• For n ≥ 1 we can compute that

d

dx

ex

xn
=

exxn − ex(nxn−1)

x2n
=

ex(x− n)

xn+1
> 0 for x > n

So ex/xn is (strictly) monotone increasing for x > n. In particular, for x > n + 1

ex

xn
>

en+1

(n + 1)n

and that means that with cn = en+1/(n + 1)n we have

ex > cnx
n (x > n + 1).

So, for n > 1 and x > n + 2 we have

ex

xn
>

cn+1x
n+1

xn
= cn+1x

and that implies

lim
x→∞

ex

xn
= ∞

(since cn+1 > 0).

Conclusion: in the long run ex grows faster that any power xn as x → ∞. Or
‘exponential growth is fast! ’.
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Example 7.1 (Exponential growth/decay). There are several realistic situations where a
differential equation

dy

dx
= ky

arises. In some examples, x is time and so we might be better with

dy

dt
= ky (1)

where now y = y(t) depends on t. The examples include population growth (say of flies,
or animals, where there is no food shortage or environmental change) where y(t) is the
number in the population at time t and k is the difference between the birth rate and the
death rate (per unit time). Another would be radioactive decay, where y(t) is the number
of radioactive atoms in a sample at time t and |k| is the proportion that will decay (and
then stop being radioactive) per unit time. Here k = −|k| < 0. In these examples, we need
to assume the number is large so that considering y(t) to vary continuously (and not just
through integer values) is not a big concern. Another example involves compound interest,
where the compounding is done continuously (or over very small time steps).

To see what the solution of (1) are we rewrite it as

dy

dt
− ky = 0

and then multiply across by e−kt to get

e−kt dy

dt
− ke−kty = 0

The point of this is that now the left hand side is (by the product rule) the derivative of
a product. So we get

d

dt
(e−kty) = 0.

The factor e−kt is known as an ‘integrating factor ’ in this situation. We conclude

e−kty = c = constant

and so y = cekt gives all possible solutions.
Assuming y is a population, we need c > 0. If k > 0 the graph of y against t looks

more or less similar to the graph y = et. The factor k in the exponent re-scales the t axis
by 1/k while the c re-scales the y-axis.

If k < 0, then we need to reflect the exponential graph in the y-axis (and rescale the
axes).

Exercise 7.2. Using an integrating factor trick, find all the solutions of the differential
equation

dy

dx
− 3y = e2x.
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