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2 Infinite products and existence of compactly

supported φ

Infinite products 2.1 Infinite products
∏∞

n=1 an need to be defined via lim-
its. But we do not simply say that

∞∏
n=1

an = lim
N→∞

N∏
n=1

an

whenever the limit exists. (For series we do simply do that and define∑∞
n=1 tn = limN→∞

∑N
n=1 tn.)

This overly simple definition of products would allow (for example)
∏∞

n=1(n−
1) to converge. It represents

0× 1× 2× 3× 4× · · ·

and all the partial products
∏N

n=1(n− 1) = 0. But

∞∏
n=2

(n− 1) = 1× 2× 3× 4× · · ·

does not converge — no finite limit for

N∏
n=2

(n− 1) = 1× 2× · · · × (N − 1) = (N − 1)!→∞

Definition 2.2 An infinite product
∏∞

n=1 an (where an ∈ C∀n) is said to
converge if there are at most finitely many n with an = 0, say n1, n2, . . . , nk,
and

lim
N→∞

N∏
n=nk+1

an

exists (as a finite limit in C) and is nonzero.

(The same definition works for an ∈ R).

Example 2.3
∞∏
n=1

1

n

has partial products

N∏
n=1

1

n
=

1

N !
→ 0 as N →∞

and so this product is not convergent.
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Proposition 2.4 If
∏∞

n=1 an converges, then

lim
n→∞

an = 1

Proof. Let us say that all the zero terms an have n ≤ n0. Then

lim
n→∞

N∏
n=n0+1

an = p (say) with p 6= 0

Also

lim
n→∞

N+1∏
n=n0+1

an = p

and dividing the latter by the former we have

1 =
p

p
= lim

n→∞

∏N+1
n=n0+1 an∏N
n=n0+1 an

= lim
N→∞

aN+1

Theorem 2.5 Assuming an ≥ 1 for all n

∞∏
n=1

an converges ⇐⇒
∞∑
n=1

(an − 1) <∞

Proof. Note that
N∏
n=1

an = PN (say)

is an increasing sequence of positive numbers and so it has a finite limit if and
only if it is bounded above. Put SN =

∑N
n=1(an − 1). SN is also increasing

with N (as an ≥ 1) and again limN→∞ SN ∈ R if and only if SN is bounded
above.

Observe that 1 + x ≤ ex for all x ≥ 0 and so

1 + (an − 1) ≤ ean−1

an ≤ ean−1

N∏
n=1

an ≤
N∏
n=1

ean−1 = e
∑N
n=1(an−1)

PN ≤ eSN
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But we also have

PN =
N∏
n=1

an

=
N∏
n=1

(1 + (an − 1))

≥ 1 +
N∑
n=1

(an − 1)

= 1 + SN

Hence

1 + SN ≤ PN ≤ eSN

Thus (SN)∞N=1 is bounded above if and only if (PN)∞N=1 is bounded above
and therefore limN→∞ SN <∞ ⇐⇒ limN→∞ PN <∞.

Definition 2.6 An infinite product
∏∞

n=1 an is called absolutely convergent
if

∞∏
n=1

(1 + |an − 1|)

is convergent.

Lemma 2.7 An infinite product
∏∞

n=1 an is convergent if and only if it obeys
Cauchy’s criterion for convergence of products:

for each ε > 0 there exists N0 so that

N2 ≥ N1 ≥ N0 ⇒

∣∣∣∣∣
N2∏

n=N1

an − 1

∣∣∣∣∣ < ε

Proof. Write

Π`,m =
m∏
n=`

an (m ≥ `)

Assume the product is convergent. We know that there exists n0 ≥ 1 and
p 6= 0 so that

lim
N→∞

Πn0,N = p

Given ε > 0, there exists N0 > 0 so that

N ≥ N0 ⇒ |Πn0,N − p| < min

(
ε|p|
2
,
|p|
2

)
(1)
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For N ≥ N0, we have then∣∣∣∣1pΠn0,N − 1

∣∣∣∣ < min

(
ε

2
,
1

2

)
.

Since |z − 1| < 1/2⇒ 1/2 < |z| ⇒ 1
|z| < 2, we deduce that∣∣∣∣ 1

(1/p)Πn0,N

∣∣∣∣ < 2

and hence for N2 ≥ N1 > N0 we get

|ΠN1,N2 − 1| =

∣∣∣∣ Πn0,N2

Πn0,N1−1

− 1

∣∣∣∣
=

∣∣∣∣ (1/p)Πn0,N2

(1/p)Πn0,N1−1

− 1

∣∣∣∣
=

∣∣∣∣(1/p)Πn0,N2 − (1/p)Πn0,N1−1

(1/p)Πn0,N1−1

∣∣∣∣
=

∣∣∣∣(1/p)Πn0,N2 − (1/p)Πn0,N1−1

(1/p)Πn0,N1−1

∣∣∣∣
≤ 2 |(1/p)Πn0,N2 − (1/p)Πn0,N1−1|
≤ 2 (|(1/p)Πn0,N2 − 1|+ |1− (1/p)Πn0,N1−1|)

< 2
(

2
ε

2

)
= ε.

Thus the Cauchy condition holds.
Conversely, assume that the Cauchy condition holds. Then there is n0 so

that N2 ≥ N1 ≥ n0 ⇒ |ΠN1,N2 − 1| < 1/2. In particular, for N > n0

|Πn0,N − 1| < 1

2
(2)

Note that |z − 1| < 1
2
⇒ |z| < 3/2 < 2.

Now, given any ε > 0 we can find n1 (and we can assume that n1 ≥ n0)
so that

N2 ≥ N1 ≥ n1 ⇒ |ΠN1,N2 − 1| < ε

2
Then

|Πn0,N2 − Πn0,N1 | = |Πn0,N1|
∣∣∣∣Πn0,N2

Πn0,N1

− 1

∣∣∣∣
≤ 2 |ΠN1+1,N2 − 1|

< 2
ε

2
= ε (3)
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as long as N2 > N1 > n1 + 1 (and it is valid for N2 = N1 also). This says
that the sequence

(Πn0,N)∞N=n0

satisfies the usual Cauchy condition for sequences. Hence

lim
N→∞

Πn0,N

exists in C. By (2), the limit is not zero. Hence the product converges. �

Theorem 2.8 Absolutely convergent infinite products
∏∞

n=1 an are conver-
gent.

Proof. Let bn = an − 1,

Π`,m =
m∏
n=`

an =
m∏
n=`

(1 + bn)

and

Q`,m =
m∏
n=`

(1 + |bn|) (m ≥ `).

Note that
|Π`,` − 1| = |(1 + b`)− 1| = |b`| = Q`,` − 1.

By induction on m and for ` fixed, we can verify that

|Πm,` − 1| ≤ Qm,` − 1 (m ≥ `).

Here is the induction step

Πm+1,` − 1 = (1 + bm+1)Π`,m − 1

= (1 + bm+1)(Π`,m − 1) + (1 + bm+1)− 1

= (1 + bm+1)(Π`,m − 1) + bm+1

Qm+1,` − 1 = (1 + |bm+1|)(Q`,m − 1) + |bm+1|
|Πm+1,` − 1| ≤ (1 + |bm+1|) |Π`,m − 1|+ |bm+1|

≤ (1 + |bm+1|) (Qm,` − 1) + |bm+1|
by the inductive hypothesis

= Qm+1,` − 1

Thus the fact that
∏∞

n=1(1 + |bn|) satisfies the Cauchy criterion for products
implies the same of

∏∞
n=1(1 + bn).

The result follows from Lemma 2.7.
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Example 2.9

∞∏
n=1

(
1 +

z

n2

)
converges no matter what value z ∈ C is given.

To justify this example, it is sufficient (by Theorem 2.8) to show that the
product is absolutely convergent, that is that

∞∏
n=1

(
1 +

∣∣∣ z
n2

∣∣∣)
converges. But the convergence of this follows from

∞∑
n=1

|z|
n2

<∞

and Theorem 2.5.
To deal with infinite products where the terms are functions, we introduce

a notion of uniform convergence.

Definition 2.10 If fn:S → C are complex-valued continuous functions de-
fined on some compact set K, then the product

∞∏
n=1

(1 + fn(z))

is called uniformly convergent on K if there exists n0 so that fn(z) 6= −1 for
n ≥ n0 and there is a nowhere-vanishing function g:K → C \ {0} so that
given any ε > 0 there exists n1 ≥ n0 so that

N ≥ n1, z ∈ K ⇒

∣∣∣∣∣
N∏

n=n0

(1 + fn(z))− g(z)

∣∣∣∣∣ < ε

and
inf
z∈K
|g(z)| > 0.

Thus, we require not only that (after omitting a finite number of initial
terms) the limits of the partial products be uniform but also that the limit
be nonzero in a uniform way.
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Proposition 2.11 If
∏∞

n=1(1 + fn(z)) is a uniformly convergent product of
continuous functions on a compact set K, then the sequence of partial prod-
ucts

Π1,N(z) =
N∏
n=1

(1 + fn(z))

converges uniformly on K (as N →∞) to

Π(z) =
∞∏
n=1

(1 + fn(z))

Proof. From the definition we know that there is n0 and g:K → C so that

Πn0,N(z) =
N∏

n=n0

(1 + fn(z))

converges uniformly on K to g(z). By compactness of K and continuity of
the fn

sup
z∈K
|Π1,n0−1(z)| = M <∞

and then it follows easily that

Π1,N(z) = Π1,n0−1(z)Πn0,N(z)→ Π1,n0−1(z)g(z) = Π(z)

uniformly on K.
In fact, given ε > 0 we can choose N1 > n0 so that

N ≥ N1, z ∈ K ⇒ |Πn0,N(z)− g(z)| < ε

M + 1

and then it follows that for N ≥ N1, z ∈ K we have

|Π1,N(z)− Π(z)| = |Π1,n0−1(z)||Πn0,N(z)− g(z)| ≤M
ε

M + 1
< ε

�
The restriction to products of continuous functions on a compact set

which we made in Definition 2.10 is used in the proof of the proposition.
Without continuity and compactness, we could still have the result of the
proposition by insisting only on uniform boundedness of each fn, but the
applications are usually to the case in the definition.
Exercise. Show that if a K is compact (in C, say) and fn:K → C is a
sequence of continuous functions so that

∞∏
n=1

(1 + fn(z))
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is uniformly convergent on K, then Π(z) =
∏∞

n=1(1 +fn(z)) is continuous on
K and Π(z) = 0 ⇐⇒ ∃n such that 1 + fn(z) = 0.

As in the case of infinite products of constants, we can show that there
is a Cauchy criterion for uniform convergence.

Lemma 2.12 An infinite product
∏∞

n=1(1+fn(z)), with continuous functions
fn:K → C on a compact set K, is uniformly convergent if and only if it
satisfies the uniform Cauchy condition:

given any ε > 0 there exist N0 ≥ 1 so that

N2 ≥ N1 ≥ N0, z ∈ K ⇒

∣∣∣∣∣
N2∏

n=N1

(1 + fn(z))− 1

∣∣∣∣∣ < ε

Proof. Copy the proof of Lemma 2.7 almost word for word, except that (1)
has to be replaced by

N ≥ N0 ⇒ |Πn0,N − g(z)| < min

(
ε

2
,
1

2

)
inf
w∈K
|g(w)|

Theorem 2.13 For continuous functions fn:K → C on a compact set K,
if

∞∏
n=1

(1 + |fn(z)|)

is uniformly convergent on K, then

∞∏
n=1

(1 + fn(z))

is uniformly convergent on K.

Proof. Copy the proof of Theorem 2.8.

Corollary 2.14 (M test) For continuous functions fn:K → C on a com-
pact set K, if Mn = supz∈K |fn(z)| <∞ for all n and

∞∑
n=1

Mn <∞,

then
∞∏
n=1

(1 + fn(z))

is uniformly convergent on K.
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Proof. From
∑∞

n=1 Mn <∞ and Theorem 2.5 we deduce that
∏∞

n=1(1 +Mn)
converges.

The Cauchy condition for
∏∞

n=1(1 + Mn) implies the uniform Cauchy
criterion for

∏∞
n=1(1+|fn(z)|) and the result then follows from Theorem 2.13.

Proposition 2.15 If m(ξ) is a trigonometric polynomial with m(0) = 1,
then

∞∏
n=1

m

(
ξ

2n

)
converges uniformly on finite intervals [a, b] ⊂ R.

Proof. As trigonometric polynomials are differentiable and periodic with
period 1

M = sup
0≤ξ≤1

|m′(ξ)| = sup
ξ∈R
|m′(ξ)| <∞

It follows that

|m(ξ1)−m(ξ2)| =
∣∣∣∣∫ ξ1

ξ=ξ2

m′(ξ) dξ

∣∣∣∣ ≤M |xi1 − ξ2|

and in particular that

|m(ξ)− 1| = |m(ξ)−m(0)| ≤M |ξ|

Now for any finite interval [a, b] we can find R > 0 so that [a, b] ⊆ [−R,R]
and then for ξ ∈ [a, b] we have∣∣∣∣m( ξ

2n

)
− 1

∣∣∣∣ ≤M

∣∣∣∣ ξ2n
∣∣∣∣ ≤ MR

2n

As
∞∑
n=1

MR

2n
<∞

uniform convergence of the product follows from Corollary 2.14. �

Example 2.16 If

m(ξ) =
1 + e−2πiξ

2

then
∞∏
n=1

m

(
ξ

2n

)
=

∫ 1

0

e−2πixξ dx = F(χ[0,1))(ξ) = e−πiξ
sin πξ

πξ
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Proof. By induction on N one can show that

N∏
n=1

1 + e−2πi(ξ/2n)

2
=

1

2N

2N−1∑
j=0

e−2πijξ/2N

which is a Riemann sum for the integral. It is easy to check that the integral
is

e−2πiξ − 1

−2πiξ
= e−πiξ

1

πξ

eπiξ − e−πiξ

2i
= e−πiξ

sin πξ

πξ

Alternatively, one can sum the above sum as a geometric progression and
arrive at the same limit.

Theorem 2.17 If p(ξ) =
∑k1

k=k0
cke
−2πikξ is a trigonometric polynomial with

p(0) =
√

2 and |p(ξ)|2 + |p(ξ + 1/2)|2 ≡ 2, then

φ̂(ξ) =
∞∏
n=1

p(ξ/2n)√
2

defines a function φ̂ ∈ L2(R).
If in addition p(ξ) 6= 0 for |ξ| < 1/4, then ‖φ̂‖2 = 1 and∑

`∈Z

|φ̂(ξ + `)|2 ≡ 1

for almost all ξ ∈ R.

Proof. Let m(ξ) = p(ξ)/
√

2. From Proposition 2.15, we know that the
product for φ̂ converges uniformly on all finite intervals [a, b] ⊂ R and thus
φ̂ is a continuous function.

Define a sequence of functions φ̂r (r = 0, 1, 2, . . .) by

φ̂0(ξ) = χ[−1/2,1/2)(ξ)

and

φ̂r+1(ξ) = m(ξ/2)φ̂r(ξ/2)

=

(
r+1∏
j=1

m

(
ξ

2j

))
χ[−1/2,1/2)

(
ξ

2r+1

)

= χ[−2r,2r)(ξ)
r+1∏
j=1

m

(
ξ

2j

)
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We claim first that

Φr(ξ) =
∑
`∈Z

|φ̂r(ξ + `)|2

satisfies Φr(ξ) ≡ 1 for all r = 0, 1, 2, . . .. This is clear for r = 0 and for r ≥ 0,
separating even and odd terms, we get

Φr+1(ξ) =
∑
`∈Z

|φ̂r+1(ξ + 2`)|2 +
∑
`∈Z

|φ̂r+1(ξ + 1 + 2`)|2

=
∑
`∈Z

|m(ξ/2 + `)|2|φ̂r(ξ/2 + `)|2

+
∑
`∈Z

|m(ξ/2 + 1/2 + `)|2|φ̂r(ξ/2 + 1/2 + `)|2

= |m(ξ/2)|2
∑
`∈Z

|φ̂r(ξ/2 + `)|2

+|m(ξ/2 + 1/2)|2
∑
`∈Z

|φ̂r(ξ/2 + 1/2 + `)|2

since m is periodic with period 1

= |m(ξ/2)|2Φr(ξ/2) + |m(ξ/2 + 1/2)|2Φr(ξ/2 + 1/2)

= |m(ξ/2)|2 + |m(ξ/2 + 1/2)|2 = 1

(assuming Φr ≡ 1 known).
It then follows that ‖φ̂r‖2 = 1 for each r, because∫ ∞

−∞
|φ̂r(ξ)|2 dξ =

∫ ∞
−∞

∑
`∈Z

χ[`,`+1)|φ̂r(ξ)|2 dξ

=
∑
`∈Z

∫ ∞
−∞

χ[`,`+1)|φ̂r(ξ)|2 dξ

(by the monotone converegence theorem)

=
∑
`∈Z

∫ `+1

`

|φ̂r(ξ)|2 dξ

=
∑
`∈Z

∫ 1

0

|φ̂r(η + `)|2 dη

=

∫ 1

0

∑
`∈Z

|φ̂r(η + `)|2 dη

(by the monotone converegence theorem)

=

∫ 1

0

Φr(η) dη = 1
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Now we can argue that∫ R

−R
|φ̂(ξ)|2 dξ = lim

r→∞

∫ R

−R
|φ̂r(ξ)|2 dξ

by uniform convergence on [−R,R] and the limit is at most 1 because each

term is at most 1 (the rth term in the limit is less than ‖φ̂r‖2
2 = 1). As∫ R

−R
|φ̂(ξ)|2 dξ ≤ 1

for each R > 0, it follows that

‖φ̂‖2
2 =

∫ ∞
−∞
|φ̂(ξ)|2 dξ ≤ 1

Assuming now that p(ξ) 6= 0 for |ξ| < 1/4, we have φ̂(ξ) 6= 0 for |ξ| < 1/2.
Since φ̂ is continuous, c = inf |ξ|≤1/2 |φ̂(ξ)| > 0. Then for |ξ| < 2r−1, we have

φ̂(ξ) =
∞∏
n=1

p(ξ/2n)√
2

=
r∏

n=1

p(ξ/2n)√
2

∞∏
n=r+1

p(ξ/2n)√
2

=

(
r∏

n=1

p(ξ/2n)√
2

)
φ̂(ξ/2r)

and so

|φ̂r(ξ)| =

∣∣∣∣∣
r∏

n=1

p(ξ/2n)√
2

∣∣∣∣∣ ≤ |φ̂(ξ)|/|φ̂(ξ/2r)| ≤ 1

c
|φ̂(ξ)|

for |ξ| ≤ 2r−1 and also for |ξ| > 2r−1 (when φ̂r(ξ) = 0).
As we now have

∫∞
−∞(1/c)2|φ̂(ξ)|2 dξ ≤ (1/c)2 < ∞ and |φ̂r(ξ)|2 ≤

(1/c)2|φ̂(ξ)|2, we can apply the dominated convergence theorem to show∫ ∞
−∞

lim
r→∞
|φ̂r(ξ)|2 dξ = lim

r→∞

∫ ∞
−∞
|φ̂r(ξ)|2 dξ = 1

which tells us ∫ ∞
−∞
|φ̂(ξ)|2 dξ = 1

Finally, we have

N∑
`=−N

|φ̂(ξ + `)|2 = lim
r→∞

N∑
`=−N

|φ̂r(ξ + `)|2

≤ lim sup
r→∞

∞∑
`=−∞

|φ̂r(ξ + `)|2

= lim sup
r→∞

Φr(ξ) = 1
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and hence
∞∑

`=−∞

|φ̂(ξ + `)|2 ≤ 1.

But then

1 =

∫ ∞
−∞
|φ̂(ξ)|2 dξ =

∫ 1

0

∞∑
`=−∞

|φ̂(ξ + `)|2 ≤
∫ 1

0

1 dξ = 1

and so
∑∞

`=−∞ |φ̂(ξ+ `)|2 = 1 for almost all ξ ∈ [0, 1]. As the sum is periodic
with period 1, and a countable union of sets of measure zero still has measure
zero, the sum is 1 for all ξ ∈ R except possibly for a set of measure zero. �

Corollary 2.18 If (ck)k∈Z is a finitely nonzero sequence with∑
k∈Z

ckck−2` =

{
1 for ` = 0
0 for ` ∈ Z, ` 6= 0.

∑
k ck =

√
2 and

∑
k cke

−2πikξ 6= 0 for |ξ| < 1/4, then there is a function
φ ∈ L2(R) with ‖φ‖2 = 1,

φ =
∑
k∈Z

ckD2Tkφ

and orthonormal translates {Tkφ : k ∈ Z}.

Proof. We know from Lemma 1.13 that p(ξ) =
∑

k cke
−2πikξ satisfies |p(ξ)|2 +

|p(ξ + 1/2)|2 ≡ 2 and also we have p(0) =
∑

k ck =
√

2. From Theorem 2.17,
we have

φ̂(ξ) =
∞∏
n=1

p(ξ)√
2
∈ L2(R)

with ‖φ̂‖2 = 1. If we define φ to be the inverse Fourier transform of φ̂, then
we have ‖φ‖2 = ‖φ̂‖2 = 1 and

Fφ(ξ) = φ̂(ξ)

= p(ξ/2)
1√
2
φ̂(ξ/2)

= p(ξ/2)
1√
2
Fφ(ξ/2)

= F

(∑
k∈Z

ckD2Tkφ

)
(ξ)
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Since F is bijective on L2(R), we can conclude that φ satisfies the dilation
equation.

Finally, for j 6= k

〈Tjφ, Tkφ〉 = 〈T−jTjφ, T−jTkφ〉
since Tj is an isometry

= 〈φ, Tk−jφ〉
= 〈Fφ,F(Tk−jφ)〉

since the Fourier transform is an isometry on L2(R)

=

∫ ∞
−∞

φ̂(ξ)e2πi(k−j)ξφ̂(ξ) dξ

=

∫ ∞
−∞
|φ̂(ξ)|2e−2πi(k−j)ξ dξ

=
∑
`∈Z

∫ `+1

`

|φ̂(ξ)|2e−2πi(k−j)ξ dξ

=
∑
`∈Z

∫ 1

0

|φ̂(ξ + `)|2e−2πi(k−j)ξ dξ

=

∫ 1

0

∑
`∈Z

|φ̂(ξ + `)|2e−2πi(k−j)ξ dξ

by the dominated convergence theorem, since∑
`∈Z

|φ̂(ξ + `)|2 = 1 ae

=

∫ 1

0

e−2πi(k−j)ξ dξ

= 0

�
Our next aim is to show that the solution φ of the dilation equation that

we have constructed is compactly supported (and hence in L1(R) as well as
L2(R)). There are a number of ways to do this directly, but we will take an
approach that relies on a classical result in Fourier analysis that we will not
prove.

By a compactly supported function in L2(R) we mean one that is almost
everywhere zero outside some bounded closed interval [a, b].

Recall that an entire function g is a complex-valued function defined and
holomorphic (or analytic) on the whole complex plane C. That means that

g′(w0) = lim
w→w0

g(w)− g(w0)

w − w0
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exists in C for each w0 ∈ C.
An entire function is said to be of exponential type if there are constants

A,B > 0 so that
|g(w)| ≤ AeB|w|

holds for all w ∈ C. Examples of such functions are g(w) = cosw = (eiw −
e−iw)/2 and polynomial functions g(w) =

∑n
j=0 ajw

j (which satisfy |g(w)| ≤
a(1 + |w|)n ≤ AeB|w| for a suitable a > 0 and any B > 0 with a suitable A).

Theorem 2.19 (Paley-Wiener) A function f ∈ L2(R) is compactly sup-
ported if and only if its Fourier transform Ff(ξ) is almost everywhere equal
for ξ ∈ R to g(ξ) for an entire function g:C→ C of exponential type.

Proof. Omitted.

Theorem 2.20 If (ck)k∈Z is a finitely nonzero sequence with∑
k∈Z

ckck−2` =

{
1 for ` = 0
0 for ` ∈ Z, ` 6= 0.

∑
k ck =

√
2 and

∑
k cke

−2πikξ 6= 0 for |ξ| < 1/4, then there is a compactly
supported function φ ∈ L2(R) with ‖φ‖2 = 1 and

φ =
∑
k∈Z

ckD2Tkφ

Proof. What we do is show that the Fourier transform of the φ constructed
in the proof of Corollary 2.18 above satisfies the conditions in Theorem 2.19.

Let m(w) = (1/
√

2)
∑

k cke
−2πikw (with w ∈ C now replacing ξ ∈ R) and

g(w) =
∞∏
n=1

m
( w

2n

)
A look at the proof of Proposition 2.15 will show that we did not really

make use of the fact that ξ was real in any essential way. The same argument
shows that the product for g(w) is uniformly convergent for |w| ≤ R, any
R > 0. Thus g:C→ C is well defined and continuous. In fact it is also entire
because of a standard result in complex analysis that if a sequence of entire
functions on C converges uniformly on compact subsets of C, then the limit
is also entire. (In this case the partial products

∏N
n=1 m(w/2n) are clearly

entire.) We have Fφ(ξ) = g(ξ) for ξ ∈ R and what remains is to establish
the exponential type of g.
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For |w| < 1 we know there is a constant M ≥ 0 so that |m(w)−1| ≤M |w|
and so

|g(w)| =

∣∣∣∣∣
∞∏
n=1

m
( w

2n

)∣∣∣∣∣
≤

∞∏
n=1

(1 + |m(w/2n)− 1|)

≤
∞∏
n=1

(1 +M/2n) = M ′ <∞

holds for |w| < 2. Now for |w| ≥ 2, choose N so that 2N ≤ |w| < 2N+1. Then

g(w) =

(
N∏
n=1

m
( w

2n

))
g
( w

2N

)
and we need a bound on this finite product in terms of a power of e|w|.

Suppose ck is zero outside the (finite) range k0 ≤ k ≤ k1. Consider for a
moment the polynomial

P (z) = (1/
√

2)

k1∑
k=k0

ckz
k−k0

so that
m(w) = e−2πik0wP (e−2πiw)

Now, being a polynomial of degree d = k1 − k0 we can find C > 0 so that

|P (z)| ≤ C|z|d for |z| ≥ 1

and |P (z)| ≤ C for |z| < 1. Thus

|m(w)| ≤ e2π|k0||w|C(e2π|w|)d = Ce2π(d+|k0|)|w|

holds for all w ∈ C (as |ew| = e<w ≤ e|w| and e|w| ≥ 1 always).
It follows that for 2N ≤ |w| < 2N+1

|g(w)| ≤

(
N∏
n=1

Ce2π(d+|k0|)|w|/2n
)∣∣∣g ( w

2N+1

)∣∣∣ ≤M ′CNe2π(d+|k0|)|w|

AsN < log |w|/ log 2 we have CN = eN logC < e(logC/ log 2) log |w| ≤ e(logC/ log 2)|w|

(since |w| ≥ 1). Thus for we have

|g(w)| ≤M ′e(logC/ log 2+2π(d+|k0|))|w|
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no matter what N is. Taking A = M ′ and B = max(logC/ log 2 + 2π(d +
|k0|), 0) we have

|g(w)| ≤ AeB|w|

for all w ∈ C. �

Theorem 2.21 Suppose (ck)k∈Z is a finitely nonzero sequence with ck = 0
for k outside the range k0 ≤ k ≤ k1,∑

k∈Z

ckck−2` =

{
1 for ` = 0
0 for ` ∈ Z, ` 6= 0.∑

k ck =
√

2,
∑

k even kck =
∑

k odd kck, and
∑

k cke
−2πikξ 6= 0 for |ξ| < 1/4.

Factor

P1(z) =

k1∑
k=k0

ckz
k−k0 =

√
2

(
1 + z

2

)a
Q(z)

for a polynomial Q(z) with Q(−1) 6= 0 and a an integer.
Assume

sup{|Q(z)| : z ∈ C, |z| = 1} = B < 2a−1

Then there is a compactly supported continuous function φ ∈ L2(R) with
‖φ‖2 = 1 and

φ =
∑
k∈Z

ckD2Tkφ

Proof. From Lemma 1.13, we know that p(ξ) = e−2πik0ξP1(e−2πiξ) satisfies
|p(ξ)|2 + |p(ξ + 1/2)|2 = 2, p(0) = P1(1) =

√
2 and consequently p(1/2) =

P1(−1) = 0. The condition
∑

k even kck =
∑

k odd kck guarantees that the
polynomial P1(z) has derivative 0 at −1.

We conclude that P1(z) is divisible by (1 + z)2. Let a be the highest
power of 1 + z which divides P1(z) and then we can factor P1(z) as in the
statement (with a ≥ 2).

Our goal is to show that φ̂(ξ) as constructed in Theorem 2.17 must be
in L1(R). It follows that the inverse Fourier transform of φ̂ is a continuous
function

φ(x) =

∫ ∞
−∞

φ̂(ξ)e2πixξ dx

and we already know from the proof of Corollary 2.18 that this satisfies the
dilation equation.

Take

m(ξ) = p(ξ)/
√

2 = e−2πik0ξ

(
1 + e−2πiξ

2

)a
Q(e−2πiξ)
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and, as in the proof of Theorem 2.17, φ̂(ξ) =
∏∞

n=1 m(ξ/2n). From Proposi-
tion 2.15, we know that each of the three products

∞∏
n=1

e−2πik0ξ/2n ,

∞∏
n=1

(
1 + e−2πiξ/2n

2

)
and

∞∏
n=1

Q(e−2πiξ/2n)

converges. The first product has constant modulus 1, the second has been
computed in Example 2.16 to be e−πiξ sinπξ

πξ
. It is easy to see that the infi-

nite product of a product is the product of the individual infinite products
provided each of the individual products converges. Thus

φ̂(ξ) =

(
∞∏
n=1

e−2πik0ξ/2n

)(
e−πiξ

sin πξ

πξ

)a ∞∏
n=1

Q(e−2πiξ/2n)

To achieve our goal of showing
∫∞
−∞ |φ̂(ξ)| dξ < ∞ we need an estimate on

the last product.
For convenience, let q(ξ) = Q(e−2πiξ), a trigonometric polynomial. For

−1 ≤ ξ ≤ 1 We have an estimate based on the largest value of the derivative
M = supξ |q′(ξ)| that

|q(ξ)− 1| = |q(ξ)− q(0)| ≤M |ξ|

and so for |ξ| ≤ 1 we have∣∣∣∣∣
∞∏
n=1

q(ξ/2n)

∣∣∣∣∣ ≤
∞∏
n=1

(1 + |q(ξ/2n)− 1|) ≤
∞∏
n=1

(1 +M/2n) < eM

For |ξ| > 1 we argue in a somewhat similar way to the previous proof. Fix
ξ. Choose N ≥ 0 so that 2N−1 < |ξ| ≤ 2N . Then∣∣∣∣∣

∞∏
n=1

q(ξ/2n)

∣∣∣∣∣ =

∣∣∣∣∣
N∏
n=1

q(ξ/2n)

∣∣∣∣∣
∣∣∣∣∣
∞∏

n=N+1

q(ξ/2n)

∣∣∣∣∣ ≤
(

N∏
n=1

|q(ξ/2n)|

)
eM

But each |q(ξ/2n)| = |Q(e−2πiξ/2n)| ≤ B and so∣∣∣∣∣
∞∏
n=1

q(ξ/2n)

∣∣∣∣∣ ≤ BNeM

But 2N < 2|ξ| and so BNeM < eM2N log2 B < eM(2|ξ|)log2 B. We conclude
that, for |ξ| > 1

|φ̂(ξ)| ≤
∣∣∣∣ 1

πξ

∣∣∣∣a eM(2|ξ|)log2 B = C
1

|ξ|a−log2 B
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for some C. As we have the assumption a− log2 B > 1, it follows that∫
|ξ|>1

|φ̂(ξ)| dξ <∞

and
∫ 1

−1
|φ̂(ξ)| dξ is also finite (bounded by

∫ 1

−1

∣∣∣ sinπξπξ

∣∣∣a eM dξ <∞).

Thus φ̂ ∈ L1(R). �

Remark 2.22 Theorem 2.21 can be used to show that there exist compactly
supported continuous solutions (with orthonormal translates) to certain dila-
tion equations.

Daubechies produced a family of examples for a = 2, 3, . . .. The corre-
sponding pa(ξ) =

∑2a−1
k=0 cke

−2πikξ is of the form

pa(ξ) =
√

2

(
1 + e−2πiξ

2

)a
qa(ξ)

with qa(ξ) a trigonometric polynomial that is chosen in such a way that

|pa(ξ)|2 + |pa(ξ + 1/2)|2 = 2.

Now

|pa(ξ)|2 = pa(ξ)pa(ξ)

= 2

(
1 + e−2πiξ

2

)a(
1 + e2πiξ

2

)a
|qa(ξ)|2

= 2

(
2 + e2πiξ + e−2πiξ

4

)a
|qa(ξ)|2

= 2

(
1 + cos(2πξ)

2

)a
|qa(ξ)|2

= 2

(
1 + 1− 2 sin2(πξ)

2

)a
|qa(ξ)|2

= 2(1− sin2(πξ))a|qa(ξ)|2

and Daubechies chose qa so that

|qa(ξ)|2 =
a−1∑
k=0

(
a+ k − 1

k

)
(sin2(πξ))k

Using

sin2(π(ξ + 1/2)) = sin2(πξ + π/2) = cos2(πξ) = 1− sin2(πξ)
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we can show

|pa(ξ)|2 + |pa(ξ + 1/2)|2

= 2(1− sin2(πξ))a
a−1∑
k=0

(
a+ k − 1

k

)
(sin2(πξ))k

+2(sin2(πξ))a
a−1∑
k=0

(
a+ k − 1

k

)
(1− sin2(πξ))k

= 2.

For example in the case a = 2, this is true because (with s = sin2(πξ)) it
comes down to

2(1− s)2(1 + 2s) + 2s2(1 + 2(1− s))
= 2((1− 2s+ s2)(1 + 2s) + s2(3− 2s))

= 2(1− 4s2 + s2 + 2s3 + 3s2 − 2s3)

= 2.

For the Daubechies 4 coefficient example, writing z = e−2πiξ, we have

p(ξ) =
1 +
√

3

4
√

2
+

3 +
√

3

4
√

2
z +

3−
√

3

4
√

2
z2 +

1−
√

3

4
√

2
z3

=
√

2

(
1

8

)
(1 + 2z + z2)((1−

√
3)z + (1−

√
3))

using long division

=
√

2

(
1 + z

2

)2
(

(1−
√

3)z + (1 +
√

3)

2

)
and so

q(ξ) = Q(z) =
(1−

√
3)z + (1 +

√
3)

2
If we compute

|q(ξ)|2 = q(ξ)q(ξ)

=
1

4
((1−

√
3)2zz + (1 +

√
3)2 + (1− 3)z + (1− 3)z)

=
1

4
((4− 2

√
3) + (4 + 2

√
2)− 2(z + z))

using |z| =
∣∣e−2πiξ

∣∣ = 1

= 2− cos(2πξ)

= 2− (1− 2 sin2(πξ))

= 1 + 2 sin2(πξ) = 1 + 2s
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(where s = sin2(πξ) still). We can see then that

B = sup{|qa(ξ)| : ξ ∈ R} =
√

sup
0≤s≤1

(1 + 2s) =
√

3 < 2a−1 = 22−1 = 2

and by Theorem 2.21, the corresponding φ is continuous. So is the mother
wavelet ψ constructed from φ.

We should check all the hypotheses of Theorem 2.21.
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