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1 Multiresolution Analysis Approach

to Wavelets

(This is probably the most practical approach to wavelets in L2(R), but not
the only approach.)

Lemma 1.1 The translation and dilation operators

Ta:L
2(R) → L2(R)

(Ta(f))(x) = f(x− a) (a ∈ R)

Dλ:L
2(R) → L2(R)

(Dλ(f))(x) =
√
λf(λx) (λ > 0)

are isometries, that is

‖Taf‖2 = ‖f‖2

‖Dλf‖2 = ‖f‖2 ∀f ∈ L2(R).

Consequently, they preserve inner products:

〈Taf, Tag〉 = 〈f, g〉
〈Dλf,Dλg〉 = 〈f, g〉 ∀f, g ∈ L2(R).

Proof. Simple calculations show that these operators are isometries:

‖Taf‖2
2 =

∫ ∞
−∞
|Taf(x)|2 dx

=

∫ ∞
−∞
|f(x− a)|2 dx

=

∫ ∞
−∞
|f(y)|2 dy

= ‖f‖2
2

‖Dλf‖2
2 =

∫ ∞
−∞
|Dλf(x)|2 dx

=

∫ ∞
−∞

λ|f(λx)|2 dx

=

∫ ∞
−∞
|f(y)|2 dy (y = λx)

= ‖f‖2
2
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The inner product preserving consequence follows from the polarisation
formula in L2(R). For R-valued L2(R), this is

〈f, g〉 =
1

4
(‖f + g‖2

2 − ‖f − g‖2
2)

=
1

4
(〈f + g, f + g〉 − 〈f − g, f − g〉)

and for C-valued L2(R), this gives the real part <〈f, g〉, so that

〈f, g〉 = <〈f, g〉+ i=〈f, g〉
= <〈f, g〉+ i<〈f, ig〉

since

〈f, ig〉 = −i〈f, g〉
<〈f, ig〉 = =〈f, g〉

〈f, g〉 =
1

4
(‖f + g‖2

2 − ‖f − g‖2
2 + i‖f + ig‖2

2 − i‖f − ig‖2
2)

From these formulae it follows easily that if T :L2(R)→ L2(R) is linear and
isometric, then it is automatically inner product preserving. For the (shorter)
R-valued case here are the details:

〈Tf, Tg〉 = <〈Tf, Tg〉+ i=〈Tf, Tg〉

=
1

4
(‖Tf + Tg‖2

2 − ‖Tf − Tg‖2
2)

=
1

4
(‖T (f + g)‖2

2 − ‖T (f − g)‖2
2)

=
1

4
(‖f + g‖2

2 − ‖f − g‖2
2)

since ‖Th‖ = ‖h‖ ∀h
= 〈f, g〉

Since it is easy to check that Ta and Dλ are linear, this completes the
proof. �

Lemma 1.2

DλTa = Ta/λDλ

Proof. Write g = Ta(f) so that g(x) = f(x− a) and

(DλTaf)(x) = (Dλg)(x) =
√
λg(λx) =

√
λf(λx− a)
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One the other hand, write h = Dλf so that h(x) =
√
λf(λx) and

(Ta/λDλf)(x) = (Ta/λh)(x) = h(x− a/λ) =
√
λf(λ(x− a/λ)) = f(λx− a)

�

Starting point for construction of wavelets 1.3 A function φ(x) (gen-
erally known as a scaling function) with the properties

(i) The translates (Tkφ)k∈Z are orthonormal inside L2(R)

(ii) φ satisfies a two scale dilation equation

φ(x) =
∑
k∈Z

ck
√

2φ(2x− k)

=
∑
k∈Z

ck(D2Tkφ)(x)

(Scale 1 on the left, scale 2 on the right, x and 2x.)

Normally we assume that only a finite number of the ck are nonzero, but in
theory we can can allow any sequence of coefficients with

∑
k∈Z |ck|2 = 1.

Example 1.4 A simple example is

φ(x) = χ[0,1)(x)

=

{
1 if x ∈ [0, 1)
0 if x 6∈ [0, 1)

Graph of this is

The graphs of φ(2x) = χ[0,1/2)(x) and φ(2x − 1) = φ(2(x − 1/2)) =
χ[1/2,1)(x) are shown next.
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Hence φ(x) = φ(2x) + φ(2x− 1) or χ[0,1)(x) = χ[0,1/2)(x) + χ[1/2,1)(x) or

φ(x) = c0

√
2φ(2x) + c1

√
2φ(2x− 1) with c0 = c1 =

1√
2

Take ck = 0 for k 6∈ {0, 1} and we have

φ(x) =
∑
k∈Z

ck
√

2φ(2x− k)

This φ related to Haar wavelets because the basic Haar function

ψ(x) =


1 x ∈ [0, 1/2)
−1 x ∈ [1/2, 1)
0 for x < 0 and for x ≥ 1

can be expressed as

ψ(x) = χ[0,1/2)(x)− χ[1/2,1)(x)

= c1

√
2φ(2x)− c0

√
2φ(2x− 1)

In general, we will be able to take any scaling function φ (which has to
have some additional properties) and get a ψ (basic wavelet) by introducing
alternating signs (and a reversed order) for the coefficients of the dilation
equation.

Proposition 1.5 (Properties required of the ck’s) Assuming all the time
that φ =

∑
k∈Z ckD2Tkφ and Tkφ are orthonormal in L2(R), we have

(i) ∑
k∈Z

|ck|2 = 1

(ii) ∑
k∈Z

ckck−2` = 0 for ` ∈ Z, ` 6= 0.
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(iii) Assuming φ ∈ L1(R)∩L2(R),
∫∞
−∞ φ(x) dx 6= 0 and {k ∈ Z : ck 6= 0} is

finite, then we can write a formula for the Fourier transform of φ:

Fφ(ξ) = Fφ(0) lim
n→∞

n∏
j=1

1√
2
p

(
ξ

2j

)
where p(ξ) is the trigonometric polynomial

p(ξ) =
∑
k∈Z

cke
−2πikξ

(iv) If φ is compactly supported (that is there is a bounded set of x ∈ R
where almost all x with φ(x) 6= 0 are to be found) then φ ∈ L1(R).

If in addition {k : ck 6= 0} is finite and
∫∞
−∞ φ(x) dx 6= 0, then∑

k∈Z

ck =
√

2

Proof.

(i) The dilation equation reads

φ(x) =
∑
k∈Z

ck
√

2φ(2x− k) =
∑
k∈Z

ck(D2Tkφ)(x)

Since we are assuming that (Tkφ)k∈Z are orthonormal in L2(R), we have
‖Tkφ‖2 = 1 (all k) and 〈Tkφ, T`φ〉 = 0 if k 6= `. Since D2 is isometric
(and inner product preserving — see Lemma 1.1),

(D2Tkφ)k∈Z

is orthonormal and so we can calculate by Besssels formula

‖φ‖ =

√∑
k∈Z

|ck|2

As ‖φ‖ = 1 (because φ = T0φ is in the sequence (Tkφ)k∈Z which is
assumed to be orthonormal), we have∑

k∈Z

|ck|2 = 1.
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(ii) Starting from the observation that φ = T0φ is perpendicular to T`φ for
` 6= 0, we compute from 〈φ, T`φ〉 = 0 by expressing

φ =
∑
k∈Z

ckD2Tkφ

T`φ =
∑
k∈Z

ckT`D2Tkφ

justified even for infinitely many nonzero ck

as T` is continuous and linear

=
∑
k∈Z

ckD2T2`Tkφ

=
∑
k∈Z

ckD2Tk+2`φ

=
∑
k∈Z

ck−2`D2Tkφ

0 = 〈φ, T`φ〉 =
∑
k∈Z

ckck−2`

(iii) Considering

φ =
∑
k∈Z

ckD2Tkφ

and applying F to both sides, we get

Fφ =
∑
k∈Z

ckF(D2Tkφ).

(To justify this for the case of r infinitely many nonzero ck we can
use the fact that F is an isometry from L2(R) to L2(R).) Now we
need to know rules (F(D2f))(ξ) = (D1/2(Ff))(ξ) and (F(Tkf))(ξ) =
e−2πikξ(Ff)(ξ).

Aside. We now check out these claimed formulae by simple calcula-
tions with integrals and changes of variable. We take f ∈ L1(R) so
that the integral formulae are valid without question.

(F(D2f))(ξ) =

∫ ∞
−∞

(D2f)(x)e−2πixξ dx

=

∫ ∞
−∞

√
2f(2x)e−2πixξ dx

put y = 2x
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=

∫ ∞
−∞

√
2f(y)e−2πiy(ξ/2) dy

2

=
1√
2

∫ ∞
−∞

f(y)e−2πiy(ξ/2) dy

=
1√
2

(Ff)(ξ)

= (D1/2(Ff))(ξ)

(F(Tkf))(ξ) =

∫ ∞
−∞

(Tkf)(x)e−2πixξ dx

=

∫ ∞
−∞

f(x− k)e−2πixξ dx

put y = x− k dy = dx

=

∫ ∞
−∞

f(y)e−2πi(y+k)ξ dy

= e−2πkξ

∫ ∞
−∞

f(y)e−2πiyξ dy

= e−2πkξ(Ff)(ξ)

[Aside within aside: We could introduce a notation

(Rθf)(x) = e−2πiθxf(x)

and then we could summarise the rule we have just proved as F(Tkf) =
Rk(Ff), but we will not use this notation regularly.]

Returning now to the proof proper, we have

(Fφ)(ξ) =
∑
k∈Z

ck(F(D2Tkφ))(ξ)

=
∑
k∈Z

ck(D1/2(F(Tkφ)))(ξ)

=
∑
k∈Z

ck(D1/2(e−2πikξ(Fφ)(ξ))

=
∑
k∈Z

ck
1√
2
e−2πik(ξ/2)(Fφ)(ξ/2))

=

(∑
k∈Z

cke
−2πik(ξ/2)

)
1√
2

(Fφ)

(
ξ

2

)
(Fφ)(ξ) = p

(
ξ

2

)
1√
2

(Fφ)

(
ξ

2

)
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If we rewrite this with ξ replaces by ξ/2 we get

(Fφ)

(
ξ

2

)
= p

(
ξ

4

)
1√
2

(Fφ)

(
ξ

4

)
and combining the last two equations we then have

(Fφ)(ξ) = p

(
ξ

2

)
1√
2
p

(
ξ

4

)
1√
2

(Fφ)

(
ξ

4

)
.

Iterating this idea, we get

(Fφ)(ξ) =

(
n∏
j=1

1√
2
p

(
ξ

2j

))
(Fφ)

(
ξ

2n

)
(n = 1, 2, 3, . . .).

Take limits as n→∞. As φ ∈ L1(R) we know that Fφ is continuous,
in particular continuous at 0 and so

lim
n→∞

(Fφ)

(
ξ

2n

)
= (Fφ)(0) 6= 0.

It follows that

lim
n→∞

n∏
j=1

1√
2
p

(
ξ

2j

)
=

(Fφ)(ξ)

(Fφ)(0)

exists.

[Aside: When (Fφ)(ξ) 6= 0 this can be rewritten as

∞∏
j=1

1√
2
p

(
ξ

2j

)
=

(Fφ)(ξ)

(Fφ)(0)

but we will defer going into the definition of an infinite product.]

Hence we have

(Fφ)(ξ) = (Fφ)(0) lim
n→∞

n∏
j=1

1√
2
p

(
ξ

2j

)
.

Note that (Fφ)(0) =
∫∞
−∞ φ(x) dx.
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(iv) For the first part suppose that φ(x) is essentially supported in [a, b], by
which we means that {x 6∈ [a, b] : φ(x) 6= 0} has measure zero. Then

‖φ‖1 =

∫ ∞
−∞
|φ(x)| dx

=

∫ b

a

|φ(x)| dx

≤

√∫ b

a

|φ(x)|2 dx

√∫ b

a

12 dx

by Hölder’s inequality

= ‖φ‖2

√
b− a <∞

For the second part of (iv), we integrate both sides of

φ(x) =
∞∑

k=−∞

ck
√

2φ(2x− k)

∫ ∞
−∞

φ(x) dx =
∞∑

k=−∞

ck
√

2

∫ ∞
−∞

φ(2x− k) dx

noting that the exchange of the sum
and the integral is justified because
there are only a finite number of
nonzero terms in the sum
put y = 2x− k

dy = 2 dx

in the integrals

=
∞∑

k=−∞

ck
√

2

∫ ∞
−∞

φ(y)
dy

2

=

(
∞∑

k=−∞

ck

√
2

2

)∫ ∞
−∞

φ(y) dy

Since we have assumed
∫∞
−∞ φ(x) dx 6= 0, we find

∞∑
k=−∞

ck
1√
2

= 1

or
∞∑

k=−∞

ck =
√

2.
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Remarks. We have one example where all the conditions we have now
uncovered on the coefficients ck are satisfied. For φ(x) = χ[0,1)(x), c0 = c1 =

1/
√

2, ck = 0∀k 6= 0 or 1.

c0 + c1 =
1√
2

+
1√
2

=
2√
2

=
√

2

|c0|2 + |c1|2 =
1

2
+

1

2

ck . . . , c−1 = 0, c0, c1, c2 = 0, . . .
ck−2 . . . , c−1 = 0, c0, c1, c2 = 0

↑ ↑
k = 0 k = 2∑

k

ckck−2` = 0 for ` 6= 0.

In fact there are no other sequences ck with only c0 and c1 nonzero that
meet all these conditions. To check this take two number c0 and c1 and
suppose we know c1 + c2 =

√
2 and |c0|2 + |c1|2 = 1. Then from the Cauchy

Schwarz inequality

√
2 = |c0 + c1| = |c0 × 1 + c1 × 1|

≤
√
|c0|2 + |c1|2

√
11 + 12

= 1
√

2

Thus equality holds in Cauchy Schwarz and so (c0, c1) is linearly dependent
on (1, 1). That is (c0, c1) = c0(1, 1) and c0 = c1. Since c0 + c1 =

√
2 we must

have c0 = c1 = 1/
√

2.
If we allow 3 consecutive terms c0, c1, c2 to be nonzero, then the orthog-

onality condition
∑

k ck−2 = 0 comes down to c2c0 = 0 and so either c0 = 0
or c2 = 0. This means we are back to two nonzero consecutive terms and
having c1 = c2 = 1/

√
2 is not essentially different from the Haar case. (The

scaling function φ in that case is χ[1,2).)
Daubechies example. If we allow 4 nonzero terms c0, c1, c2, c3, then the
solution

c0 =
1 +
√

3

4
√

2
, c1 =

3 +
√

3

4
√

2
, c2 =

3−
√

3

4
√

2
, c3 =

1−
√

3

4
√

2

was used by I. Daubechies in 1988. The corresponding φ(x) is continuous
and compactly supported.



415 Wavelets 11

We can easily check that these numbers satisfy the constraints we have
identified:

|c0|2 + |c1|2 + |c2|2 + |c3|2

=
(1 +

√
3)2

32
+

(3 +
√

3)2

32
+

(3−
√

3)2

32
+

(1−
√

3)2

32

=
1 + 2

√
3 + 3 + 9 + 6

√
3 + 3

32

+
9− 6

√
3 + 3 + 1− 2

√
3 + 3

32

=
32

32
= 1

c0 + c1 + c2 + c3 =
1 +
√

3 + 3 +
√

3 + 3−
√

3 + 1−
√

3

4
√

2

=
8

4
√

2
=

2√
2

=
√

2

The orthogonality relation boils down to

c0 c1 c2 c3

c0 c1 c2 c2

c2c0 + c3c1 =

(
3−
√

3

4
√

2

)(
1 +
√

3

4
√

2

)
+

(
1−
√

3

4
√

2

)(
3 +
√

3

4
√

2

)
=

1

4
√

2
(3−

√
3 + 3

√
3− 3 + 3− 3

√
3 +
√

3− 3)

= 0

Although we have now checked that this sequence satisfies all the neces-
sary conditions we have uncovered so far that are necessary for the existence
of a compactly supported L2(R) solution with

∫∞
−∞ φ(x) dx 6= 0 of a dilation

equation φ =
∑

k ckD2Tkφ, we still don’t have proof that there is any such φ
with the 4 Daubechies coefficients above.

Lemma 1.6 Suppose the finite dilation equation

φ(x) =

k1∑
k=k0

ck
√

2φ(2x− k)

has a compactly supported solution valid for all x ∈ R (pointwise). Then

{x : φ(x) 6= 0} ⊆ [k0, k1]
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Proof. Consider φ(x) restricted to intervals [`, `+ 1) where ` ∈ Z. There can
only be a finite number of ` where φ(x) is not identically zero on [`, ` + 1)
(since the support is compact). Look at the smallest such `.

We claim that ` ≥ k0.
For x ∈ [`, `+ 1), we know

φ(x) =

k1∑
k=k0

ck
√

2φ(2x− k)

but when we look at where 2x− k is we see that

2`− k ≤ 2x− k < 2(`+ 1)− k.

For k ≥ k0

2(`+ 1)− k ≤ 2(`+ 1)− k0 = `+ `+ 2− k0

= `+ (`− k0 + 1) + 1

Suppose now that ` < k0 contrary to what we claimed (and then we
will try to get a contradiction). Then ` ≤ k0 − 1 (since `, k0 ∈ Z) and so
`− k0 + 1 ≤ 0. Hence

2x− k < `+ 1

and for k ≥ k0 + 1 we have

2x− k < 2(`+ 1)− k ≤ `⇒ φ(2x− k) = 0.

This the only term on the right hand side of the dilation equation that can
survive (for x ∈ [`, `+ 1)) is the first term. Thus

φ(x) = ck0

√
2φ(2x− k0) for x ∈ [`, `+ 1)

Looking now at x ∈ [`, `+ 1/2) we have

2x− k0 < 2(`+ 1/2)− k0 = 2`+ 1− k0 = `+ (`+ 1− k0) ≤ `

Thus φ(2x− k0) = 0 and so

φ(x) = ck0

√
2φ(2x− k0) for x ∈ [`, `+ 1/2)

We can then use this to show that for x ∈ [`, `+ 3/4)

2x− k0 < 2(`+ 3/4)− k0 = 2`+ 3/2− k0 = `+ 1/2 + (`+ 1− k0) ≤ `+ 1/2
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Thus φ(2x− k0) = 0 and so

φ(x) = ck0

√
2φ(2x− k0) for x ∈ [`, `+ 3/4)

By induction we can show that

φ(x) = 0 for x ∈ [`, `+ 1− 1/2n) (n = 1, 2, . . .)

Since
⋃∞
n=1[`, `+ 1− 1/2n)[`, `+ 1) we conclude that φ(x) = 0 must be true

for all x ∈ [`, `+ 1). That contradicts the choose of ` and shows that ` < k0

is impossible.
We have shown

{x : φ(x) 6= 0} ⊆ [k0,∞).

To show that
{x : φ(x) 6= 0} ⊆ (−∞, k0]

we could use a similar argument again, but we could instead note that the
“reflected” function

φr(x) = φ(−x)

satisfies

φr(x) = φ(−x) =

k1∑
k=k0

ck
√

2φ(2(−x)− k)

=

k1∑
k=k0

ck
√

2φ(−2x− k)

=

k1∑
k=k0

ck
√

2φr(2x+ k)

substitute k = −j

=

−k0∑
j=−k1

cj
√

2φr(2x− j)

According to the first part of the proof, we have

{x : φr(x) 6= 0} ⊆ [−k1,∞)⇒ {x : φ(x) 6= 0} ⊆ (−∞, k1]

This completes the proof that φ is supported in [k0, k1]. �

Method for graphing φ 1.7 The assumptions needed now are:

1. φ compactly supported
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2. φ continuous (a new assumption)

3. φ satisfies a finite dilation equation

φ(x) =

k1∑
k=k0

ck
√

2φ(2x− k)

(By taking T−k0φ in place of φ we could concentrate on the case k0 = 0
but this is not essential.)

Step 1. Find the sequence of values of φ at the integers,

(φ(n))∞n=−∞ = (. . . , φ(k0), φ(k0 + 1), . . . , φ(k1), . . .)

Since φ(x) = 0 for x < k0 and for x > k1 and φ is assumed continuous, we
must have φ(k0) = 0 and φ(k1) = 0. That leaves

(φ(k0 + 1), φ(k0 + 2), . . . , φ(k1 − 1))

We know

φ(n) =

k1∑
k=k0

ck
√

2φ(2n− k).

Note that 2n − k ∈ Z and and we can express these equations as a single
matrix equation

φ(k0 + 1)
φ(k0 + 2)

...
φ(k1 − 1)

 =

(
matrix with

c’s as entries

)
φ(k0 + 1)
φ(k0 + 2)

...
φ(k1 − 1)


Now we have

φ(k0 + 1) = ck0

√
2φ(2k0 + 2− k0) + ck0+1

√
2φ(2k0 + 2− k0 − 1)

+ck0+2

√
2φ(2k0 + 2− k0 − 2) + · · ·

= ck0

√
2φ(k0 + 2) + ck0+1

√
2φ(k0 + 1) + 0 + 0 + · · ·

and this means that the first row of the above matrix is

(ck0+1

√
2, ck0

√
2, 0, 0, . . .)).

The second row turns out to be

(ck0+3

√
2, ck0+2

√
2, ck0+1

√
2, ck0

√
2, 0, 0, . . .)).
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In this way we can show that the matrix above has rows made up of the
c’s running backwards (times

√
2) and each successive row is shifted by 2

places.


φ(k0 + 1)
φ(k0 + 2)

...
φ(k1 − 1)



=

 ck0+1

√
2 ck0

√
2 0 0 . . .

ck0+3

√
2 ck0+2

√
2 ck0+1

√
2 ck0

√
2 0

...




φ(k0 + 1)
φ(k0 + 2)

...
φ(k1 − 1)


Thus we have an eigenvector with eigenvalue 1 for the above matrix.

If the eigenspace is 1-dimensional, this is enough to find

(φ(k0 + 1), φ(k0 + 2), . . . , φ(k1 − 1))

up to a scale factor (if the eigenspace is one dimensional).
Step 2. Next we use the dilation equation at a 1/2 integer x = j + 1/2

φ(x) = φ(j + 1/2) =

k1∑
k=k0

ck
√

2φ(2j + 1− k)

and we see that the right hand side uses only values of φ at integers 2j+1−k
(which we found at step 1).

Once we have φ at 1/2 integers, we can use the dilation equation with
x = j + 1/4 and x = j + 3/4. For example

φ(j + 1/4) =

k1∑
k=k0

ck
√

2φ(2j + 1/2− k)

and the right hand side involves only values at 1/2 integers.
In this way we can find

φ

(
j

2n

)
j ∈ Z, n = 1, 2, 3, . . .
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Example 1.8 We can carry out this procedure for the Daubechies example
mentioned earlier.

c0 =
1 +
√

3

4
√

2
, c1 =

3 +
√

3

4
√

2
, c2 =

3−
√

3

4
√

2
, c3 =

1−
√

3

4
√

2

Here k0 = 0 and k1 = 3. The nonzero values at integers are φ(k0 +
1), . . . , φ(k1 − 1) which means just the two values (φ(1), φ(2)) in this case.

From the above we know that

(
φ(1)
φ(2)

)
must be an eigenvector with

eigenvalue 1 for the matrix(
c1

√
2 c0

√
2

c3

√
2 c2

√
2

)
=

(
3+
√

3
4

1+
√

3
4

1−
√

3
4

3−
√

3
4

)

To find the 1-eigenspace, subtract I2 and look for the kernel of(
3+
√

3
4
− 1 1+

√
3

4
1−
√

3
4

3−
√

3
4
− 1

)
=

(
−1+

√
3

4
1+
√

3
4

1−
√

3
4

−1−
√

3
4

)

A vector in the kernel is ( √
3 + 1

1−
√

3

)
and so we must have

(
φ(1)
φ(2)

)
some multiple of

( √
3 + 1

1−
√

3

)
.

One thing that we could do is to take the multiple so that φ(1)+φ(2) = 1
(that would mean the multiple should be 1/2 of the above eigenvector).

If we then use the procedure outlined above to write a computer pro-
gramme, we can find values for φ and then plot it.
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Here is a computer programme written in perl that produces lines with
coordinates of points on the graph (which can then be plotted with gnuplot

or another graphical utility).

#!/usr/bin/perl

%phi;

%c;

$c{0} = (1 + sqrt(3))/4;

$c{1} = (3 + sqrt(3))/4;

$c{2} = (3 - sqrt(3))/4;

$c{3} = (1 - sqrt(3))/4;

$maxlevel = 5;

$phi{0} = 0;

$phi{3} = 0;

$phi{1} = (1 + sqrt(3))/2;

$phi{2} = (1 - sqrt(3))/2;

$step = 1;

foreach my $lev (0..$maxlevel) {

$step = 1/2**$lev;

$base = $step/2;

foreach my $k (1..(3*2**$lev)) {

$x = $base + ($k-1)*$step;

$phi{$x} = 0;

foreach my $j (0..3) {

$phi{$x} = $phi{$x} + $c{$j}*$phi{2*$x - $j};

}

}

}

foreach my $k (0..(3*(2**$maxlevel))) {

$x = $k*$step;

print "$x $phi{$x}\n";

}
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Exercise. Show that if φ is a compactly supported continuous function and
it satisfies a 2-scale dilation equation

φ =

k1∑
k=k0

ckD2Tkφ

and if
∑

n∈Z φ(n) = 1, then
∑

n∈Z φ
(
n
2j

)
= 2j for j = 1, 2, . . .. If also∫∞

−∞ φ(x) dx 6= 0, then show that
∫∞
−∞ φ(x) dx = 1.

Lemma 1.9 Suppose φ is a compactly supported continuous solution of a
finite 2-scale dilation equation

φ =

k1∑
k=k0

ckD2Tkφ

and suppose

f(x) =
∑
`

a`φ(x− `)

is a finite linear combination of integer translates of φ.
Then f is completely determined by its values (f(n))∞n=−∞ at the integers.

Note. We saw that φ is determined by its values at the integers.
One way to express the above result is to say that f is determined by its

samples with spacing 1.
Proof. (of Lemma 1.9) We want to show we can find the coefficients a` by
knowing only f(n) for all n. Or another way to put it is that if we have a
second finite linear combination

g(x) =
∑
`

ã`φ(x− `)

and g(n) = f(n) for all n ∈ Z, then f(x) = g(x) for all x.
Looking at f(x)−g(x), this amounts to showing that if f(n) = 0 for each

n, then a` = 0 for all ` (and so f(x) ≡ 0).
So, now suppose that f(n) = 0 for all n ∈ Z but f 6≡ 0 so that some

a` 6= 0.
We know φ has compact support and so there are only finitely many k

with φ(k) 6= 0. From the graphing procedure above, we know that if φ(k) = 0
for all k, then φ ≡ 0. Of course, the case φ ≡ 0 is trivial as certainly f ≡ 0
then. (In fact this proof uses only two properties of φ: compact support and
some k ∈ Z with φ(k) 6= 0.)
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Write kmin for the smallest k with φ(k) 6= 0, and kmax for the largest.
Thus the nonzero values at integers φ(n) are among

φ(kmin) 6= 0, φ(kmin + 1), . . . , φ(kmax − 1), φ(kmax) 6= 0

Now

f(n) =
∑
`

a`φ(n− `)

kmin ≤ n− ` ≤ kmax

⇒ −kmin ≥ n− ` ≥ −kmax

=

n−kmin∑
`=n−kmax

a`φ(n− `).

Choose n so that n− kmin = smallest ` with a` 6= 0. Call this `min.
Then

f(n) =

n−kmin∑
`=n−kmax

a`φ(n− `)

= an−kmin
φ(n− (n− kmin))

= a`min
φ(kmin)

As we are assuming that f(n) = 0 for all n, and φ(kmin) 6= 0, we conclude
from this that a`min

= 0. But that contradicts the way `min is chosen.
This contradiction shows that a` = 0 for all ` if f(n) = 0 for all n, and

completes the proof. �
Construction of a basic wavelet.

ψ(x) =
∑
k∈Z

(−1)kc1−k
√

2φ(2x− k)

assuming that φ(x) satisfies a two scale dilation equation

φ(x) =
∑
k∈Z

ck
√

2φ(2x− k)

and φ has orthonormal translates Tkφ.

Lemma 1.10 (Helps to graph ψ) If ψ satisfies a finite dilation equation

φ =

k1∑
k=k0

ckD2Tkφ
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and φ is continuous and compactly supported, then ψ as constructed above is
nonzero only between

x =
k0 + 1− k1

2
and x =

k1 + 1− k0

2
.

Note. For the Daubechies 4 coefficient example, we have k0 = 0, k1 = 3 and
ψ is then supported in the interval[

k0 + 1− k1

2
,
k1 + 1− k0

2

]
=

[
0 + 1− 3

2
,
3 + 1− 0

2

]
= [−1, 2].

Proof. (of Lemma 1.10) From Lemma 1.6 we know that φ is supported in
[k0, k1] and so if φ(2x− k) 6= 0, then k0 ≤ 2x− k ≤ k1 and thus

k0 + k

2
≤ x ≤ k1 + k

2
.

ψ(x) =
∑
k∈Z

(−1)kc1−k
√

2φ(2x− k)

Note that c1−k 6= 0⇒ k0 ≤ 1− k ≤ k1 ⇒ 1− k0 ≥ k ≥ 1− k1.
If ψ(x) 6= 0, then there must be at least one nonzero term in the summa-

tion. Thus
φ(2x− k) 6= 0 for some 1− k1 ≤ k ≤ 1− k0

and so
k0 + k

2
≤ x ≤ k1 + k

2
for one of these k.

It follows that
k0 + 1− k1

2
≤ x ≤ k1 + 1− k0

2
.

Observation. The interval [(k0+1−k1)/2, (k1+1−k0)/2] has length k1−k0,
the same length as the interval [k0, k1] where φ is supported.

Assuming that the φ in the Daubechies example is compactly supported
and continuous, we can use the method above for computing values of φ at
points j/2n to deduce values of ψ and so write a computer programme (a
slight modification of the earlier one) to plot ψ.
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Theorem 1.11 [Important properties of ψ] Assume φ has orthonormal
translates Tkφ and satisfies φ =

∑
k∈Z ckDtTkφ. Assume

ψ =
∑
k∈Z

(−1)kc1−kD2Tkφ.

Then:

(i) The translates T`ψ (` ∈ Z) are orthonormal.

(ii) If we define V0 = the closed linear span in L2(R) of {Tkφ : k ∈ Z} and
V1 = D2V0 = the closed linear span in L2(R) of {D2Tkφ : k ∈ Z}, then

V0 ⊆ V1,

each T`ψ ∈ V1 and

{Tkφ : k ∈ Z} ∪ {T`ψ : ` ∈ Z}

is an orthonormal basis of V1.

(We can say that {T`ψ : ` ∈ Z} is an orthonormal basis for the orthog-
onal complement of V0 inside V1.)

(iii)

{D2nT`ψ : n, ` ∈ Z}

is an orthonormal set in L2(R).

(iv) Put Vn = D2nV0 for n ∈ Z (which fits with the above definitions of V0

and V1). If we have⋂
n∈Z

Vn = {0} and
⋃
n∈Z

Vn dense n L2(R)
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then
{D2nT`ψ : n, ` ∈ Z}

is an orthonormal basis of L2(R).

(If we have the assumptions on φ and the Vn needed here, then we say
that we have a multiresolution analysis of L2(R).)

Proof.

(i) We have defined

ψ =
∑
k∈Z

(−1)kc1−kD2Tkψ

Since T` is a continuous linear operator (in fact an isometry of L2(R)),
it follows that

T`ψ =
∑
k∈Z

(−1)kc1−kT`D2Tkψ

=
∑
k∈Z

(−1)kc1−kD2T2`Tkψ

=
∑
k∈Z

(−1)kc1−kD2Tk+2`ψ

put j = k + 2`

=
∑
j∈Z

(−1)j−2`c1−j+2`D2Tjψ

=
∑
j∈Z

(−1)jc1−j+2`D2Tjψ

Now, expanding the inner product and using orthonormality of the
D2Tkφ, we have

〈ψ, T`ψ〉 =
∑
k

(−1)kc1−k(−1)kc1−k+2` =
∑
k

c1−kc1−k+2`.

If ` = 0, then we get ∑
k

c1−kc1−k =
∑
j

|cj|2 = 1.

Thus 〈ψ, ψ〉 = 1 or ‖ψ‖ = 1.

On the other hand, if ` 6= 0, then

〈ψ, T`ψ〉 =
∑
k

c1−kc1−k+2` =
∑
j

cj−2`cj = 0

(by (ii) of Proposition 1.5).
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(ii) We have
V0 = span{Tkφ : k ∈ Z}

and V1 = D2V0. Since D2 is an isometry of L2(R) and {Tkφ : k ∈ Z}
is an orthonormal basis of V0, it follows that {D2Tkφ : k ∈ Z} is an
orthonormal basis of V1.

Moreover we can say that

V0 =

{∑
k∈Z

akTkφ :
∑
k

|ak|2 <∞

}

V1 =

{∑
k∈Z

akD2Tkφ :
∑
k

|ak|2 <∞

}

Since φ =
∑

k ckD2Tkφ it follows that φ ∈ V1, and then

T`φ =
∑
k∈Z

ckD2Tk+2`φ =
∑
k∈Z

ck−2`D2Tkφ⇒ T` ∈ V1∀` ∈ Z.

It follows that V0 ⊆ V1.

ψ =
∑
k∈Z

(−1)kc1−kD2Tkψ ∈ V1

is clear, and

T`ψ =
∑
k∈Z

(−1)kc1−kT`D2Tk

=
∑
k∈Z

(−1)kc1−kD2Tk+2`

=
∑
k∈Z

(−1)k−2`c1−k+2`D2Tk

∈ V1

To show that {Tkφ : k ∈ Z} ∪ {T`ψ : ` ∈ Z} is orthonormal, consider
three types of inner products 〈Tkφ, Tjφ〉, 〈T`ψ, Tjψ〉 and 〈Tkφ, T`φ〉. For
the first two, we already know

〈Tkφ, Tjφ〉 =

{
1 if k = j
0 if k 6= j

〈T`ψ, Tjψ〉 =

{
1 if ` = j
0 if ` 6= j
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Next we show 〈Tkφ, T`φ〉 = 0 always, but first consider 〈φ, T`φ〉. Work-
ing with φ =

∑
k ckD2tkφ and T`ψ =

∑
k(−1)kc1−k+2`D2Tkφ, and using

the fact that {D2Tkφ : k ∈ Z} is orthonormal, we have

〈φ, T`φ〉 =
∑
k

ck(−1)kc1−k+2`

=
∑
k

(−1)kckc1−k+2`

In this sum consider the terms with k = j and k = 1 − j + 2` (⇒
1− k + 2` = j)

(−1)jcjc1−j+2` + (−1)1−j+2`c1−j+2`cj

= (−1)jcjc1−j+2` + (−1)1+jc1−j+2`cj

= 0.

(In other words, for each term of the sum, there is another term which
is (−1) times it.) Thus 〈φ, T`ψ〉 = 0 for all ` ∈ Z.

Applying Tk to this fact (and using the fact that Tk is an isometry and
therefore preserves inner products), we get

〈Tkφ, TkT`ψ〉 = 0

〈Tkφ, Tk+`ψ〉 = 0 ∀k, ` ∈ Z
〈Tkφ, T`ψ〉 = 0 ∀k, ` ∈ Z

Now we know
{Tkφ : k ∈ Z} ∪ {T`ψ : ` ∈ Z}

is orthonormal in V1. We still have to show it spans V1.

Here is a matrix proof of that. (There are other proofs in books.)

Work with coefficients with respect to the basis {D2Tjφ : j ∈ Z} of V1.

Write Φk = the column vector of coefficients of Tkφ

Φk = [cj−2k]
−∞
j=+∞ =



...
c−2−2k

c−1−2k

c0−2k ← 0 position
c1−2k

c2−2k
...
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Ψ` = the coefficients of ψ`,

Ψ` = [(−1)jc1−j+2`]
−∞
j=+∞ =


...
(−1)−1c2+2`

(−1)0c1+2` ← 0
(−1)1c2`
...


Form an ∞ × ∞ matrix M (indexed by Z in both directions) with
columns

(. . . ,Φ−1,Ψ−1,Φ0,Ψ0,Φ1,Ψ1,Φ2,Ψ2, . . .)

(with Φ0 in column 0).

Then M looks like

0
↓

Φ0 Ψ0 Φ1 Ψ1

M0,0 M0,1

0→ c0 c1 c−2 c−1

c1 −c0 c−1 c−2

M1,0 M1,1

c2 c−1 c0 c1

c3 −c−2 c1 c0


If we work out M∗M we get the identity matrix (1’s on the diagonal, 0’s
off it) since the rows of M∗ are the complex conjugates of the columns
of M = the complex conjugates of the Φk’s and the Ψ`’s (written as
rows) and when these are multiplied into the columns of M we get
inner products between φk and ψ` with others of them.

We need to know MM∗ = identity, but this does not follow automati-
cally from M∗M = identity for infinite matrices.

M is made of 2× 2 blocks with

Mrs =

[
c2r−2s c2s−2r+1

c2r−2s+1 −c2s−2r

]
M∗ will then be made of 2× 2 blocks with the (r, s) block of M∗ equal
to (Ms,r)

∗.
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If we multiply M∗M using blocks then the (r, s) block of the product
will be∑

t

((r, t) block of M)((t, s) block of M∗)

=
∑
t

Mr,t(Ms,t)
∗

=
∑
t

[
c2r−2t c2t−2r+1

c2r−2t+1 −c2t−2r

] [
c2s−2t c2s−2t+1

c2t−2s+1 −c2t−2s

]

=
∑
t


c2r−2tc2s−2t + c2t−2r+1c2t−2s+1

c2r−2tc2s−2t+1 − c2t−2r+1c2t−2s

c2r−2t+1c2s−2t − c2t−2rc2t−2s+1

c2r−2t+1c2s−2t+1 + c2t−2rc2t−2s


Bring the sums inside the matrix.

The off-diagonal sums rearrange to 0 and the orthogonality relations
for the c’s show that the diagonal entries are 0 unless r = s, when they
are 1.

For example,∑
t

c2r−2tc2s−2t+1 − c2t−2r+1c2t−2s

=
∑
t

c2r−2tc2s−2t+1 −
∑
t

c2t−2r+1c2t−2s

=
∑
u

c2uc2u+2(s−r)+1 −
∑
v

c2vc2v+2(s−r)+1

using u = r − t in the first summation

and v = t− s in the second

= 0

and ∑
t

c2r−2tc2s−2t + c2t−2r+1c2t−2s+1

=
∑
t

c2r−2tc2s−2t +
∑
t

c2t−2r+1c2t−2s+1

=
∑
u

c2uc2(s−r)+2u +
∑
v

c2v+1c2v+2(s−r)+1

=
∑
w

cwcw+2(s−r)

= 〈φ, Tr−sφ〉
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Hence MM∗ is the identity.

Now suppose we have f ∈ V1 perpendicular to each of the Tkφ and
T`ψ. If we write F for the column vector of coefficients of f in the
basis D2Tjφ of V1, then M∗F = 0.

Hence F = MM∗F = 0 and so f = 0. Thus the collection {Tkφ : k ∈
Z} ∪ {T`ψ : ` ∈ Z} is a maximal orthonormal subset (an orthonormal
basis) of V0.

(iii) Consider Vn = D2nV0 (as introduced in part (iv) of the statement) for
n ∈ Z.

We know V0 = D20V0 = D1V0 ⊆ V1 = D2V0 (that is V0 ⊆ V1). Apply
D2n to this and we get

D2nV0 ⊆ D2nV1 = D2nD2V0 = D2n+1V0.

(For this we rely on the fact that DλDµ = Dλµ holds if λ, µ > 0, a fact
that is relatively simple to check, as follows. Take f ∈ L2(R) and let
g = Dµf so that g(x) =

√
µf(µx). Then

(DλDµf)(x) = (Dλg)(x)

=
√
λg(λx)

=
√
λ
√
µf(µλx)

=
√
λµf((λµ)x)

= (Dλµf)(x). )

Thus we conclude that Vn ⊆ Vn+1 for all n. Each T`ψ ∈ V1 and we
know {T`ψ : ` ∈ Z} is orthonrmal. That is

〈T`ψ, Tjψ〉 =

{
1 if ` = j
0 if ` 6= j

As D2n is an isometry (preserves inner products), it follows that

〈D2nT`ψ,D2nTjψ〉 = 〈T`ψ, Tjψ〉 =

{
1 if ` = j
0 if ` 6= j

From (ii) we know that 〈T`ψ, Tkφ〉 = 0 for all k, `. But V0 = closure
of the span of {Tkφ : k ∈ Z} and so we can say that T`ψ ⊥ V0 for all
` ∈ Z.
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Applying D2n we we that D2nT`ψ ⊥ D2nV0 = Vn. Also D2nT`ψ ∈
D2nV1 = Vn+1. Thus

〈D2mT`ψ,D2nT`ψ〉 = 0 if n = m+ 1

because then D2mT`ψ ∈ Vm+1 = Vn. More generally, for m < n we have
D2mT`ψ ∈ Vm+1 ⊆ Vn since Vm+1 ⊆ Vm+2 ⊆ · · · ⊆ Vn (note m+ 1 ≤ n),
and so we have

〈D2mT`ψ,D2nT`ψ〉 = 0 if m < n.

This shows (iii).

(iv) We are now assuming that
⋂
n∈Z Vn = {0} and that

⋃
n∈Z Vn is dense

in L2(R) and what we have to show is that span{D2nT`ψ : n, ` ∈ Z} is
dense in L2(R).

(We know it is orthonormal, but to show that it is an orthonormal basis
we have to show that it is maximal — that is, that no more functions
in L2(R) can be added to it and keep the set orthonormal.)

If the span is not dense (or if the set {D2nT`ψ : n, ` ∈ Z} is not
maximal) we can find f ∈ L2(R) with f 6= 0 (or even ‖f‖ = 1) so that

〈f,D2nT`ψ〉 = 0 ∀n, `.

Since
⋃
n∈Z Vn is dense in L2(R) we cannot have f ⊥ Vn for all n

(f ⊥ Vn∀n ⇒ f ⊥
⋃
n∈Z Vn ⇒ f ⊥ to the closure of

⋃
n∈Z Vn =

L2(R)⇒ f ⊥ f ⇒ f = 0). Fix an n with f not perpendicular to Vn.

Let Pn denote the orthogonal projection of L2(R) onto Vn. Since Vn
has orthonormal basis {D2nTjφ : j ∈ Z} we can write

Pnf =
∑
j∈Z

〈f,D2nTjφ〉D2nTjφ

and Pnf 6= 0.

For m ≥ n, we have D2mT`ψ ⊥ Vm ⊇ Vn and so Pnf ⊥ D2mT`ψ∀` ∈
Z,∀m ≥ n.

Put

Wn = the orthogonal complement of Vn−1 inside Vn

= closure of the span of {D2nT`ψ : ` ∈ Z}

(using (ii)).
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Now f − Pnf ∈ V ⊥n and so 〈f − Pnf, g〉 = 0 for g ∈ Vn. Or 〈f, g〉 =
〈Pnf, g〉∀g ∈ Vn. If m < n then D2mT`ψ ∈ Vm+1 ⊆ Vn and so

〈Pnf,D2mT`ψ〉 = 〈f,D2mT`ψ〉 = 0∀m < n

Pnf ∈ Vn = Vn−1 ⊗Wn (orthogonal direct sum) and Pnf ⊥ Wn. Thus
Pnf ∈ Vn−1 = Vn−2 ⊗Wn−1. By similar reasoning, Pnf ∈ Vn−2. Con-
tinuing by induction we get

Pnf ∈
∞⋂
j=1

Vn−j =
n⋂

m=−∞

Vm

=
∞⋂

m=−∞

Vm

since Vm ⊆ Vm+1∀m
= {0}

But this is a contradiction since Pnf 6= 0.

We conclude that it is impossible to find a nonzero f ⊥ D2nT`ψ∀n, ` ∈
Z.

Therefore {D2nT`ψ : n, ` ∈ Z} spans a dense subspace of L2(R) and is
an orthonormal basis. �

Example 1.12 (Haar case) In the Haar case we do have a multires-
olution analysis.

φ = χ[0,1)

V0 = closed span of {Tkφ : k ∈ Z}
= closed span of {χ[k,k+1) : k ∈ Z}
= functions constant on the intervals [k, k + 1)

and in L2(R)

Finite linear combinations
∑k1

k=k0
akχ[k,k+1) are the step functions with

steps at the integers only (and compact support) and functions in the
L2(R) closure will be almost everywhere constant on each [k, k + 1).
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V1 = D2V0

= {
√

2f(2x) : f ∈ V0}
= functions constant almost everywhere on each

of the intervals

[
k

2
,
k + 1

2

)
Vn = D2nV0

= functions constant almost everywhere on each

of the intervals

[
k

2n
,
k + 1

2n

)
If n → ∞ the intervals get shorter and

⋂
n∈Z Vn is dense in L2(R). If

n → −infty the intervals get longer and no nonzero L2(R) function
can be in

⋂
n∈Z Vn because such a function would e constant on [0, 2n) =

(
[

k
2−n

, k+1
2−n

)
with k = 0) and on [−2n, 0) for all n. Thus it would have

to be constant on [0,∞) and on (−∞, 0). Thus it would be αχ[0,∞) +
βχ(−∞,0) which cannot be in L2(R) unless α = β = 0.

All the properties for a multiresolution analysis are satisfied. Recall that
φ = χ[0,1) has orthonormal translates and satisfies a dilation equation

with two nonzero coefficients c0 = c1 = 1/
√

2

φ(x) = c0

√
2φ(2x) + c1

√
2φ(2x− 1).

The wavelet construction gives

ψ =
∑
k∈Z

(−1)kc1−kD2Tkφ
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= (−1)0c1D2T0φ+ (−1)1c0D2T1φ

ψ(x) = (1/
√

2)
√

2φ(2x)− (1/
√

2)
√

2φ(2x− 1)

= φ(2x)− φ(2x− 1)

= χ[0,1/2)(x)− χ[1/2,1)(x)

The theorem above (1.11) says that we can get other wavelets, but we
need to be able to check the hypotheses on the Vn’s. For the Daubechies
4 coefficient case

c0 =
1 +
√

3

4
√

2
, c1 =

3 +
√

3

4
√

2
, c2 =

3−
√

3

4
√

2
, c3 =

1−
√

3

4
√

2
,

it is true that all these hypotheses work out for a compactly supported
continuous φ, but we have not yet proved that. The proof will go back
to the infinite product formula for F(φ).

With finitely many nonzero ck and p(ξ) the trigonometric polynomial

p(ξ) =
∑
k∈Z

cke
−2πikξ,

we have

Fφ(ξ) = Fφ(0) lim
n→∞

n∏
j=1

1√
2
p

(
ξ

2j

)
and Fφ(0) = 1 will be true in many cases.

Here is a fact about p that we will use later.

Lemma 1.13 Assuming the ck satisfy the orthogonality conditions∑
k∈Z

ckck−2` =

{
1 for ` = 0
0 for ` ∈ Z, ` 6= 0.

(and only a finite number of k with ck nonzero) then

|p(ξ)|2 + |p(ξ + 1/2)|2 = 2
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Proof. One can prove this based on the existence of a solution φ to the
dilation equation and showing that the Fourier transform of φ must
satisfy

∞∑
`=−∞

|Fφ(ξ + `)|1 ≡ 1,

but a much more direct proof is possible.

From the definition of p(ξ) we compute first

|p(ξ)|2 = p(ξ)p(ξ)

=

(∑
k∈Z

cke
−2πikξ

)(∑
`∈Z

c`e
2πi`ξ

)
(only finitely many nonzero terms

in each sum)

=
∑
k,`

ckc`e
−2πi(k−`)ξ

=
∑
m

∑
k,` with k−`=m

ckc`e
−2πimξ

=
∑
m

(∑
k

ckck−m

)
e−2πimξ

|p(ξ)|2 + |p(ξ + 1/2)|2 =
∑
m

(∑
k

ckck−m

)
e−2πimξ

+
∑
m

(∑
k

ckck−m

)
e−2πim(ξ+1/2)

e−2πim(ξ+1/2) = e−2πimξe−πim

= (e−πi)me−2πimξ

= (−1)me−2πimξ

e−2πimξ + e−2πim(ξ+1/2) =

{
2e−2πimξ if m even
0 if m odd

|p(ξ)|2 + |p(ξ + 1/2)|2 = 2
∑

m even

(∑
k

ckck−m

)
e−2πimξ
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= 2
∑
`

(∑
k

ckck−2`

)
e−2πi(2`)ξ

= 2e0 by the orthogonality relations

= 2

Remark 1.14 We can express Fψ(ξ) in terms of Fφ(ξ/2) and p.

ψ =
∑
k∈Z

(−1)kc1−kD2Tkφ

Fψ =
∑
k∈Z

(−1)kc1−kF(D2Tkφ)

Now we can use

F(D2f) = D1/2(Ff)

F(D2f)(ξ) =

√
1

2
(Ff)

(
ξ

2

)
F(Tkf)(ξ) = e−2πikξ(Ff)(ξ)

F(D2Tkf) =

√
1

2
e−2πik(ξ/2)(Ff)(ξ/2)

and get

(Fψ)(ξ) =
∑
k∈Z

(−1)kc1−k

√
1

2
e−2πik(ξ/2)(Fφ)(ξ/2)

=

(∑
k∈Z

(
e−iπ

)k
c1−k

√
1

2
e−2πik(ξ/2)

)
(Fφ)(ξ/2)

=

√
1

2

(∑
k∈Z

c1−ke
−2πik( ξ+1

2 )

)
(Fφ)(ξ/2)

Note that

p(ξ) =
∑
k∈Z

cke
−2πikξ

p(ξ) =
∑
k∈Z

cke
2πikξ

=
∑
k∈Z

c1−ke
2πi(1−k)ξ
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= e2πiξ
∑
k∈Z

c1−ke
−2πikξ

e−2πiξp(ξ) =
∑
k∈Z

c1−ke
−2πikξ

and thus

(Fψ)(ξ) =

√
1

2
e−2πi( ξ+1

2 )p

(
ξ + 1

2

)
(Fφ)(ξ/2)

Recall that we also have the Fourier transform of the dilation equation
as

(Fφ)(ξ) =

√
1

2
p

(
ξ

2

)
(Fφ)(ξ/2)

The two multipliers on the right of these equations√
1

2
e−2πi( ξ+1

2 )p

(
ξ + 1

2

)
and

√
1

2
p

(
ξ

2

)
have the sum of the squares of their absolute values equal to

1

2

∣∣∣∣p(ξ + 1

2

)∣∣∣∣2 +
1

2

∣∣∣∣p(ξ2
)∣∣∣∣2 = 1

by Lemma 1.13.

This fact can be used as the basis for a different explanation for the
orthogonal decomposition

V1 = V0 ⊕W1

by looking at things from the point of view of the Fourier transform.

Lemma 1.15 If φ satisfies a two scale dilation equation

φ =
∑
k

ckD2Tkφ,

has orthonormal translates Tkφ (k ∈ Z), gives rise to a multiresolution
analysis by V0 = the closure of the span of {Tkφ : k ∈ Z}, Vn = D2nV0

(n ∈ Z) and if φ ∈ L1(R ∩ L2(R), then∣∣∣∣∫ ∞
−∞

φ(x) dx

∣∣∣∣ = 1
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Proof. Let Pn denote the orthogonal projection of L2(R) onto Vn, so
that

Pnf =
∑
k∈Z

〈f,D2nTkφ〉D2nTkφ.

Choose f ∈ L2(R) so that

Ff = χ[−1,1]

(This requires the extension of F to an isometry from L2(R) to L2(R)
— see Appendix A.)

Now compute

‖Pnf‖2
2 =

∑
k∈Z

|〈f,D2nTkφ〉|2

=
∑
k∈Z

|〈Ff,F(D2nTkφ)〉|2

=
∑
k∈Z

∣∣∣∣∫ 1

−1

F(D2nTkφ)(ξ)

∣∣∣∣2

=
∑
k∈Z

∣∣∣∣∣
∫ 1

−1

F(D2nTkφ)(ξ)

∣∣∣∣∣
2

=
∑
k∈Z

∣∣∣∣∫ 1

−1

F(D2nTkφ)(ξ)

∣∣∣∣2
Recall

F(Dλf) = D1/λ(Ff)

(F(Tkf))(ξ) = e−2πikξ(Ff)(ξ)

F(D2nTkφ)(ξ) = D1/2n (ξ 7→ (F(Tkf))(ξ))

=

√
1

2n
e−2πik(ξ/2n)(Fφ)(ξ/2n)

and so

‖Pnf‖2
2 =

∑
k∈Z

∣∣∣∣∣
∫ 1

−1

√
1

2n
e−2πik(ξ/2n)(Fφ)

(
ξ

2n

)
dξ

∣∣∣∣∣
2

put η =
ξ

2n

dη =
dξ

2n
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=
∑
k∈Z

∣∣∣∣∣
∫ 1/2n

−1/2n

√
1

2n
e−2πikη(Fφ)(η)2n dη

∣∣∣∣∣
2

= 2n
∑
k∈Z

∣∣∣∣∣
∫ 1/2n

−1/2n
e−2πikη(Fφ)(η) dη

∣∣∣∣∣
2

= 2n
∑
k∈Z

∣∣∣∣∣
∫ 1/2

−1/2

χ[−1/2n,1/2n](η)(Fφ)(η)e−2πikη dη

∣∣∣∣∣
2

(if n ≥ 1)

We know that
(
e−2πikη

)
k∈Z is an orthonormal basis (used for Fourier

series) of L2([0, 1]), but it also works for L2([−1/2, 1/2]). (This can
be checked by repeating the proof for L2([0, 1]), or by noting that the
change of variables η 7→ η − 1/2 maps L2([0, 1]) → L2([−1/2, 1/2])
isometrically and sends e−2πikη to (−1)ke−2πikη.)

This fact means that the last summation above is the sum of the squares
of the absolute values of absolute values of the ‘Fourier’ coefficients of
the function

η 7→ χ[−1/22,1/2n](η)(Fφ)(η)

in L2([−1/2, 1/2]).

Thus the summation is the square of the L2([−1/2, 1/2]) norm of the
function and we have (assuming n ≥ 1)

‖Pnf‖2
2 = 2n

∫ 1/2

−1/2

∣∣χ[−1/22,1/2n](η)(Fφ)(η)
∣∣2 dη

= 2n
∫ 1/2n

−1/2n
|(Fφ)(η)|2 dη

put ξ = 2nη

dξ = 2ndη

=

∫ 1

−1

∣∣∣∣(Fφ)

(
ξ

2n

)∣∣∣∣2 dξ
Now φ ∈ L1(R)⇒ Fφ is continuous (at 0). Thus

lim
n→∞

(Fφ)

(
ξ

2n

)
= (Fφ)(0)

uniformly for ξ ∈ [−1, 1] and so we conclude that

lim
n→∞

‖Pnf‖2
2 =

∫ 1

−1

|(Fφ)(0)|2 dξ = 2|(Fφ)(0)|2
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But
⋃
n∈Z Vn dense in L2(R) (and Vn ⊆ Vn+1∀n) allows us to conclude

that

lim
n→∞

‖Pnf‖2
2 = ‖f‖2

2 = ‖Ff‖2
2 =

∥∥χ[−1,1]

∥∥2

2
=

∫ 1

−1

1 dξ = 2

(The reason is that Pnf = the element of Vn closest to f and so Vn ⊆
Vn+1 ⇒ ‖f − Pnf‖2 ≥ ‖f − Pn+1f‖2∀n. As

⋃
n∈Z Vn is dense in L2(R),

we can find g ∈
⋃
n∈Z Vn with ‖f − g‖2 arbitrarily small. As g ∈ Vn for

some n, it follows that we can find n with ‖f −Pnf‖2 arbitrarily small.
For all m > n, ‖f −Pmf‖2 will be no larger than ‖f −Pnf‖2 and so we
can show that limm→∞ ‖f − Pmf‖2 = 0. Thus limn→∞ ‖Pnf‖2 = ‖f‖.)
Now we conclude that

2|(Fφ)(0)|2 = 2⇒ |(Fφ)(0)| = 1,

which means ∣∣∣∣∫ ∞
−∞

φ(x) dx

∣∣∣∣ = 1.

Remark 1.16 Note that the above Lemma 1.13 shows that the normalisa-
tions

‖φ‖2 = 1 and

∫ ∞
−∞

φ(x) dx = 1

are compatible if φ is a scaling function for a multiresolution analysis and if
φ ∈ L1(R) ∩ L2(R).

This means that the graph we drew in 1.8 of the Daubechies 4 coefficient
φ is normalised correctly (IF we can show that in that case there is a mul-
tiresolution analysis and that φ is compactly supported and continuous).

Proposition 1.17 Suppose φ has orthonormal translates {Tkφ : k ∈ Z},
V0 = span{Tkφ : k ∈ Z}, Vn = D2nV0 (n ∈ Z) and suppose Fφ(ξ) is contin-
uous at ξ = 0 and has Fφ 6= 0.

Then the linear span of
⋃
n∈Z Vn is dense in L2(R).

(We do not need the dilation equation here.)
Proof. Assume the span is not dense and so there exists f ∈ L2(R), f 6= 0
with f ⊥

⋃
n∈Z Vn. (If the span is not dense, then its closure is a proper

closed subspace and so has a nonzero orthogonal complement.)
Choose R > 0 large and define g ∈ L2(R) by

Fg =
(
χ[−R,R]

)
Ff

(Fg)(ξ) = χ[−R,R](ξ)(Ff)(ξ)
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(Note that f ∈ L2(R) ⇒ Ff ∈ L2(R) ⇒ χ[−R,R]Ff ∈ L2(R) ⇒ g =
F−1

(
χ[−R,R]Ff

)
∈ L2(R).) We can find such a g for any R > 0 and also

‖f − g‖2 = ‖F(f − g)‖2

= ‖Ff −Fg‖2

< ε

if R is large enough (and for any given ε > 0).
(In other words, we can say that g approximates f quite well and also g

is what is known as band limited — Fg is compactly supported in |ξ| ≤ R.)
Consider again the orthogonal projection Pn:L2(R)→ Vn and the formula

Pnh =
∑
k∈Z

〈h,D2nTkφ〉D2nTkφ.

Since f ⊥ Vn, Pnf = 0 and then we have

Png = Pnf + Pn(g − f)

‖Png‖2 ≤ ‖Pnf‖2 + ‖Pn(g − f)‖2

= 0 + ‖Pn(g − f)‖2

≤ ‖g − f‖2 < ε.

Now we compute (in a similar way as we did in the previous proof)

‖Png‖2
2 =

∑
k∈Z

|〈g,D2nTkφ〉|2

=
∑
k∈Z

|〈Fg,F(D2nTkφ)〉|2

=
∑
k∈Z

∣∣∣∣∫ R

−R
(Fg)(ξ)F(D2nTkφ)(ξ)

∣∣∣∣2

=
∑
k∈Z

∣∣∣∣∣
∫ R

−R
(Fg)(ξ)

√
1

2n
e−2πik(ξ/2n)(Fφ)(ξ/2n)) dξ

∣∣∣∣∣
2

=
∑
k∈Z

∣∣∣∣∣
∫ R

−R
(Fg)(ξ)

√
1

2n
e2πik(ξ/2n)(Fφ)(ξ/2n) dξ

∣∣∣∣∣
2

put η =
ξ

2n

dη =
dξ

2n
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=
∑
k∈Z

∣∣∣∣∣
∫ R/2n

−R/2n
(Fg)(2nη)

√
1

2n
e2πikη(Fφ)(η)2n dη

∣∣∣∣∣
2

=
∑
k∈Z

∣∣∣∣∣
∫ 1/2

−1/2

(Fg)(2nη)(Fφ)(η)
√

2ne2πikη dη

∣∣∣∣∣
2

if 2n > 2R

using (Fg)(2nη) = 0 if |η| > R/2n

= sum of the squares of the (−k)th coefficient of

(Fg)(2nη)(Fφ)(η)
√

2n

with respect to the othonormal basis(
e2πikη

)∞
k=−∞

of L2(R)

= the (L2 norm)2 of the function

=

∫ 1/2

−1/2

|(Fg)(2nη)|2 |(Fφ)(η)|22n dη

put ξ = 2nη

dξ = 2ndη

=

∫ 2n/2

−2n/2

|(Fg)(ξ)|2
∣∣∣∣(Fφ)

(
ξ

2n

)∣∣∣∣2 dξ
=

∫ R

−R
|(Fg)(ξ)|2

∣∣∣∣(Fφ)

(
ξ

2n

)∣∣∣∣2 dξ
(again if 2n > 2R)

Now Fφ is continuous at 0 and so (Fφ)
(
ξ

2n

)
→ (Fφ)(0) as n→∞ uniformly

for ξ ∈ [−R,R]. Thus we conclude

‖Png‖2
2 →

∫ R

−R
|(Fg)(ξ)|2 |(Fφ)(0)|2 dξ

as n→∞
= |(Fφ)(0)|2‖(Fg)‖2

2

= |(Fφ)(0)|2‖g‖2
2

But ‖Png‖2
2 < ε2 and so it follows that

|(Fφ)(0)|2‖g‖2
2 < ε2

‖g‖2 <
ε

|(Fφ)(0)|
‖f‖2 ≤ ‖f − g‖2 + ‖g‖2
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< ε+
ε

|(Fφ)(0)|

As we can do this for ε > 0 arbitrarily small, it follows that ‖f‖2 = 0.
But this contradicts the choice of f 6= 0 and completes the proof (that

the span must be dense). �

Proposition 1.18 Assume φ has orthonormal translates Tkφ (in L2(R)) and

V0 = span{Tkφ : k ∈ Z}
Vn = D2nV0

Then ⋂
n∈Z

Vn = {0}

Proof. Let Pn:L2(R)→ Vn be the orthogonal projection, so that

Pnf =
∑
k∈Z

〈f,D2nTkφ〉D2nTkφ.

We will prove that
lim

n→−∞
Pnf = 0∀f ∈ L2(R) (1)

and this implies the result because

f ∈
⋂
n∈Z

Vn ⇒ Pnf = f∀n ∈ Z

⇒ 0 = lim
n→−∞

Pnf = f

⇒ f = 0

To prove (1) we prove it holds for compactly supported f ∈ L2(R). Then
the general case follows because f ∈ L2(R)⇒ χ[−N,N ]f ∈ L2(R)∀N > 0 and
χ[−N,N ](x)f(x) 6= 0 only for x ∈ [−N,N ] so that χ[−N,N ]f is supported in
[−N,N ] (and is in L2(R)).

If we know (1) for the compactly supported case then we know

lim
n→∞

Pn
(
χ[−N,N ]f

)
= 0.

But we can choose N so that∥∥f − χ[−N,N ]f
∥∥

2
< ε



415 Wavelets 41

(for any pre-assigned ε > 0)1. Then

‖Pnf‖2 = ‖Pnf − Pn
(
χ[−N,N ]f

)
+ Pn

(
χ[−N,N ]f

)
‖2

≤ ‖Pn
(
f − χ[−N,N ]f

)
‖2 + ‖Pn

(
χ[−N,N ]f

)
‖2

≤ ‖f − χ[−N,N ]f‖2 + ‖Pn
(
χ[−N,N ]f

)
‖2

Now ‖f − χ[−N,N ]f‖2 < ε if N is chosen to be large enough and then by the
compactly supported case of (1) ‖Pn

(
χ[−N,N ]f

)
‖2 < ε if n is small enough.

Thus
‖Pnf‖2 < 2ε

if n is small enough. This shows limn→−∞ ‖Pnf‖2 = 0.
Now, take f ∈ L2(R) with compact support in [−R,R] (for some R > 0)

and look at

‖Pnf‖2 =
∑
k∈Z

|〈f,D2nTkφ〉|2

=
∞∑

k=−∞

∣∣∣∣∫ ∞
−∞

f(x)
√

2nφ(2nx− k) dx

∣∣∣∣2
=

∞∑
k=−∞

∣∣∣∣∫ R

−R
f(x)
√

2nφ(2nx− k) dx

∣∣∣∣2
use Cauchy-Schwarz inequality

≤
∞∑

k=−∞

(∫ R

−R
|f(x)|2 dx

)(∫ R

−R
2n|φ(2nx− k)|2 dx

)
put y = 2nx− k in the last integral

dy = 2n dx

= ‖f‖2
2

∞∑
k=−∞

∫ −k+2nR

−k−2nR

|φ(y)|2 dy

Choose n small enough (recall n→ −∞) so that 2nR < 1/2.

1

∥∥f − χ[−N,N ]f
∥∥2

2
=

∫ ∞
−∞

∣∣f(x)− χ[−N,N ](x)f(x)
∣∣2 dx

=
∫ ∞
−∞

(
χ(−∞,−N)(x) + χ(N,∞)(x)

)
|f(x)|2 dx

→ 0 as N →∞

by the Lebesgue dominated convergence theorem because the integrand tends to zero
pointwise as N →∞ and is at most equal to the integrable |f(x)|2.
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Then the above integrals are over disjoint intervals

[−k − 2nR,−K + 2nR] ⊆
(
−k − 1

2
,−k +

1

2

)
Put

Un =
∞⋃

k=−∞

[−k − 2nR,−K + 2nR]

and then we have

‖Pnf‖2
2 ≤ ‖f‖2

2

∫
Un

|φ(y)|2 dy

(as long as 2nR <
1

2
)

= ‖f‖2
2

∫ ∞
−∞

χUn(y)|φ(y)|2 dy

As n→ −∞, χUn(y)→ 0 for all y except y ∈ Z. Thus

χUn(y)→ 0 almost everywhere on R

(as Z is countable and so has measure zero). From the Lebesgue dominated
convergence theorem we can conclude that

lim
n→−∞

∫ ∞
−∞

χUn(y)|φ(y)|2 dy = 0

because the integrands are ≤ |φ(y)|2 for all y,
∫∞
−∞ |φ(y)|2 dy < ∞ and the

integrands → 0 pointwise almost everywhere.
It follows that

lim
n→−∞

‖Pnf‖2
2 = 0

Note. We still need to show that certain dilation equations have compactly
supported solutions in L1(R) ∩ L2(R), and even continuous compactly sup-
ported solutions.

Proposition 1.19 Assume φ ∈ L1(R)∩L2(R) satisfies a finite dilation equa-
tion

φ =

k1∑
k=k0

ckD2Tkφ,

that φ has orthonormal translates {Tkφ : k ∈ Z} and
∫∞
−∞ φ(x) dx 6= 0. Then∑

k even
ck =

∑
k odd

ck.
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Proof. We know from 1.5 (i) and (ii) that∑
k∈Z

ckck−2` =

{
1 for` = 0
0 for ` 6= 0

and we know ∑
k

ck =
√

2

from 1.5 (iv).
From Lemma 1.13 we know that p(ξ) =

∑
k∈Z cke

−2πikξ satisfies

|p(ξ)|2 + |p(ξ + 1/2)|2 = 2.

If we take ξ = 0, we have

p(0) =
∑
k

ck =
√

2

|p(0)|2 + |p(1/2)|2 = 2 + |p(1/2)|2 = 2

and so p(1/2) = 0. That is∑
k∈Z

cke
−2πik(1/2) = 0∑

k∈Z

cke
−πik = 0∑

k∈Z

ck(−1)k = 0 using e−πi = −1∑
k even

ck −
∑
k odd

ck = 0

Corollary 1.20 Assuming φ satisfies the same hypotheses as in Proposi-
tion 1.19 and that

ψ =
∑
k

(−1)kc1−kD2Tkφ

then ψ ∈ L1(R) ∩ L2(R) and ∫ ∞
−∞

ψ(x) dx = 0.

Proof. First note that ψ ∈ L1(R) ∩ L2(R) as it is a finite linear combination
of functions D2Tkφ each in L1(R) ∩ L2(R).
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∫ ∞
−∞

ψ(x) dx =
∑
k

(−1)kc1−k

∫ ∞
−∞

(D2Tkφ)(x) dx

=
∑
k

(−1)kc1−k

∫ ∞
−∞

√
2φ(2x− k) dx

put y = 2x− k
dy = 2dx

=

(∑
k

(−1)kc1−k

)∫ ∞
−∞

√
2φ(y)

dy

2

But∑
k

(−1)kc1−k =
∑

k even
c1−k −

∑
k odd

c1−k

=
∑
` odd

c` −
∑

` even
c`

= 0

by 1.19. �

Proposition 1.21 Assume now that φ is a continuous compactly supported
solution of a finite dilation equation

φ =

k1∑
k=k0

ckD2Tkφ,

and that it is the scaling function for a multiresolution analysis.
Then

(i)
∑

k φ(x−k) is a nonzero constant (and in fact the constant is
∫∞
−∞ φ(x) dx

and so is of modulus 1).

(ii) If
∑

k even kck =
∑

k odd kck, then there are coefficients ak so that∑
k∈Z

akφ(x− k) = x.

In fact

ak =

∫ ∞
−∞

tφ(t) dt+ k

∫ ∞
−∞

φ(t) dt

Proof.
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(i) We know that ∣∣∣∣∫ ∞
−∞

φ(x) dx

∣∣∣∣ = 1

by Lemma 1.15. Thus if it is possible to find coefficients (bk)k∈Z so that∑
k∈Z

bkφ(x− k) = 1

(note that since φ is compactly supported in [k0, k1] by Lemma 1.6, for
each x there are only a finite number of k with x− k ∈ [k0, k1] and so
the sum has only a finite number of nonzero terms for each x) then∫ ∞

−∞
φ(x) dx =

∫ ∞
−∞

φ(x− `) dx

=

∫ ∞
−∞

(∑
k∈Z

bkφ(x− k)

)
φ(x− `) dx

=

∫ ∞
−∞

∑
k∈Z

bkφ(x− k)φ(x− `) dx

=

∫ ∞
−∞

k1−k0+`∑
k=k0−k1+`

bkφ(x− k)φ(x− `) dx

since φ(x− k) 6= 0⇒ x− k ∈ [k0, k1]

⇒ x ∈ [k0 + k, k1 + k]

and so φ(x− k)φ(x− `) 6= 0

⇒ [k0 + k, k1 + k] ∩ [k0 + `, k1 + `] 6= ∅
⇒ k0 + k ≤ k1 + `, k1 + k ≥ k0 + `

⇒ k ≤ k1 − k0 + `, k ≥ k0 − k1 + `

=

k1−k0+`∑
k=k0−k1+`

bk

∫ ∞
−∞

φ(x− k)φ(x− `) dx

= b`

Thus there is only one possible choice for the bk, but that does not
show any such bk exist. It does follow that∑

k∈Z

φ(x− k) =

∫ ∞
−∞

φ(t) dt

if any such bk exist (because the reciprocal of the integral is its complex
conjugate).
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To prove that this is possible, take

λ =
∑
k∈Z

φ(k)

and
f(x) =

∑
k∈Z

φ(x− k).

Then f(x) is a continuous function because there are only finitely many
nonzero terms in the sum at (or near) any given x. In fact for x in any
interval (n− 1, n+ 1),

f(x) =

n+1−k0∑
k=n−1−k1

φ(x− k)

is given by a finite sum of continuous functions and therefore is con-
tinuous on (n− 1, n+ 1). As this is so for all n, f(x) is continuous on
R.

At x = n ∈ Z,

f(n) =
∑
k∈Z

φ(n− k) =
∑
`∈Z

φ(`) = λ.

By induction on m, we show that for m = 0, 1, 2, . . . we have

f
( n

2m

)
= λ

Assuming that this is known to be true for m, consider

f
( n

2m+1

)
=

∑
k∈Z

φ
( n

2m+1
− k
)

=
∑
k∈Z

k1∑
j=k0

cj
√

2φ
( n

2m+1
− 2k − j

)
put ` = 2k + j

j = `− 2k

=
∑
k∈Z

k1+2k∑
`=k0+2k

c`−2k

√
2φ
( n

2m
− `
)

=
∑
`

∑
k∈Z

c`−2k

√
2φ
( n

2m
− `
)
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=
∑
`

φ
( n

2m
− `
)

since∑
k∈Z c`−2k

√
2 =

{ ∑
r even cr

√
2 if ` even∑

r odd cr
√

2 if ` odd

= 1
2

∑
r cr
√

2
= 1

2
2 = 1

= f
( n

2m

)
= λ

This completes the induction proof and so we can conclude from con-
tinuity of f(x) and density of the rationals of the form n/2m in R that
f(x) ≡ λ.

From the remarks at the beginning of the proof we could conclude that

1 =

∫ ∞
−∞

∑
k

φ(x− k)φ(x) dx =

∫ ∞
−∞

f(x)φ(x) dx = λ

∫ ∞
−∞

φ(x) dx

and thus λ =
∫∞
−∞ φ(x) dx.

(ii) Observe that if its is possible to find (ak)k∈Z so that∑
k∈Z

akφ(x− k) = x

then we can calculate a` as∫ ∞
−∞

xφ(x− `) dx =
∑
k∈Z

ak

∫ ∞
−∞

φ(x− k)φ(x− `) dx

= a`

and so

a` =

∫ ∞
−∞

xφ(x− `) dx

put y = x− `

=

∫ ∞
−∞

(y + `)φ(y) dx

=

∫ ∞
−∞

yφ(y) dx+ `

∫ ∞
−∞

φ(y) dx

To prove that any such ak exist, we let

λ =
∑
k∈Z

φ(k) =

∫ ∞
−∞

φ(x) dx
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(from part (i)). We know that |λ| = 1 and so 1/λ = λ. Replacing φ(x)
by λφ(x) we can assume that λ = 1.

Then put

µ =
∑
k∈Z

kφ(k)

(a finite sum because φ is compactly supported) and

g(x) =
∑
k∈Z

(µ+ k)φ(x− k)

We aim to show that g(x) ≡ x.

First note that g(x) is continuous (by the same sort of argument as was
used to show that f(x) was continuous in (i): the g(x) is a finite sum
of continuous terms (µ+ k)φ(x− k) on any interval (n− 1, n+ 1)).

Next observe that for ` ∈ Z we have

g(`) =
∑
k

(µ+ k)φ(`− k)

put m = `− k
k = `−m

=
∑
m

(µ+ `−m)φ(m)

=
∑
m

(µ+ `)φ(m) +
∑
m

(−m)φ(m)

= (µ+ `)
∑
m

φ(m)−
∑
m

mφ(m)

= µ+ `− µ
= `

Next we show by induction on n that

g

(
`

2n

)
=

`

2n
∀` ∈ Z, n = 0, 1, 2, . . .

The initial step n = 0 has just been done and it remains to do the
induction step. Assume the result is true for n and look at

g

(
`

2n+1

)
=

∑
k

(µ+ k)φ

(
`

2n+1
− k
)
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=
∑
k

(µ+ k)
∑
j

cj
√

2φ

(
`

2n
− 2k − j

)
put m = 2k + j

j = m− 2k

=
∑
k

(µ+ k)
∑
m

cm−2k

√
2φ

(
`

2n
−m

)

=
∑
m

(∑
k

(µ+ k)cm−2k

√
2

)
φ

(
`

2n
−m

)
Looking at the bracketed sum, we find∑

k

(µ+ k)cm−2k

√
2

=
∑
k

(
µ+

m

2
− m

2
+ k
)
cm−2k

√
2

=
∑
k

(
µ+

m

2

)
cm−2k

√
2−

∑
k

(m
2
− k
)
cm−2k

√
2

=
(
µ+

m

2

)∑
k

cm−2k

√
2− 1

2

∑
k

(m− 2k)cm−2k

√
2

=
(
µ+

m

2

)
1− 1

2

√
2

∑
r−m even

rcr

see the proof of (i) for the justification of the 1.

But ∑
r−m even

rcr =

{ ∑
r even rcr if m even∑
r odd rcr if m odd

and we have assumed ∑
r even

rcr =
∑
r odd

rcr

and so we conclude that both sums∑
r even

rcr =
∑
r odd

rcr =
1

2

∑
r

rcr.

Now put A =
∑

r rcr and then we have∑
k

(µ+ k)cm−2k = µ+
m

2
−
√

2

2

A

2
= µ+

m

2
−
√

2A

4
.
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Using this in the above calculation, we have

g

(
`

2n+1

)
=

∑
m

(
µ+

m

2
−
√

2A

4

)
φ

(
`

2n
−m

)
=

∑
m

(µ
2

+
m

2

)
φ

(
`

2n
−m

)

+
∑
m

(
µ

2
−
√

2A

4

)
φ

(
`

2n
−m

)

=
1

2
g

(
`

2n

)
+

(
µ

2
−
√

2A

4

)∑
m

φ

(
`

2n
−m

)

=
1

2
g

(
`

2n

)
+

(
µ

2
−
√

2A

4

)
1

=
1

2

`

2n
+

(
µ

2
−
√

2A

4

)
using the induction hypothesis

=
`

2n+1
+

(
µ

2
−
√

2A

4

)

We want the bracketed term to be zero and we can show this by ap-
plying the above to ` = 2s even. We get

g

(
2s

2n+1

)
= g

( s
2n

)
=

2s

2n+1
+

(
µ

2
−
√

2A

4

)
=

s

2n
+

(
µ

2
−
√

2A

4

)

but we know that
g
( s

2n

)
=

s

2n

and so we must have
(
µ
2
−
√

2A
4

)
= 0. Thus the induction step is

complete.

(It is not of interest now, but we have actually shown

µ =

√
2A

2
=

1

2

∑
r

rcr
√

2

which must then be equal to
∑

k kφ(k), the definition of µ.)
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Having established g
(
`

2n

)
= `

2n
(for all ` ∈ Z, n ≥ 0) it follows by

continuity that g(x) ≡ x, or∑
k

(µ+ k)φ(x− k) ≡ x.

Corollary 1.22 With the same hypotheses as in 1.21 and

ψ =
∑
k

(−1)kc1−kd2Tkφ

then ∫ ∞
−∞

(αx + β)ψ(x− j) dx = 0

for all α, β ∈ C, all j ∈ Z.

Proof. From 1.21 we know that there are ak and bk so that∑
k∈Z

bkφ(x− k) = 1∑
k∈Z

akφ(x− k) = x

and hence ∑
k∈Z

(αak + βbk)φ(x− k) = αx + β

We deduce that∫ ∞
−∞

(αx + β)ψ(x− j) dx =

∫ ∞
−∞

∑
k∈Z

(αak + βbk)φ(x− k)ψ(x− j) dx

Note that φ(x − k) is supported in
support(φ) + k while ψ(x − j) has compact
support and so there are only a finite num-
ber of terms in the sum which can ever be
nonzero

=
∑
k∈Z

∫ ∞
−∞

(αak + βbk)φ(x− k)ψ(x− j) dx

= 0 since Tkφ ⊥ Tjψ

It follows that∫ ∞
−∞

(αx + β)ψ(x− j) dx =

∫ ∞
−∞

(αx + β)ψ(x− j) dx = 0.
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Corollary 1.23 With the same hypotheses as in 1.22, if f(x) = αx + β for
all x in the support of D2nTjψ, and f ∈ L2(R), then

f ⊥ D2nTjψ

Proof.

〈f,D2nTjψ =

∫ ∞
−∞

f(x)(D2nTjψ)(x) dx

=

∫ ∞
−∞

(αx + β)(D2nTjψ)(x) dx

=

∫ ∞
−∞

(αx + β)
√

2nψ(2nx− j) dx

put y = 2nx

dy = 2n dx

=

∫ ∞
−∞

(
α
y

2n
+ β

)
ψ(y − j) dy

2n

= 0 by 1.22

Note. This Corollary tells us that in a wavelet expansion

f =
∑
n,j∈Z

〈f,D2nTjψ〉D2nTjψ

of f ∈ L2(R) we get zero contributions from certain n and j where there is
a linear part of the graph of f . But to make this work we need ψ to come
from a multiresolution analysis with a scaling function φ which is compactly
supported and continuous, and we need

∑
k even kck =

∑
k odd kck.

A Extension of the Fourier transform to L2(R)

The integral formula for the Fourier transform

Ff(ξ) =

∫ ∞
−∞

f(x)e−2πixξ dx

makes good sense only for f ∈ L1(R), but we can extend F to L2(R) via a
continuity argument.

One needs to establish that for f ∈ L1(R) ∩ L2(R), we have Ff ∈ L2(R)
and

‖Ff‖2 = ‖f‖2.
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Using linearity of F this implies that the restriction of F to L1(R) ∩ L2(R),

Frestricted:L1(R) ∩ L2(R)→ L2(R)

is uniformly continuous. In fact f1, f2 ∈ L1(R) ∩ L2(R)⇒

‖F(f1)−F(f2)‖2 = ‖F(f1 − f2)‖2 = ‖f1 − f2‖2

and so, given any ε > 0, ‖f1 − f2‖2 < δ = ε⇒ ‖F(f1)−F(f2)‖2 < ε.
Now Frestricted is a uniformly continuous function on a dense subset

L1(R) ∩ L2(R) of L2(R) with values in a complete space L2(R), and from
this there is a general theorem that states that Frestricted has a unique
continuous extension to a continuous

Fextended:L2(R)→ L2(R).

Moreover, it is easy to see that this Fextended is linear.
The general way to define Fextendedf for f ∈ L2(R) is to take any se-

quence (fn)∞n=1 in L1(R)∩L2(R) which converges to f in L2(R). Then (fn)∞n=1

is a Cauchy sequence in L2(R) and by uniform continuity
(
Frestrictedfn

)∞
n=1

must be Cauchy in L2(R). Hence limn→∞Frestrictedfn must exist in L2(R)
by completeness and we define Fextendedf to be that limit. The thing we
need to check is that we only get one value for Fextendedf in this way, that
is that if (gn)∞n=1 is another sequence in L1(R)∩L2(R) which converges to f
in L2(R), then

lim
n→∞

Frestrictedfn = lim
n→∞

Frestrictedgn (2)

but this can be verified by interspersing the two sequences to consider the
sequence

(f1, g1, f2, g2, . . .)→ f in L2(R).

Since

(Frestrictedf1,Frestrictedg1,Frestrictedf2,Frestrictedg2, . . .)

must have a limit, we get (2).
A more concrete way to say what the extension is is to choose the sequence

(fn)∞n=1 explicitly to be

fn(x) = χ[−n,n](x)f(x) =

{
f(x) if |x| ≤ n
0 if |x| > n
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Then

‖f − fn‖2
2 =

∫ ∞
−∞
|fn(x)− f(x)|2 dx

=

∫ ∞
−∞

(
χ(−∞,−n)(x) + χ(n,∞)(x)

)
|f(x)|2 dx

→ 0 as n→∞

by the Lebesgue dominated convergence theorem (because the integrand→ 0
pointwise as n→∞ and is pointwise dominated in absolute value by |f(x)|2
which is integrable). Note that fn ∈ L1(R) ∩ L2(R) as it is easily seen
to be in L2(R) and it is compactly supported (on [−n, n] and so ‖fn‖1 ≤√

2n‖fn‖2 ≤
√

2n‖f‖2 — see proof of part (iv) of Proposition 1.5). Thus we
can say explicitly that

Fextendedf = lim
n→∞

Ffn

(limit in L2(R) norm). For Ffn we have the integral formula

Ffn(ξ) =

∫ ∞
−∞

fn(x)e−2πixξ dx

=

∫ n

−n
f(x)e−2πixξ dx

The extension of F to L2(R) will satisfy∥∥Fextendedf
∥∥

2
= ‖f‖2

and we usually denote the extension by F .
An important fact about this extension is that it has an inverse (so it is

a bijection of L2(R) to L2(R)) and the inverse mapping is given by almost
the same formula as F . The inverse will be the extension (in the same way
as F is extended) of the mapping on L1(R) ∩ L2(R) given by

(F−1g)(x) =

∫ ∞
−∞

g(ξ)e2πixξ dξ
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