UNIVERSITY OF DUBLIN

MA4151

TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

JS Mathematics SS Mathematics

Trinity Term 2001

COURSE: 415 — FOURIER ANALYSIS AND WAVELETS

SAMPLE PAPER

Prof. R. M. Aron & Dr. R. M. Timoney

Answer 6 questions. Please use separate answer books for sections A and B. Logarithmic tables are available if needed.

Section A

- 1.
- 2.
- 3.
- 4.
- 5. For sample questions on section A, see Professor Aron's exercise sheets.

Section B

6. (a) Define operators T_a, D_λ ($a \in \mathbb{R}, \lambda > 0$) on $L^2(\mathbb{R})$ by $(T_a f)(x) = f(x - a)$ and $(D_\lambda f)(x) = \sqrt{\lambda} f(\lambda x)$. Verify that each of the operators is an isometry of $L^2(\mathbb{R})$ and that they satisfy $T_a D_\lambda = T_{a/\lambda} D_\lambda$.

For \mathcal{F} the Fourier transform on $L^2(\mathbb{R})$, show that $\mathcal{F}D_{\lambda} = D_{1/\lambda}\mathcal{F}$.

(b) Assuming that $\phi \in L^2(\mathbb{R})$ satisfies $\phi = \sum_{k=k_0}^{k_1} c_k D_2 T_k \phi$ and that $\{T_k \phi : k \in \mathbb{Z}\}$ are orthonormal in $L^2(\mathbb{R})$, show that

$$\sum_{k \in \mathbb{Z}} c_k \overline{c_{k-2\ell}} = \begin{cases} 1 & \text{for } \ell = 0\\ 0 & \text{for } \ell \in \mathbb{Z}, \ell \neq 0 \end{cases}$$

(c) Show that $\phi(x) = x\chi_{[0,1)}(x) + (1-x)\chi_{[1,2)}$ satisfies

$$\phi = \frac{1}{2\sqrt{2}}D_2T_0\phi + \frac{1}{\sqrt{2}}D_2T_1\phi + \frac{1}{2\sqrt{2}}D_2T_2\phi$$

- (a) What is meant by a *compactly supported* L²(R) function?
 Show that a compactly supported L²(R) function must be in L¹(R).
 - (b) If a dilation equation $\phi = \sum_{k=k_0}^{k_1} c_k D_2 T_k \phi$ has a compactly supported continuous solution $\phi \in L^2(\mathbb{R})$, show that it has its support in $[k_0, k_1]$.
- 8. (a) Explain the method of constructing wavelet bases of $L^2(\mathbb{R})$ based on a *multiresolution analysis*.
 - (b) If ϕ satisfies a two scale dilation equation

$$\phi = \sum_{k} c_k D_2 T_k \phi_s$$

has orthonormal translates $T_k\phi$ ($k \in \mathbb{Z}$), gives rise to a multiresolution analysis by V_0 = the closure of the span of $\{T_k\phi : k \in \mathbb{Z}\}$, $V_n = D_{2^n}V_0$ ($n \in \mathbb{Z}$) and if $\phi \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, then show that

$$\left|\int_{-\infty}^{\infty}\phi(x)\,dx\right| = 1$$

9. (a) Define convergence for an infinite product

$$\prod_{n=1}^{\infty} a_n.$$

Also define absolute convergence and explain how to prove that absolute convegence implies convergence.

(b) If $p(\xi) = \sum_{k=k_0}^{k_1} c_k e^{-2\pi i k \xi}$ is a trigonometric polynomial with $p(0) = \sqrt{2}$ and $|p(\xi)|^2 + |p(\xi + 1/2)|^2 \equiv 2$, then show that

$$\hat{\phi}(\xi) = \prod_{n=1}^{\infty} \frac{p(\xi/2^n)}{\sqrt{2}}$$

defines a function $\hat{\phi} \in L^2(\mathbb{R})$

Course 415 Exercise Set IV R. M. Aron 8 January, 2001

18. Let X and Y be two arbitrary sets. Prove that there is an onto function $f: X \to Y$ or that there is an onto function $f: Y \to X$.

19. Calculate $\min_{a,b\in\mathbb{R}} \int_0^1 (x^2 - a - bx)^2 dx$.

20. Calculate $\max \int_0^1 x^2 g(x) dx$, where the maximum is taken over all measurable functions $g: [0,1] \to \mathbb{R}$ such that $\int_0^1 g(x) dx = \int_0^1 x g(x) dx = 0$ and $\int_0^1 g^2(x) dx = 1$. Is there a relation between this question and problem 19?

21. Let $f \in L_1(\mathbb{R})$. Show that the function $t \in \mathbb{R} \rightsquigarrow \hat{f}(t) \in \mathbb{C}$ is continuous. (Hint: Let $t_n \to t_0 \in \mathbb{R}$. Use the definition of the Fourier transform and the Lebesgue dominated convergence theorem to show that $\hat{f}(t_n) \to \hat{f}(t_0)$.)

22. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function whose support is contained in [A, B] (i.e. f(t) = 0 for $t \notin [A, B]$). For $s \in \mathbb{R}$, define $f_s : \mathbb{R} \to \mathbb{R}$ by $f_s(t) \equiv f(s + t)$. Prove that $s \in \mathbb{R} \rightsquigarrow f_s \in L_1(\mathbb{R})$ is continuous.

23. For an arbitrary real number $\delta > 0$, let $g_{\delta} : \mathbb{R} \to \mathbb{R}$ be a continuous function with the following properties: $g_{\delta}(t) \ge 0$ for all $t \in \mathbb{R}$, $g_{\delta}(t) = 0$ for all $t \in \mathbb{R}$ such that $|t| \ge \delta$, and $\int_{-\infty}^{\infty} g_{\delta}(t) dt = 1$.

(a). Sketch what the graph of such a function g_{δ} should look like.

(b). Prove that for any $f \in C(\mathbb{R})$ and any $t_0 \in \mathbb{R}$, $f * g_{\delta}(t_0) \to f(t_0)$ as $\delta \to 0$.

24. Let f and g be in $L_1(\mathbb{R})$. Prove that f * g = g * f.

25. Fix $k \in \mathbb{N}$. Calculate \hat{f}_k for $f_k : \mathbb{R} \to \mathbb{R}$ given by

$$f_k(t) = \begin{cases} 1 & \text{if } |t| \le k \\ 0 & \text{if } |t| > k \end{cases}$$

Find $f_1 * f_2$ and $\widehat{f_1 * f_2}$.

Course 415 Exercise Set III R. M. Aron 15 November, 2000

12. **Theorem.** All subsets of \mathbb{R} are countable.

Proof. Let $S \equiv \{S \subset \mathbb{R} : S \text{ is countable } \}.$

1. Clearly S is partially ordered by the relation $S_1 \leq S_2 \iff S_1 \subseteq S_2$ (for $S_1, S_2 \in S$).

2. *Clearly* S is inductive with this partial ordering. That is, if $C \subset S$ is a chain of elements in S, then this chain has an upper bound.

3. By Zorn's Lemma, there is a maximal element M of S.

4. Clearly $M = \mathbb{R}$. Indeed, if $M \subsetneq \mathbb{R}$, then there is a point $t_0 \in \mathbb{R} \setminus M$. However, since M is countable so is $M_1 = M \cup \{t_0\}$. And, clearly $M_1 \in S$ is a strictly larger element than the maximal element M.

This contradiction completes the proof. Of course, the preceding result is false. However, can you (i) prove each of the *clear* steps above which is true and (ii) disprove each of these steps which is false.

13. Show that $\ell_p \subset \ell_q$ for $1 \leq p \leq q \leq \infty$. Is the same set inclusion true for L_p and L_q , where we take X = [0, 1] and Lebesgue measure? What if we take $X = \mathbb{R}$?

14.(a). Let $A \subset L_1[0, 1]$ be defined as follows:

$$A = \{ f \in L_1[0,1] : \int_{[0,1]} f(t) dm(t) = 1 \}.$$

Prove that A is closed and convex in $L_1[0, 1]$. Show that A has infinitely many elements of minimal norm.

(b). Let $A \subset C[0, 1]$ be defined as follows:

$$A = \{ f \in C[0,1] : \int_{[0,\frac{1}{2}]} f(t) dm(t) - \int_{[\frac{1}{2},1]} f(t) dm(t) = 1 \}.$$

Prove that A is closed and convex in C[0, 1], but that A has no elements of minimal norm.

15. Let $S \subset H$ be an arbitrary subset of Hilbert space H. Define

$$S^{\perp} \equiv \{ x \in H : \langle x, s \rangle = 0 \text{ for all } s \in S \}.$$

(a). Let $H = \mathbb{R}^2$, and let $S = \{(1,1), (1,3)\}$. Calculate S^{\perp} . Repeat for $H = \ell_2$ and $S = \{e_{2n} : n \in \mathbb{N}\}$.

(b). Prove that S^{\perp} is a closed subspace of H.

(c). Show that $S \subset S^{\perp \perp}$. Under what conditions do we have equality?

16. Show that c (of exercise 7) and c_0 are isomorphic. That is, show that there is a linear, continuous, bijective mapping $T: c \to c_0$.

17. Suppose that H is a Hilbert space and that (e_j) is an orthonormal sequence in H (i.e. for each j and $k, \langle e_j, e_k \rangle = \begin{cases} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k \end{cases}$). Prove that (e_j) is a basis for H if and only if the vector space span of $\{e_j : j \in \mathbb{N}\}$ is dense in H.

Course 415 Exercise Set II R. M. Aron 13 October, 2000

6.(a). Calculate $\lim_{m\to\infty} \lim_{n\to\infty} |\cos(m!\pi x)|^n$.

(b). Why did I ask this question?

7. Let $c \equiv \{x = (x_j) : \lim_{j \to \infty} x_j \text{ exists }\}$. Show that c is a vector space, and that it is a Banach space with the norm $||x|| = \sup_j |x_j|$. Find a basis for c.

8. Consider the following mapping $T : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$.

$$T(x_1, x_2, x_3, \ldots) \equiv \left(\frac{x_1 + x_2}{\sqrt{2}}, \frac{x_3 + x_4}{\sqrt{2}}, \ldots, \frac{x_{2n-1} + x_{2n}}{\sqrt{2}}, \frac{x_1 - x_2}{\sqrt{2}}, \ldots, \frac{x_{2n-1} - x_{2n}}{\sqrt{2}}\right)$$

Prove that T is linear and also that T is an *isometry*, that is that ||T(x)|| = ||x|| for every $x = (x_1, ..., x_{2n}) \in \mathbb{R}^{2n}$.

9. Let X be a Banach space with basis $\{e_j\}$. Prove that the mapping $p_i : X \to \mathbb{K}, p_i(x) = x_i$ is continuous. (Here, $x = \sum_{j=1}^{\infty} x_j e_j$.)

10. Recall that the space of continuous real-valued functions on [0, 1], C[0, 1], is complete (i.e. a Banach space) when it is endowed with the norm $||f|| = \max_{0 \le t \le 1} |f(t)|$. Let $P[0, 1] \subset C[0, 1]$ be the subspace consisting of the restrictions to [0, 1] of all polynomials.

- (a). Find a *discontinuous* linear form $\phi : P[0,1] \to \mathbb{R}$.
- (b*). Find a *discontinuous* linear form $\phi : C[0,1] \to \mathbb{R}$.
- 11. Let $(f_j)_{j=1}^{\infty}$ and f be functions on [0, 1]. Consider the following properties:

(a). $f_j \rightarrow f$ in $L_{\infty}[0, 1]$. (b). $f_j \rightarrow f$ in $L_2[0, 1]$. (c). $f_j \rightarrow f$ in $L_1[0, 1]$. (d). $f_j(t) \rightarrow f(t)$ for every $t \in [0, 1]$. (e). $f_j \rightarrow f$ almost everywhere.

Find all possible relations between these 5 different types of convergence. Where an implication is true, prove it. Where it is false, provide a counterexample.

Course 415 Exercise Set I R. M. Aron 13 October, 2000

1. A set S in a metric space (X, d) is called a G_{δ} provided S can be written as a countable intersection of open sets; that is, $S = \bigcap_{n=1}^{\infty} U_n$, where each U_n is open. Let $(X, d) = (\mathbb{R}, usual metric d)$. In each case, explain whether the set S is a G_{δ} .

- (a). $S = \mathbb{Z}$.
- (b). S = all irrationals.
- (c). $S = \emptyset$.
- (d). $S = \mathbb{Q}$.
- (e). S = any closed set.

2. Suppose that \mathcal{F} is some set of continuous functions $f : \mathbb{R} \to \mathbb{R}$, having the following property: For each $t \in \mathbb{R}$, there is a constant $M_t > 0$ such that for every $f \in \mathcal{F}, |f(t)| \leq M_t$. Prove that there is a constant M and an open interval $I \subset \mathbb{R}$ such that for all $f \in \mathcal{F}$ and all $t \in I, |f(t)| \leq M$.

3(*). Is there a sequence (I_j) of *non-empty, disjoint, closed* subintervals of I = [0, 1] such that $I = \bigcup_{i=1}^{\infty} I_i$?

4. Let $X = \mathbb{R}^2$. For each $p, 1 \le p < \infty$, define a norm on X as follows: For $x = (x_1, x_2) \in X$, set $||(x_1, x_2)||_p \equiv [|x_1|^p + |x_2|^p]^{\frac{1}{p}}$. Let $\overline{B_p}$ be the closed unit ball in this norm, i.e. $\overline{B_p} = \{x = (x_1, x_2) : ||x||_p \le 1\}$.

(a). Draw $\overline{B_1}, \overline{B_2}$, and $\overline{B_p}$ where p is a very large number.

Let's define a further norm on X by $||x||_{\infty} \equiv \max\{|x_1|, |x_2|\}.$

(b). Draw $\overline{B_{\infty}}$. (If things have worked out correctly, $\overline{B_p}$ should 'tend' to $\overline{B_{\infty}}$. Can this statement be made precise?)

(c). For each $p \in [1, \infty]$, find all points x of the form $x = (x_1, 1)$ such that $||x||_p = 1$.

5.(a). For $f \in C[0, 1]$ and $p \in [1, \infty)$, define

$$||f||_p \equiv [\int_0^1 |f(t)|^p dt]^{1/p},$$

and

$$||f||_{\infty} \equiv \max_{\{0 \le t \le 1\}} |f(t)|.$$

Let f(t) = t and g(t) = 3t - 1. Calculate $||f - g||_1, ||f - g||_2$, and $||f - g||_{\infty}$.

(b). Provide the details to show that the space C[0,1] of continuous real-valued functions on [0,1] is a *normed space* but *not a Banach space*, when normed by $||f|| = \int_0^1 |f(t)| dt$.

© UNIVERSITY OF DUBLIN 2001