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1 Multiresolution Analysis Approach
to Wavelets

(This is probably the most practical approach to wavelets in L*(R), but not
the only approach.)

Lemma 1.1 The translation and dilation operators

T,:L*(R) — L*R)
Ta())(x) = flx—a) (a€R)
Dy:L*(R) — L*(R)
(DA(M)(@) = VAf(x)  (A>0)
are isometries, that is
ITafllz = [£ll2
IDsflla = Ifll VfeL*(R).

Consequently, they preserve inner products:

(Tof Toag) = (f,9)
(Drf,Drg) = (f.9)  Vf.g€L*R).

Proof. Simple calculations show that these operators are isometries:

ITufI = /°|nfuwmx

~ [ M- aPa

o0

~ [ 1wP

T
IDAf2 =(/ Daf(2) de

o0

S RICERE

o0

- /WLﬂwF@/ (v = o)

—0o0

= |If13
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The inner product preserving consequence follows from the polarisation
formula in L*(R). For R-valued L?*(R), this is

1
(fr9) = FUIF Tl =1 = gl3)
1
and for C-valued L?(R), this gives the real part R(f, g), so that

(f.9) = R(f,9) +i3(f, 9)
= R(f,g) +iR(f,ig)

R{f,ig) = S(f,9)

(F.0) = G0+~ 17 — g3+ illf + il —ill7 — gl

From these formulae it follows easily that if T: L*(R) — L*(R) is linear and
isometric, then it is automatically inner product preserving. For the (shorter)
R-valued case here are the details:

(Tf,Tg) = R(Tf,Tg)+i(Tf Tg)
1
= JUTf+ Tyl5—ITf —Tyll3)

= TG+ 9B~ 1T - 9)IB)

1
= Z(Hf+9||§—Hf—gH§)

since ||Th|| = k|| Vh
= (f,9)

Since it is easy to check that T, and D, are linear, this completes the
proof. O

Lemma 1.2
D\T, = Ta/)\D)\
Proof. Write g = T,(f) so that g(z) = f(x — a) and

(DAT.f)(x) = (Dag)(w) = VAg(Az) = VAf(Az — a)
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One the other hand, write h = D, f so that h(z) = VAf(Az) and
(TappDaf)(x) = (Tupah)(x) = hz — a/X) = VAf (A& = a/X) = f(Ax — a)
0J

Starting point for construction of wavelets 1.3 A function ¢(x) (gen-
erally known as a scaling function) with the properties

(i) The translates (Tyd)rez are orthonormal inside L*(R)

(i1) ¢ satisfies a two scale dilation equation

dx) = D aV20(2r — k)

kEZ

= Y a(DTio)(w)

kEZ
(Scale 1 on the left, scale 2 on the right, x and 2x.)

Normally we assume that only a finite number of the ¢ are nonzero, but in
theory we can can allow any sequence of coefficients with Y-, , |ce|* = 1.

Example 1.4 A simple example is

o(z) = Xpn(2)
_ {1 if v €[0,1)
0,1

Graph of this is

The graphs of ¢(2x) = Xp1/2)(z) and ¢(2x — 1) = ¢(2(x — 1/2)) =
Xi1/2,1)(2) are shown neat.



415 Wavelets 4

Hence ¢(x) = ¢(2z) + ¢(2x — 1) or X[0,1)(2) = X,1/2)(x) + X[ /2,1)(x) or
P(z) = CO\/§¢(2x) + 01\/§¢(2$ — 1) with co = ¢; = %
Take ¢, = 0 for k ¢ {0,1} and we have
¢(x) = Z V2027 — k)
kEZ

This ¢ related to Haar wavelets because the basic Haar function

1 zel0,1/2)
ba)={ -1 zelly2,1)
0 for x < 0 and for x > 1

can be expressed as
V() = Xo/2)(®) = Xu/2(T)
= V20(22) — coV20(22 — 1)

In general, we will be able to take any scaling function ¢ (which has to
have some additional properties) and get a ¢ (basic wavelet) by introducing
alternating signs (and a reversed order) for the coefficients of the dilation
equation.

Proposition 1.5 (Properties required of the ¢;’s) Assuming all the time
that ¢ = 3", cp ckD2Ti¢ and Ty are orthonormal in L*(R), we have

(i)
> el =1

keZ
(it)
chck,gg =0 forleZ,lF#0.

keZ



415 Wavelets 5

(iti) Assuming ¢ € L*(R)NL*(R), [72 ¢(x)dx #0 and {k € Z : ¢}, # 0} is

finite, then we can wmte a formula for the Fourier transform of ¢:

Fo(6) = JEEOH Nok (2;)
where p(§) is the trigonometric polynomial

p(g) _ che—Qm’kﬁ

kEZ

(iv) If ¢ is compactly supported (that is there is a bounded set of v € R
where almost all x with ¢(x) # 0 are to be found) then ¢ € L'(R).

If in addition {k : ¢, # 0} is finite and [7_¢(x)dx # 0, then

ch:\/ﬁ

keZ

Proof.

(i) The dilation equation reads

o(r) =Y V202 — k) =Y cx(DsT;0) ()

keZ keZ

Since we are assuming that (T}¢)xez are orthonormal in L?(R), we have
|Tkolla = 1 (all k) and (Tyo, Tpp) = 0 if k # €. Since Dy is isometric
(and inner product preserving — see Lemma [.1]),

(D214 ¢)kez

is orthonormal and so we can calculate by Besssels formula

lol = [> lewl?

keZ

As ||p|| = 1 (because ¢ = Tyo is in the sequence (Tyd)rez which is
assumed to be orthonormal), we have

D el =1

keZ



415 Wavelets

(ii) Starting from the observation that ¢ = Ty¢ is perpendicular to Ty¢ for
¢ # 0, we compute from (¢, Ty¢) = 0 by expressing

¢

Tyo

0= <¢7 T€¢>

(iii) Considering

Z cx Dy Ty

kEZ

> aTiD,Tio
keZ
justified even for infinitely many nonzero c

as Ty is continuous and linear

Z ek DoTo/ Ty

kEZ

Z ckDoThq209

kEZ

Z Cr—20 Do T}

kEZ

E CrCr—2¢

keZ

¢ = DTy

kEZ

and applying F to both sides, we get

Fo=> aF(DiTio).

kEZ

(To justify this for the case of r infinitely many nonzero ¢, we can
use the fact that F is an isometry from L?(R) to L*(R).) Now we
need to know rules (F(D2f))(§) = (D12(F f))(&) and (F(Trf))(§) =

eT(FL)(E)-

Aside. We now check out these claimed formulae by simple calcula-
tions with integrals and changes of variable. We take f € L'(R) so
that the integral formulae are valid without question.

(F(Df))(E) = / " (Do) (@)e "

= /00 \/§f(2x)e_2mz§ dx

put y =2z
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_ /Oo \/§f(y)e_2”y(§/2) @
. 2

1 > —27s
- - / Fla)e= 2D gy,

1
= ﬁ(ff)(@
= (Dr2(FH)E)

(FTON)E) = / " (Tuf)(@)e T da

= / flz — k)e 2™ dy

puty=x—k dy = dx

— e—?wk{ /OO f(y)€—2rriy§ dy
= e MFENE)

[Aside within aside: We could introduce a notation

(Rof)(x) = e™" f(2)

and then we could summarise the rule we have just proved as F (T f) =
Ri(Ff), but we will not use this notation regularly.]

Returning now to the proof proper, we have

(Fo)(&) = ch(F(DQTk¢))(£)

keZ

= 3 D F G

kEZ

= Y elDiale(F ) (€))

kEZ

= S agse HF)/2)

kEZ

_ (% Cke—ﬁm‘k(&/m) —5(F9) (g )

Foro = »(5) 5570 (§)



415 Wavelets 8

If we rewrite this with £ replaces by £/2 we get

0 (§)-+() 9 )

and combining the last two equations we then have

For0=0(35) 75 (5) 50 (5)

[terating this idea, we get

_ (ﬁl %p (%)) (Fé) (5—”) (n=1,2,3,...).

Take limits as n — co. As ¢ € L'(R) we know that F¢ is continuous,
in particular continuous at 0 and so

i (70) (5, ) = (Fo)(0) 0.

n—oo

It follows that

1) (F)E)
fon [ 7 (5) = 0
exists.

[Aside: When (F¢)(&) # 0 this can be rewritten as

Tl (6 (F0©
H N <2ﬂ‘) (7))

but we will defer going into the definition of an infinite product.]

Hence we have

n

(Fe)(E) = (Fo)(0) Jim ] 75 (2) '

Note that (F¢)(0 f o(x
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(iv) For the first part suppose that ¢(x) is essentially supported in [a, b], by
which we means that {z ¢ [a,b] : ¢(x) # 0} has measure zero. Then

ol = [ 1o(@lds
= [ot)a

\//ab|gz5(:v)|2da:\//ab 12 4y

by Holder’s inequality
= ¢ll2vb—a < oo

IN

For the second part of (iv), we integrate both sides of

[e.e]

dx) = D aV20(2r — k)
/_OO o(r)de = Z V2 _<><> o2z — k) dx

noting that the exchange of the sum
and the integral is justified because
there are only a finite number of
nonzero terms in the sum
put y =2z — k

dy = 2dx

in the integrals

= Z Ck\/ﬁ/j;wy)%

k=—o00
00 \/5 o
- ( > o) [ ety
k=—00 -0

Since we have assumed f_oooo ¢(x) dr # 0, we find

i c L =1

k=—0c0 k\/i
or .

Z Ck:\/ﬁ.

k=—o00
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Remarks. We have one example where all the conditions we have now
uncovered on the coefficients ¢, are satisfied. For ¢(z) = x0,1)(z), co = ¢1 =

1/v2, ¢, = OVk # 0 or 1.

1 1 2
C V2 V2 V2
1 1
ol +lealf = 545
Ck. SR} c*lzoa Co, C1, 02:05
Ck—2 -y C*lzoa Co, C1, 62:0
T T
k=0 k=2

Z C1Cr_o¢ = 0 for £ # 0.
k

In fact there are no other sequences ¢, with only ¢y and ¢; nonzero that
meet all these conditions. To check this take two number ¢y and ¢; and
suppose we know ¢; + ¢ = v/2 and |¢y|? + |c1|> = 1. Then from the Cauchy
Schwarz inequality

\/§:‘CO+61’ = ‘C()Xl—i—Cle‘
< Vel + [PVt 12

- 12

Thus equality holds in Cauchy Schwarz and so (¢, ¢1) is linearly dependent
on (1,1). That is (cy, 1) = co(1,1) and ¢y = ¢;. Since ¢y + ¢; = V/2 we must
have ¢ = ¢; = 1/\/5

If we allow 3 consecutive terms cg, ¢1, co to be nonzero, then the orthog-
onality condition ), ¢z—3 = 0 comes down to co¢g = 0 and so either ¢y = 0
or ¢ = 0. This means we are back to two nonzero consecutive terms and
having ¢; = ¢, = 1/4/2 is not essentially different from the Haar case. (The
scaling function ¢ in that case is x[1,9).)
Daubechies example. If we allow 4 nonzero terms cg, ¢q, co, c3, then the
solution

1++3 3++3 3—3 1—+3
Co=—F—,0 = —/F—,C0= —F7—,C3 =
42 42 42 42

was used by I. Daubechies in 1988. The corresponding ¢(z) is continuous
and compactly supported.
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We can easily check that these numbers satisfy the constraints we have
identified:

lcol” + ler|” + leaf” + [ es?
B (1+\/§)2+(3+\/§)2+(3—\/§)2+(1—x/§)2
32 32 32 32
14+2V3+3+94+6vV3+3
32
9—6v3+3+1—2V3+3
+ 32

32
1+v3+3+v3+3—-v3+1—-+3
42

8 2
= —:—:\/§
W2 V2

The orthogonality relation boils down to

cotcrtetec =

C C1 C2 C3
Chy €1 C3 G

e = (3B [(LEVBY) L (1=VB) (343
coTea = T 12 12 12
3o VB3vE-343-3V31V3-3)

42
= 0

Although we have now checked that this sequence satisfies all the neces-
sary conditions we have uncovered so far that are necessary for the existence
of a compactly supported L*(R) solution with [*°_¢(z)dz # 0 of a dilation
equation ¢ = ), ¢ DT} ¢, we still don’t have proof that there is any such ¢
with the 4 Daubechies coefficients above.

Lemma 1.6 Suppose the finite dilation equation

k1

o) = > axV20(2x — k)

k=ko

has a compactly supported solution valid for all x € R (pointwise). Then

{z: o(x) # 0} C [ko, K]
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Proof. Consider ¢(z) restricted to intervals [¢, ¢+ 1) where ¢ € Z. There can
only be a finite number of ¢ where ¢(z) is not identically zero on [¢,¢ + 1)
(since the support is compact). Look at the smallest such /.

We claim that £ > k.

For z € [¢,0+ 1), we know

k1
o(x) = Z V20 (21 — k)
k=ko
but when we look at where 2z — k is we see that
20—k<2r—k<20l+1)—k.
For k > kg

20+1) —k<2(4+1)—ky = L+L+2—Fk
04+ —Fky+1)+1

Suppose now that ¢ < ky contrary to what we claimed (and then we
will try to get a contradiction). Then ¢ < ky — 1 (since ¢, ky € Z) and so
{—ky+1<0. Hence

20—k <l+1

and for k > ko + 1 we have
20—k <2(0+1)—k<{l= ¢(2x—k)=0.

This the only term on the right hand side of the dilation equation that can
survive (for z € [¢,¢ + 1)) is the first term. Thus

O(x) = cpV20(2 — ko) for z € [(,0 4 1)
Looking now at = € [¢(,{+ 1/2) we have
20— ko <2(04+1/2) —ko=20+1—ko=0+ ({+1—ky) </
Thus ¢(22 — ko) = 0 and so
O(x) = cp V2022 — ko) for z € [0, 0 +1/2)
We can then use this to show that for z € [¢, ¢+ 3/4)

20— ko <2(0+3/4) —ko=20+3/2—ko =0+ 1/2+ ((+1—Fky) < {+1/2
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Thus ¢(22 — ko) = 0 and so
O(x) = cpV20(22 — ko) for z € [0, + 3/4)
By induction we can show that
plx)=0forz e[l {+1—-1/2") (n=1,2,...)

Since |, ,[¢, ¢+ 1—1/2")[(, £+ 1) we conclude that ¢(z) = 0 must be true
for all z € [¢,£+ 1). That contradicts the choose of ¢ and shows that ¢ < kg
is impossible.
We have shown
{z: ¢(z) # 0}  [ko, 00).
To show that
{z: o(x) # 0} € (—o0, ko
we could use a similar argument again, but we could instead note that the
“reflected” function

& (x) = o(~)
satisfies
k1
¢'(x) =p(—1) = Y aV20(2(—x)— k)
k=ko
k1
= Z Ck\/éﬁb(—% — k)
k=ko
k1
= Z ck\/§¢r(2$ + k)
k=ko
substitute k = —j
—ko
— Z V20" (22 — 7)
j=—k1

According to the first part of the proof, we have
{z:¢"(x) # 0} € [k1,00) = {z : ¢(x) # 0} S (—00, k1]
This completes the proof that ¢ is supported in [ko, k1]. O

Method for graphing ¢ 1.7 The assumptions needed now are:

1. ¢ compactly supported
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2. ¢ continuous (a new assumption)

3. @ satisfies a finite dilation equation

k1

d(x) = > xV20(2x — k)

k=ko

(By taking T_y,¢ in place of ¢ we could concentrate on the case ko =0
but this is not essential.)

Step 1. Find the sequence of values of ¢ at the integers,

(gb(n))zo:foo = ( ) (b(kO)? (b(kﬁ + 1)7 ce 7¢(k1)7 - )

Since ¢(z) = 0 for © < ko and for x > k; and ¢ is assumed continuous, we
must have ¢(kg) = 0 and ¢(k;) = 0. That leaves

(p(ko + 1), p(ko +2),...,0(k — 1))

We know
k1

o(n) = Z canV20(2n — k).

k=ko

Note that 2n — k € Z and and we can express these equations as a single
matrix equation

¢(ko + 1) ¢(ko + 1)
d(ko + 2) < matrix with ) d(ko +2)

C’s as entries

¢(7f1.— 1) ¢(/€1.— 1)

Now we have

ko +1) = cxV2h(2ko +2 — ko) + Cror1V20(2kg +2 — ko — 1)
Ferpr2V20(2ko +2 — ko — 2) + - -+
= V20 (ko + 2) + Cryr1V20(ko + 1) + 04+ 0+ - -

and this means that the first row of the above matrix is
(Cho+1V2, €5 V/2,0,0,...)).
The second row turns out to be

(Ck0+3\/§7 Ck0+2\/§a Cko—i-l\/éa Clo \/57 07 07 .- ))
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In this way we can show that the matrix above has rows made up of the
¢’s running backwards (times v/2) and each successive row is shifted by 2
places.

P(ko + 1)
P(ko + 2)
ok — 1)
Chot1V2  CryV/2 0 0 O(ko + 1)

o ko + 2
= Ck:0+3\/§ Ck0+2\/§ C.’Co-}—l\/§ Ck:o\/§ 0 ¢( 0. )
: ¢(k1 —1)

Thus we have an eigenvector with eigenvalue 1 for the above matrix.
If the eigenspace is 1-dimensional, this is enough to find

(p(ko + 1), p(ko +2),...,0(k — 1))

up to a scale factor (if the eigenspace is one dimensional).
Step 2. Next we use the dilation equation at a 1/2 integer x = j + 1/2

o) = oG+ 1/2) = 3 e/20(2) + 1 k)

k=ko

and we see that the right hand side uses only values of ¢ at integers 27 +1—k
(which we found at step 1).

Once we have ¢ at 1/2 integers, we can use the dilation equation with
x=j+1/4and x = j + 3/4. For example

k1

S+ 1/4) =D cV20(2j +1/2 — k)

k=ko

and the right hand side involves only values at 1/2 integers.
In this way we can find

¢>(2]—n> jEeZ n=1,23,...
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Example 1.8 We can carry out this procedure for the Daubechies example
mentioned earlier.

Lo LEVB o 3+VB 0 3-VE 13
0 4\/571 4\/572 4\/573 4\/5

Here kg = 0 and k; = 3. The nonzero values at integers are ¢(ky +
1),...,¢(k; — 1) which means just the two values (¢(1), »(2)) in this case.

(1)

From the above we know that
(5

must be an eigenvector with

eigenvalue 1 for the matrix

(27 wa)- (% %)

To find the 1-eigenspace, subtract I and look for the kernel of

N SEPR B 1
v v 1 )T v ity
4 4

(20)
o(1) x/§+1)‘

and so we must have ( (2) ) some multiple of ( - V3

One thing that we could do is to take the multiple so that ¢(1)+¢(2) = 1
(that would mean the multiple should be 1/2 of the above eigenvector).

If we then use the procedure outlined above to write a computer pro-
gramme, we can find values for ¢ and then plot it.

s
S

B

W~
- ‘

A vector in the kernel is

2

15

1k

0s -

ol

-05




415 Wavelets 17

Here is a computer programme written in perl that produces lines with
coordinates of points on the graph (which can then be plotted with gnuplot
or another graphical utility).

#!/usr/bin/perl

%phi;

hes

$c{0} = (1 + sqrt(3))/4;
$c{1} = (3 + sqrt(3))/4;
$c{2} = (3 - sqrt(3))/4;
$c{3} = (1 - sqrt(3))/4;

$maxlevel = 5;

$phi{0} = 0;

$phi{3} = 0;

$phi{1} = (1 + sqrt(3))/2;
$phi{2} = (1 - sqrt(3))/2;
$step = 1;

foreach my $lev (0..$maxlevel) {

$step = 1/2**$lev;

$base = $step/2;

foreach my $k (1..(3*x2**x$lev)) {
$x = $base + ($k-1)*$step;
$phi{$x} = 0;
foreach my $j (0..3) {

$phi{$x} = $phi{$x} + $c{$j}*$phi{2*%$x - $j};

}

}
foreach my $k (0..(3*x(2**$maxlevel))) {

$x = $kx$step;
print "$x $phi{$x}\n";
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Exercise. Show that if ¢ is a compactly supported continuous function and
it satisfies a 2-scale dilation equation

k1
¢ = Z ck Do T

k=ko

and if }° _, ¢(n) = 1, then Znequ(%) = 2 for j = 1,2,.... If also
[ #(x) dz # 0, then show that [~ é(z) dz =

Lemma 1.9 Suppose ¢ is a compactly supported continuous solution of a
finite 2-scale dilation equation

k1
o= Z cx D10

k=ko

and suppose

@) =Y ad(a — 1)

is a finite linear combination of integer translates of ¢.
Then f is completely determined by its values (f(n))

[e.9]

o o at the integers.

Note. We saw that ¢ is determined by its values at the integers.

One way to express the above result is to say that f is determined by its
samples with spacing 1.
Proof. (of Lemma [.9) We want to show we can find the coefficients a, by
knowing only f(n) for all n. Or another way to put it is that if we have a
second finite linear combination

g() = 3 and(z - 0)
V4

and g(n) = f(n) for all n € Z, then f(z) = g(z) for all .

Looking at f(x)— g(x), this amounts to showing that if f(n) = 0 for each
n, then a, = 0 for all ¢ (and so f(x) =0).

So, now suppose that f(n) = 0 for all n € Z but f # 0 so that some
Ay 7& 0.

We know ¢ has compact support and so there are only finitely many &
with ¢(k) # 0. From the graphing procedure above, we know that if ¢(k) = 0
for all k, then ¢ = 0. Of course, the case ¢ = 0 is trivial as certainly f =0
then. (In fact this proof uses only two properties of ¢: compact support and
some k € Z with ¢(k) # 0.)
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Write ki, for the smallest & with ¢(k) # 0, and kpax for the largest.
Thus the nonzero values at integers ¢(n) are among

¢(kmin> 7’é 0, ¢(kmin + 1)7 R Qb(kmax - 1>a Qb(kma)c) 7é 0

Now

fn) = > a(n—10)

14

kmin S n— E S kmax
= _kmin Z n— f Z _kmax
n_kmin

= Z app(n —1).

{=n—Fkmax

Choose n so that n — ky;, = smallest ¢ with a, # 0. Call this l;,.
Then

nfkmin

o) = Y w0

l=n—kmax

= an_kmin¢(n - (n - kmln))
= a6m1n¢(kmin)
As we are assuming that f(n) = 0 for all n, and ¢(kmm) # 0, we conclude
from this that a,, ,, = 0. But that contradicts the way £, is chosen.
This contradiction shows that a, = 0 for all £ if f(n) = 0 for all n, and

completes the proof. O
Construction of a basic wavelet.

bla) = S (1 av2e(2e — k)

kEZ

assuming that ¢(x) satisfies a two scale dilation equation

o) =D cV20(2x — k)

kEZ

and ¢ has orthonormal translates Tj¢.

Lemma 1.10 (Helps to graph ) If ¢ satisfies a finite dilation equation

k1
¢ = Z ck Dy Ty

k=ko
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and ¢ 1s continuous and compactly supported, then 1 as constructed above is
nonzero only between

ko+1—k ki +1—Fko
r=—— -

2

and xr =

Note. For the Daubechies 4 coefficient example, we have kg = 0, k; = 3 and
1 is then supported in the interval

ko +1— ky k1+1—k0} B [0+1—3 3+1-0

) 5 - [—1,2]
2 2 2 2

Proof. (of Lemma [[.10) From Lemma we know that ¢ is supported in
[ko, k1] and so if ¢(2z — k) # 0, then ko < 2z — k < ky and thus

k0+k< <k1—i—k

5 <x< 5
Y(o) =) (1) avV26(2r — k)

Notethatcl_k#0:>k:o§1—1{:§k:1:>1—k:02/<:21—k1.
If ¢(z) # 0, then there must be at least one nonzero term in the summa-
tion. Thus
¢(2x — k) #£0 for some 1 —ky <k <1—kq

and so P P
0+ <z< + for one of these k.
It follows that b1k b1k
0+2— L o< 1+2— 0

Observation. The interval [(ko+1—Fk1)/2, (k1 +1—ko)/2] has length ki — ko,
the same length as the interval [kg, k1] where ¢ is supported.

Assuming that the ¢ in the Daubechies example is compactly supported
and continuous, we can use the method above for computing values of ¢ at
points j/2" to deduce values of 1 and so write a computer programme (a
slight modification of the earlier one) to plot .
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L L L L L .
-1 o 1 2 3 4

Theorem 1.11 [Important properties of 1] Assume ¢ has orthonormal
translates Tp¢ and satisfies ¢ = ZkeZ Dy T¢. Assume

Y=Y (~1)'E Do Tio.

keZ
Then:
(i) The translates Ty (¢ € Z) are orthonormal.

(ii) If we define Vy = the closed linear span in L*(R) of {T¢ : k € Z} and
Vi = DoV = the closed linear span in L*(R) of {DsTy¢ : k € Z}, then

Vo C VW,
each Typ € Vi and
{Thd: k€ ZYU{Tpw : L € Z}

15 an orthonormal basis of V.

(We can say that {Typ : € € Z} is an orthonormal basis for the orthog-
onal complement of Vi inside V;.)

(iii)
{DopnTptp :n, 0 € 7}
is an orthonormal set in L*(R).

(iv) Put V,, = DonVy for n € Z (which fits with the above definitions of Vj
and V7). If we have

ﬂ V., = {0} and U V,, dense n L*(R)

ne” nez
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then
{DoyTptp : n, 0 € 7}

is an orthonormal basis of L*(R).

(If we have the assumptions on ¢ and the V, needed here, then we say
that we have a multiresolution analysis of L*(R).)

Proof.

(i) We have defined
Y=Y (~DFapD T
keZ

Since T} is a continuous linear operator (in fact an isometry of L?(R)),
it follows that

Top = > (-V)'aG LDy

kEZ

= Z<_1)k01—kD2T22Tkw
keZ

= Z(—l)kcl—szTHzW
kez

put j =k+2¢

= Z(—l)j_%01—j+2eD2Tj¢
jez

= Y (~VY e DTy
jez

Now, expanding the inner product and using orthonormality of the
DyTyi¢, we have

(0, Ty =Y (D) e m (1) e prae = ) CikCipsar,

k k
If ¢ =0, then we get

ch_kcl_k = Z |Cj|2 =1.
k J

Thus (¢, ¢) =1or [[¢| = 1.
On the other hand, if ¢ # 0, then

<1/1, T£¢> = Z C1—kCl—k+2¢ = Z Cj—uCj = 0
k J

(by (ii) of Proposition [[.5).
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(ii) We have
Vo =span{Ty¢ : k € Z}

and V; = DyVj. Since Dy is an isometry of L?*(R) and {Ty¢ : k € Z}
is an orthonormal basis of V4, it follows that {DyTy¢ : k € Z} is an
orthonormal basis of V.

Moreover we can say that

‘/0 = {Zakaqb : Z ‘Clk|2 < OO}

kEZ k
Vv, = {ZakDnggb DY ] < oo}
kEZ k

Since ¢ = >, ¢, D2Ty,¢ it follows that ¢ € V4, and then

Tvp = Z kDT 000 = Z Cr—oe DTy 0 = T, € VIVI € 7.
kEZ keZ

It follows that V5 C V;.

V=Y (~DraD T € Vi

keZ

is clear, and

Ty = Y (DT, DoTx

keZ

= Z(—l)kcl—szTkJrze

kEZ

= > (V)" EguDaT

kEZ

SR

To show that {Tx¢ : k € Z} U {Ty : £ € Z} is orthonormal, consider
three types of inner products (Ty,¢, T;¢), (v, Tjp) and (Ty¢, Ty¢). For
the first two, we already know

wot0={ ¢ is)

£
<Tw,T]¢>:{é ;ff;é;
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Next we show (Ty¢, Ty¢) = 0 always, but first consider (¢, Ty¢). Work-

ing with ¢ = Y, cxDaty¢ and Tytp = Y, (—1)* 1 3720 DTy, and using
the fact that {DyTy¢ : k € Z} is orthonormal, we have

(6, Typ) = ch(—l)kcl—k+2z

k

= Z(—l)kckcksz

k

In this sum consider the terms with k¥ = j and k = 1 —j + 2/ (=
1—k+20=7j)

(_1)j0jcl—j+2e + (—1)1_j+2£01—j+2ecj
= (=1)¢jc1_jrae + (1)1 00
= 0.

(In other words, for each term of the sum, there is another term which
is (—1) times it.) Thus (¢, Ty1p) = 0 for all £ € Z.

Applying T}, to this fact (and using the fact that T}, is an isometry and
therefore preserves inner products), we get

(Tvo, TiTyp) = 0
(Txd, Tinpp) = 0 Vk(€ETZ
(Tp, Tp) = 0 Vk(eZ

Now we know

{Thp: k€ ZYU{Tw : L € Z}
is orthonormal in V7. We still have to show it spans V].
Here is a matrix proof of that. (There are other proofs in books.)
Work with coefficients with respect to the basis {D;T;¢ : j € Z} of V.

Write @, = the column vector of coefficients of Ty

C_2-2k
C_1-2k
CI)k = [Cj—QkJ]j_:Oj»oo = Co—2k — O pOSitiOD
C1—2k
Co—2k
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U, = the coefficients of vy,

Form an oo X oo matrix M (indexed by Z in both directions) with
columns

(' CIIEY q)—la \Il—la q)Oa \IJ07 q)la \Dl) @27 \112’ .. )
(with ®¢ in column 0).
Then M looks like

0
D, Wy o, U,
Moy My,
0— Co 1 | c.2 ¢4
1 —Co | -1 C2
My M,
Co C_1q Co C1
c3 —Cao| €1 C

If we work out M*M we get the identity matrix (1’s on the diagonal, 0’s
off it) since the rows of M* are the complex conjugates of the columns
of M = the complex conjugates of the ®;’s and the ¥,’s (written as
rows) and when these are multiplied into the columns of M we get
inner products between ¢ and 1), with others of them.

We need to know M M* = identity, but this does not follow automati-
cally from M*M = identity for infinite matrices.

M is made of 2 x 2 blocks with

M. — Cor—2s Cos—2r+1
rs — _—
Cor—2s+1 —Cos—2r

M* will then be made of 2 x 2 blocks with the (r, s) block of M* equal
to (M;,)*.



415 Wavelets 26

If we multiply M*M using blocks then the (7, s) block of the product
will be

> ((r,t) block of M)((t, s) block of M*)

t

= Z Mr,t(Ms,t)*
t

o Z Cor—2t  Cot—2r+1 Cos—2t  C2s—2t+1
; Cor—2t4+1 —Cot—2r Cot—2s4+1 —Cot—2s

Cor—2tCos—2¢t T Cot—2r11C2t—2s+1

Cor—2tCos—9t+1 — C2t—2r+1C2t—2s

¢ Cor—2t+1C2s—2t — C2t—2rC2t—2s+1
Cor—2t+1C25—2t+1 T Cot—2,Cot—2s

Bring the sums inside the matrix.

The off-diagonal sums rearrange to 0 and the orthogonality relations
for the ¢’s show that the diagonal entries are 0 unless r = s, when they
are 1.

For example,

E Cor—2tCos—2t+1 — Cot—2r+1C2t—2s
t

= E 02r72tc2572t+1_2 Cot—2r41C2t—2s
t t

= g CQuC2u+2(s—T)+1_§ CovC2u+2(s—r)+1
u v

using v = r — t in the first summation
and v =t — s in the second
= 0

and

E Cor—2tC2s—2¢ + Cot—2r11C2t—25+1
¢

= E C2r72tc2372t+§ Cot—2r+1C2t—2s+1
¢ t

= E C2u02(s—7")+2u+§ C204+1C20+2(s—1)+1

u v

= Y cuCorain

= <¢7 Tr—s¢>
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(iii)

Hence M M* is the identity.

Now suppose we have f € Vi perpendicular to each of the Tj¢ and
Typ. If we write F' for the column vector of coefficients of f in the
basis DyT;¢ of Vi, then M*F = 0.

Hence FF = MM*F = 0 and so f = 0. Thus the collection {T}¢ : k €
ZYyU{Tp) : L € Z} is a maximal orthonormal subset (an orthonormal
basis) of Vj.

Consider V,, = Dy Vj (as introduced in part (iv) of the statement) for
n € 7.
We know Vy = DoV = Di1Vy C Vi = DoV, (that is Vo C Vi), Apply
Dyn to this and we get

D2n% g D2n‘/1 - DQnDQ‘/D = D2n+1‘/0.

(For this we rely on the fact that DyD, = Dy, holds if A\, u > 0, a fact
that is relatively simple to check, as follows. Take f € L*(R) and let

g = D,f sothat g(x) = \/uf(puz). Then

(DAD,f)(x) = (Dag)(z)
Vg(Az)
= VAVif(pe)
= Vuf((w)e)
= (Daf)(@). )

Thus we conclude that V,, C V, 4 for all n. Each Tyyp € V; and we
know {1y : ¢ € Z} is orthonrmal. That is

=

As Dy is an isometry (preserves inner products), it follows that

(Du T, DTy = T T = { iy 5

From (ii) we know that (Ty1), T¢) = 0 for all k,¢. But Vy = closure
of the span of {T}¢ : k € Z} and so we can say that Tyyp L Vj for all
teZ.
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Applying Don we we that DonTptp L DonVy = V,,. Also DonTyp €
Dy Vi = Viq. Thus

because then DonTytp € V01 = V,,. More generally, for m < n we have
DomTptp € Vg €V, since Vg C Vo € -2 CV,, (note m+1 < n),
and so we have

<D2mTﬂ/}, DQnTgl/}> =0if m < n.
This shows (iii).

We are now assuming that (1), ., V, = {0} and that J, ., V, is dense

in L?(R) and what we have to show is that span{DoTyt) : n, ¢ € Z} is
dense in L%(R).

(We know it is orthonormal, but to show that it is an orthonormal basis
we have to show that it is maximal — that is, that no more functions
in L?(R) can be added to it and keep the set orthonormal.)

If the span is not dense (or if the set {DTyp : n,¢ € Z} is not
maximal) we can find f € L*(R) with f # 0 (or even || f|| = 1) so that
<.f7 D2nTe¢> =0 vna L.

Since |,z Vi is dense in L*(R) we cannot have f L V, for all n
(f LVivn = f L U,z Vo = f L to the closure of |J,., Vi =
L*(R)= f L f= f=0). Fix an n with f not perpendicular to V,,.

Let P, denote the orthogonal projection of L?(R) onto V,,. Since V,,
has orthonormal basis {DanT;¢ : j € Z} we can write

P.f =Y (f, DunT;6)Dan T
JEZ
and P, f # 0.

For m > n, we have D*"Typ L V,, DV, and so P,f L D*" TVl €
Z,Nm > n.

Put

W, = the orthogonal complement of V,,_; inside V,
= closure of the span of {D*" Ty : { € Z}

(using (ii)).
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Now f — P,f € V- and so (f — P.f,g) = 0 for g € V,,. Or (f,g) =
(P.f,9)Vg € V.. If m < n then D*"Tpp € Vs €V, and so

<Pnfa DQmTﬂw = <f7 D2mTﬂ/}> =0Vm <n

P,f eV, =V,1®W, (orthogonal direct sum) and P,f 1L W,,. Thus
P.feV, 1=V, 9s®W,_1. By similar reasoning, P,f € V,,_5. Con-
tinuing by induction we get

n

PnfEﬁVn_j = () Va

j=1 m=—o0

A

since V,, C V,,1Vm
= {0}

But this is a contradiction since P, f # 0.
We conclude that it is impossible to find a nonzero f 1L DanTppVn, £ €

Z.
Therefore {DynTyth : n, ¢ € Z} spans a dense subspace of L?(R) and is
an orthonormal basis. O]

Example 1.12 (Haar case) In the Haar case we do have a multires-
olution analysis.

¢ = X[0,1)

Vo = closed span of {Ty¢ : k € Z}
= closed span of {Xjkk+1) : k € Z}
= functions constant on the intervals [k, k + 1)
and in L*(R)

Finite linear combinations ZZIZ,% apX[kk41) are the step functions with
steps at the integers only (and compact support) and functions in the
L3(R) closure will be almost everywhere constant on each [k, k + 1).
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1=

as - |

-05

15

Vi = D)V
= {(V2f(22): fe W}
= functions constant almost everywhere on each

kE k+1
of the intervals [5, i)

2
Vi, = Dl
= functions constant almost everywhere on each
kE k+1
on on )

of the intervals [

If n — oo the intervals get shorter and (), oz Va is dense in L*(R). If
n — —infty the intervals get longer and no nonzero L?(R) function
can be in (), o, Vi because such a function would e constant on [0,2") =

([35, E2) with k = 0) and on [-2",0) for all n. Thus it would have

2777.7 27’!7,
to be constant on [0,00) and on (—00,0). Thus it would be cxp,oc) +

BX(~c0,0) Which cannot be in L*(R) unless a = 3 = 0.

All the properties for a multiresolution analysis are satisfied. Recall that
® = Xo,1) has orthonormal translates and satisfies a dilation equation

with two nonzero coefficients ¢y = ¢; = 1/\/5
() = coV20(2x) + V20 (2 — 1).
The wavelet construction gives

v o= Y (DD T

kEZ



415 Wavelets 31

= (=1D)’@DyTop + (=1)'@D:Tio

U(x) = (1/V2)v26(22) — (1/v2)vV26(22 — 1)
= ¢(2z) — (22 — 1)
= X[0,1/2)<5’3'> - X[1/2,1)(33)

The theorem above ([.I1]) says that we can get other wavelets, but we
need to be able to check the hypotheses on the V,,’s. For the Daubechies
4 coefficient case

1+3 34+V3 3-V3 1—-/3
Co = ,C1 = , C2 = ,C3 = )
442 44/2 442 442
it is true that all these hypotheses work out for a compactly supported

continuous ¢, but we have not yet proved that. The proof will go back
to the infinite product formula for F(¢).

With finitely many nonzero ¢; and p(§) the trigonometric polynomial
p(g) = Z Cke_Qﬂik§7
kEZ

we have

Fo(e) = 7o(0) lim T o0 (5 )

and F¢(0) = 1 will be true in many cases.

Here is a fact about p that we will use later.

Lemma 1.13 Assuming the ¢y, satisfy the orthogonality conditions
Z o7 . { 1 fO’f’ (=0

kCk—20 =
~ 0 forleZ,t#0.

(and only a finite number of k with ¢, nonzero) then

P(E))* + |p(E+1/2)|* =2
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Proof. One can prove this based on the existence of a solution ¢ to the
dilation equation and showing that the Fourier transform of ¢ must
satisfy

Z [Fo(€+0)' =1
{=—00
but a much more direct proof is possible.

From the definition of p(¢) we compute first

P = p(¢

(Z cre 27mk£> <Z 0—262771‘%)

keZ ez,

(only finitely many nonzero terms
in each sum)
Z cocge 2rilk=0g

k.
Z Z cnTge2mime

m ke with k—t=m

m k

‘p(g)‘Z + ’p(é + 1/2)‘2 — Z <Z Ckﬂ) e*?ﬂ’imf
m k
+ Z (Z Ckck—m) e~ 2mim(£+1/2)
m k

6—2mm(§+1/2) —27rzm§€—7rzm

|
)

—Wz)me—2mm£

—~

(&

_ 1)m€727rim€

—~

e2mmE  if m even

e o mAmimE ) 3 if m odd

e

POF + b +1/21 = 2 Y (Z—m) -

m €VeEI k
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9 Z (Z Ckm> 6—27ri(2€)£
l

k
2¢° by the orthogonality relations

= 2

Remark 1.14 We can express Fi(§) in terms of Fo(E/2) and p.

(8

Fi

Now we can use
F(Dsf)

F(D2f)(€)
F(Tif)(€)
F (DT f)

and get

(F)(€)

kEZ

Note that

(-

> (~1)'eEDa T

keZ

Z(—l)kmF(Dngqﬁ)

keZ

Dy o(Ff)

Vaen (§)
= e TH(FLO)
\/g e~27IME/D (F £ (¢ /2)

1)km\/ge%“““/2> (Fo)(£/2)

(Z () e ie-%“ﬂ@”)) (Fo)(&/2)

i

Z—H) (FO)(E/2)

keZ

E :Cke—27rzk§

kEZ
C—k62mk§

kEZ

D

keZ

me%rz(l—k)ﬁ
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6271'25 E T_ke—%mkf
kEZ

6—27ri§m _ Zme—%ﬂlkﬁ

keZ

and thus

Sy

F© = e (S50 ) Foer)

Recall that we also have the Fourier transform of the dilation equation

as Fo© =3 (3) o

The two multipliers on the right of these equations

have the sum of the squares of their absolute values equal to
1| [é+1 2+1 ¢
2 [P\ 2 2 [P\ 2

by Lemma [I.13.

This fact can be used as the basis for a different explanation for the
orthogonal decomposition

2
=1

Vi=Wwae

by looking at things from the point of view of the Fourier transform.

Lemma 1.15 If ¢ satisfies a two scale dilation equation

¢=>_ DTy,
k

has orthonormal translates Ty (k € Z), gives rise to a multiresolution
analysis by Vo = the closure of the span of {Ty¢ : k € Z}, V,, = DanVjy
(n € Z) and if ¢ € L*(R N L*(R), then

‘[Z¢@ym

=1
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Proof. Let P, denote the orthogonal projection of L?(R) onto V,,, so
that

P.f = (f Do Ti$) Don Ty

kez
Choose f € L*(R) so that

Ff= X[-1,1]
(This requires the extension of F to an isometry from L*(R) to L*(R)
— see Appendix [A.)

Now compute

keZ

= > UFL. F(DrTio))

kEZ
1 2

= Z F(DanTi9) ()

kez 1V 1

- 2| Foamene

keZ

- 3| FoamioNe

kEZ

Recall

F(Dyf) = Dl/)\'<]:f)
(F(Tf))(E) = e ?™(Ff)(E)
F(DrTi9)(§) = Dyjon (§ = (F(Tf))(&))

= J;?%WWWGW@MW

1 2
L ok i3
/Jhﬁ (Fo) (5 ) de
¢

ut n = —
P772n

S
- =

and so

1PflE = >

kEZ

dn
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i 1 —2mik n
S| e

2

keZ
1/2n ‘ 2
= 23| [ e ) dy
kez |V —1/2"

2

1/2 A
S / Nietyam 1z (M) (F D) () e diy

kez |/ —1/2
(ifn>1)

We know that (e >™*7) _ is an orthonormal basis (used for Fourier
series) of L?([0,1]), but it also works for L?*([—1/2,1/2]). (This can
be checked by repeating the proof for L?([0, 1]), or by noting that the
change of variables n — 1 — 1/2 maps L?([0,1]) — L*([-1/2,1/2])
isometrically and sends e=2"*1 to (—1)ke=2mikn )

This fact means that the last summation above is the sum of the squares
of the absolute values of absolute values of the ‘Fourier’ coefficients of
the function

ne X[—1/22,1/2n](77)(]:¢)(77)
in L*([-1/2,1/2]).

Thus the summation is the square of the L?([—1/2,1/2]) norm of the
function and we have (assuming n > 1)

1/2
n 2
IPSIE = 2 / O by

1/2n
=2 [ FwP

1/2n
put § = 2"
d¢ = 2"dn

2
dg

1 5 )
e f —_—
[ |Fa (5
Now ¢ € L'(R) = F¢ is continuous (at 0). Thus

i (70) ;) = (F)0)

n—oo on

uniformly for £ € [—1, 1] and so we conclude that

lim [P0 = [ 1O ds = 2 Fo)0)F
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But |
that

ez Vo dense in L*(R) (and V;, C V,,41Vn) allows us to conclude

1
1 2
Tim [|Pafll3 = 17115 = IF£15 = Ixe-anll; = / Lde =2
1

(The reason is that P, f = the element of V,, closest to f and so V,, C
Vi1 = |[f = Pufll2 = |f — Paga fll2¥n. As U, ez Vi is dense in L*(R),
we can find g € {J,,c5, Vi with || f — g2 arbitrarily small. As g € V,, for
some n, it follows that we can find n with || f — P, f||2 arbitrarily small.
For all m > n, ||f — Py, f||2 will be no larger than || f — P, f||2 and so we
can show that lim,, o || f — Pnfll2 = 0. Thus lim,, . || P fll2 = || f]l.)

Now we conclude that

2(Fo)0)] =2 = [(F¢)(0)| =1,

‘/_Z ¢(z) dx

Remark 1.16 Note that the above Lemma I3 shows that the normalisa-
tions

which means
=1.

[9ll2 =1 and /_00 ¢(z)dr =1

are compatible if ¢ is a scaling function for a multiresolution analysis and if
¢ € LY(R) N L*(R).

This means that the graph we drew in [I.8 of the Daubechies J coefficient
¢ is normalised correctly (IF we can show that in that case there is a mul-
tiresolution analysis and that ¢ is compactly supported and continuous).

Proposition 1.17 Suppose ¢ has orthonormal translates {Ty¢ : k € Z},
Vo = spar{Ty¢ - k € Z}, V,, = DV (n € Z) and suppose Fp(€) is contin-
uwous at £ =0 and has F¢ # 0.

Then the linear span of \J, o, Vi is dense in L*(R).

(We do not need the dilation equation here.)
Proof. Assume the span is not dense and so there exists f € L*(R), f # 0
with f L (J,ez Vo- (If the span is not dense, then its closure is a proper
closed subspace and so has a nonzero orthogonal complement.)

Choose R > 0 large and define g € L*(R) by

Fg = (X[—R,R])ff
(F9) (&) = x-rrE)(F)E)
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(Note that f € L*(R) = Ff € L*(R) = xrrFf € L*(R) = g =
F ' (X-rrFf) € L*(R).) We can find such a g for any R > 0 and also

1f=gllz = [IF(f =9l
= |[|Ff—Fygl
< €

if R is large enough (and for any given € > 0).
(In other words, we can say that g approximates f quite well and also g
is what is known as band limited — Fg is compactly supported in |£| < R.)
Consider again the orthogonal projection P,: L?(R) — V}, and the formula

P, =" (h, Dy Ti$) DonTig.
kEZ

Since f L V,, P,f =0 and then we have

P = Pu.f+Pug—f)
1Pagllz < 1Pafll2+ 1Palg = )l
0+ [[Fulg = f)ll2
< llg=fllz<e

Now we compute (in a similar way as we did in the previous proof)

1Paglls = D [{g, DanTigp) |

= Z [(Fg, F(DanTy))|?
- X|/ fFoeFmaTane
-2 / R(fg)@\/;6_2m<5/2n>(f¢)(5/2n))dg
—Zfbmwbwmwwwg
- kez |V R ! 2
put n = 2%
dn = g
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2

R/2"
= S|/ FaEay g Eam dn

kez |7 —R/2" 2n

2

1/2 - |
= S| FaemEamyEe

kez |/ —1/2

if 2" > 2R

using (Fg)(2"n) =0 if |n| > R/2"

= sum of the squares of the (—k)th coefficient of

(Fg)(2"n)(Fo)(n)v2"
with respect to the othonormal basis
(@
of L*(R)

= the (L? norm)? of the function

1/2
- / (F) @) [(Fo) ()2 dn

pééz:?"n
g
- [ Eaer|Ee (£)] «
= [C1Eoer|Ea (5]

(again if 2" > 2R)

Now F¢ is continuous at 0 and so (F¢) (3) — (F¢)(0) as n — oo uniformly
for € € [-R, R]. Thus we conclude

R
1Pl — / FDOP I(F)0)

= |(FO)O)FI(Fa)l3
= |(Fo)0)Fllgll3

But ||P.g||3 < €% and so it follows that
[(Fo)(O)[lgl; < €

g
ol < Fgj)
£k < 1F = glla+ gl
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S
[(F)(0)]

As we can do this for € > 0 arbitrarily small, it follows that || f||2 = 0.
But this contradicts the choice of f # 0 and completes the proof (that
the span must be dense). UJ

Proposition 1.18 Assume ¢ has orthonormal translates Ty,¢ (in L*(R) ) and

Vo = span{Typo¢: k €Z}
Va DonVgy

Then
ﬂ Vo= {O}

neZ

Proof. Let P,: L*(R) — V;, be the orthogonal projection, so that

Pof =Y (f, DonTig) DonTih

kEZ

We will prove that
lim P,f=0Yfe L*(R) (1)

and this implies the result because

fe(Va = Puf=fVnei
nez

= 0= lim Pf=Ff

n——0oo

= f=0

To prove ([[) we prove it holds for compactly supported f € L*(R). Then
the general case follows because f € L*(R) = xj_nn1f € L*(R)VN > 0 and
X[-n,n)(2) f(x) # 0 only for x € [-N, N]| so that x[_n,n}f is supported in
[—~N, N] (and is in L?(R)).

If we know () for the compactly supported case then we know
T}Lflglo P, (xi-nmf) = 0.
But we can choose N so that

|f = xvmfll, <e
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(for any pre-assigned ¢ > 0)f]. Then

I1Pofllz = I1Puf — Po (X=n3f) + Po (Xi=nvm ) ll2
1Po (f = Xi=v31f) 2 + 1P (X=v31 f) |2

<
< Hf - X[—N,N]f||2 + ||Pn (X[—N,N}f) ||2

Now || f — x[=n,nf]]2 < € if NV is chosen to be large enough and then by the
compactly supported case of ([l) |P, (xi—nnf) |2 < € if n is small enough.
Thus

[Pufll2 < 2e

if n is small enough. This shows lim,, . || P, f|]2 = 0.
Now, take f € L?(R) with compact support in [—R, R] (for some R > 0)
and look at

1Paflle = Y If. Do Tid)?

kEZ

. ‘ | revEsee - h
k=—00

_ ’ / e T da|
k=—00

use Cauchy-Schwarz inequality

> ([ @) ([ 2o -ppa)

k=—00
put y = 2"x — k in the last integral
dy = 2" dx
k+2"R

T §jl/ () dy

k—2"R

IN

Choose n small enough (recall n — —o0) so that 2"R < 1/2.

1

Ir=xixmfly = [ 1@ = xewm@ @] dr

= [ (e @)+ Xvoo (@) @) ds

— Oas N —

by the Lebesgue dominated convergence theorem because the integrand tends to zero
pointwise as N — oo and is at most equal to the integrable |f(x)|?.
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Then the above integrals are over disjoint intervals

1 1
[~k —2"R,—K + 2"R] C (—k — gkt 5)

Put

Up= |J [k —2"R,—K +2"R]
k=—00

and then we have
1P fll5 < I ; [6(y)]? dy

1
(as long as 2"R < 5)

T / " 0, )16 dy

o0

Asn — —o0, xpu, (y) — 0 for all y except y € Z. Thus
xu, (y) — 0 almost everywhere on R

(as Z is countable and so has measure zero). From the Lebesgue dominated
convergence theorem we can conclude that

[e.9]

Jim e, (9)|e() | dy =0
because the integrands are < |p(y)|* for all y, [7 |¢(y)|* dy < oo and the
integrands — 0 pointwise almost everywhere.
It follows that
lim [P, f[5=0

n——oo
Note. We still need to show that certain dilation equations have compactly
supported solutions in L'(R) N L?(R), and even continuous compactly sup-
ported solutions.

Proposition 1.19 Assume ¢ € L'(R)NL*(R) satisfies a finite dilation equa-
tion

k1
¢ = DTy,

k=ko

that ¢ has orthonormal translates {Ty¢ : k € Z} and [~ ¢(x)dx # 0. Then

Y =Y a

k even x odd
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Proof. We know from [[.J (i) and (ii) that

CxCr—2¢ =

1 for/ =0
0 forl+#0

and we know

ch:\/é

from [[.5 (iv).
From Lemma we know that p(&) = >, ., cue™2™*¢ satisfies

PO + [p(€ +1/2)]* = 2.
If we take & = 0, we have
p(0) = > =2
p(0)[* + [p(1/2)]” =2Z@upmzz
and so p(1/2) = 0. That is

cheam’ka/m S

keZ
Z Ckefﬂ"ik = 0
keZ
ch(—l)k = Ousinge ™ =—1
keZ
DD SR
k even x odd

Corollary 1.20 Assuming ¢ satisfies the same hypotheses as in Proposi-
tion 19 and that

Y=Y (D) erDTie
k

then v € LY(R) N L*(R) and

/Z¢@Mx:0

Proof. First note that ¢ € L'(R) N L*(R) as it is a finite linear combination
of functions DyT).¢ each in L'(R) N L*(R).
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/°° Y(x)de = Z(—l)km/m (DyTed)(2) d

[e.e] k —0oQ
— Z(_N’m/ V2022 — k) da
k —0o0
put y =2z — k
dy = 2dzx

- (Z(—l)km) | Va2

k

But
N-vam = D> am- Y am
k k even & odd
= Y a- )y @
¢ odd ¢ even
=0
by L.19. O

Proposition 1.21 Assume now that ¢ is a continuous compactly supported
solution of a finite dilation equation

k1
¢ =Y aD.Tio,

k=ko

and that it is the scaling function for a multiresolution analysis.
Then

(i) > ¢(x—Fk) is a nonzero constant (and in fact the constant is [ ¢(x) d
and so is of modulus 1).

(i) If >k evenkCk = D4 oddFck, then there are coefficients ay so that

Z agd(r — k) = x.
keZ

In fact . i,
ak:/ t@dwl«/ o(t) dt

Proof.
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/_Z¢<x>dx -

by Lemma [[.T5. Thus if it is possible to find coefficients (by)xez so that

Zbk¢($ —k)=1

kEZ

(i) We know that

(note that since ¢ is compactly supported in [kg, k1] by Lemma [[.G, for
each x there are only a finite number of k with o — k € [ko, k1] and so
the sum has only a finite number of nonzero terms for each z) then

/_Zde = /_Ooqb(:v—f)dqr
_ /_w<2bkq§x— ) oz —0)de

keZ
= / Zbkqﬁx— ¢(x —0)dx
 kez
o k- k0+e
= / bpd(x — k)p(x — ) dx
0 f— k‘o ki1+4

since ¢(x — k) # 0=z — k € [ko, k1]
=z € [ko+ k, ky + K]

and so p(z — k)p(z — £) #0
= [ko+ k k1 + k| N[ko+ ki + 0] #0
=ko+k<ki+{ k+k>k+/
=>k<k—ko+{l, k>ky—Fk +/¢

= Z bk/ o(x — k)o(x — 0) da

k=ko— k1+4 -

— by

Thus there is only one possible choice for the b, but that does not
show any such b, exist. It does follow that

Sot-h = [ ota

if any such by, exist (because the reciprocal of the integral is its complex
conjugate).
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To prove that this is possible, take

A= o(k)

kEZ

and

fle) =)oz —k).

kEZ

Then f(z) is a continuous function because there are only finitely many
nonzero terms in the sum at (or near) any given z. In fact for = in any
interval (n —1,n + 1),

n+1—ko

fla)="Y_ olz—k)

k=n—1—kq

is given by a finite sum of continuous functions and therefore is con-
tinuous on (n — 1,n + 1). As this is so for all n, f(x) is continuous on

R.
Atz =neZ,
Fn) =3 ¢n—k) =) o()=A
kezZ LeZ
By induction on m, we show that for m = 0,1,2,... we have
n
) =

Assuming that this is known to be true for m, consider

f<2:+1> B Z¢(2:+1_k>

kEZ

- Z icjﬂgb <27r7zl+1 - 2k—j>

kEZ j=ko

put £ =2k +j
jg=0-2k
k1+2k

Y S (L)

k€Z t=ko+2k

= Z Zcé—2k\/§¢ (2% - 5)

{ keZ
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PXIER

Slnce
B - even c,/2 if ¢ even
DreznV2 = L B G odd
V2

1

—
MM

N[0 [ =
O
I

- ()

This completes the induction proof and so we can conclude from con-
tinuity of f(z) and density of the rationals of the form n/2™ in R that

flx) =\

From the remarks at the beginning of the proof we could conclude that

1:/_ZZ¢@— dx—/ f(@)g(@) dr = A / 6()

and thus A = [*°_ ¢(z) dx

(ii) Observe that if its is possible to find (ag)kez so that

Zakgzﬁ(x —k)==x

k€EZ

then we can calculate a, as

/Oox¢(x—€)dx = Zak/ d(x — k)p(x — 0) dz
e kez -
= w

and so

a = /Oox<b(:c—€)dx

plj:y:a:—é
- [ w0

= /_Zy@dx—l—é/::@dg”

To prove that any such a; exist, we let

=Y o = [ o)

keZ
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(from part (i)). We know that |A| = 1 and so 1/A = A. Replacing ¢(x)
by A¢(z) we can assume that A = 1.

Then put
p="_ko(k)
keZ

(a finite sum because ¢ is compactly supported) and

g(x) = (n+k)p(z— k)

keZ

We aim to show that g(z) = x.

First note that g(x) is continuous (by the same sort of argument as was
used to show that f(x) was continuous in (i): the g(z) is a finite sum
of continuous terms (u + k)¢(xz — k) on any interval (n — 1,n + 1)).

Next observe that for ¢ € Z we have

g(0) = Y (n+ ke —k)
putm=~¢—k
k=/0—m

= D (u+L—m)d(m)
= Zu+€ +Z
= (u+7) Zqﬁ Zm(bm

=u+€u
=/

Next we show by induction on n that

¢ ¢
g<2—n)—2—n VleZn=012...

The initial step n = 0 has just been done and it remains to do the
induction step. Assume the result is true for n and look at

g (2f+1> = D> (u+k)o <2f+1 —~ k)

k
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l .
put m =2k +j
7 =m —2k

_ ;untk S e zkf¢(__m)
= (Z(M-Fk)cm—%\@)gb(;n—m)

m k
Looking at the bracketed sum, we find

Z(,u + k) ok V2

k

= Z(M"‘%—%‘i‘k)@nak\/ﬁ
i

SRS IR TG
— ( )ZCm 2k\/§——z — 2k) 2 V2
= (u—l—;)l—g\/ﬁ Z

r—m €VeIl
see the proof of (i) for the justification of the 1.

Z > evenrer if m even
e = >, oddrer  ifmodd

r—m €VeIn

and we have assumed
> e Y e
r even » odd
and so we conclude that both sums

S o= Y e =5 e

r even » odd r

Now put A =) rc, and then we have

2A 2A
R TI.F BTR.

2 2 2 4
k

49
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Using this in the above calculation, we have

9<2n£+1) = Z(“+%_%>¢(2ﬁn—m>

using the induction hypothesis
B 12 N 1 V2A
- ond 2 4

We want the bracketed term to be zero and we can show this by ap-
plying the above to £ = 2s even. We get

25 \ s\ 2s 1 V2A s 1 V2A
g(2n+1>9(2_n>2n+1+(§_T>27+(§_T

but we know that
(i) _ 5
I\on) = o

and so we must have (% — %) = 0. Thus the induction step is

complete.

(It is not of interest now, but we have actually shown
V2A 1

which must then be equal to ), k¢(k), the definition of p.)
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Having established g (2%) = 2% (for all £ € Z,n > 0) it follows by
continuity that g(x) = x, or

S+ K)ole — k) = a.

k

Corollary 1.22 With the same hypotheses as in [I.21 and

Y=Y (—)FerdsTio
k

then -
| (4Bt —gydz =0

o0

foralla,8€C, all j € Z.

Proof. From [[.Z]] we know that there are a; and b; so that

Zbk¢($_k) =1
kEZ

Zakqﬁ(aj —k) =z

keZ

and hence

Z(aak + Bbr)p(z — k) = ax + 8

keZ
We deduce that

| (xR = [ 3o+ p)o( - oG- ) da

—00 —0 ke
Note that ¢(x — k) is supported in
support(¢) + k while ¢(x — j) has compact
support and so there are only a finite num-
ber of terms in the sum which can ever be
nonzero

= 3 [t ghote — kil = ) da

= 0 since Tp¢ L T

It follows that

/_oo(aerﬁ)w(ﬂc—j)dfvZ/m(ax+3)¢(l’—j)dl‘=0-

[e.o] —00
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Corollary 1.23 With the same hypotheses as in [I.23, if f(x) = ax + (3 for
all z in the support of DonTjtp, and f € L*(R), then

f L Doy
Proof.
1DeTp = [ DT i
_ /°° (o + B) (Do T50)(2) de

_ / T oz + VIO @TE =) da
put y =2"x
dy = 2" dx
> —d
= | (g +5) =%
= 0 by [.22

Note. This Corollary tells us that in a wavelet expansion

f =" {f. DaTjih) DonTy)

n,jEZL

of f € L*(R) we get zero contributions from certain n and j where there is
a linear part of the graph of f. But to make this work we need 1 to come
from a multiresolution analysis with a scaling function ¢ which is compactly
supported and continuous, and we need ), aven kcx = >, odd Fcx-

A Extension of the Fourier transform to L?(R)

The integral formula for the Fourier transform

1€ = [ s

makes good sense only for f € L*(R), but we can extend F to L*(R) via a
continuity argument.
One needs to establish that for f € L'(R) N L*(R), we have Ff € L*(R)

and

1Ffllz = [ fl2-
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Using linearity of F this implies that the restriction of F to L*(R) N L*(R),

f

restricted- L'(R) N L*(R) — L*(R)

is uniformly continuous. In fact f1, fo € L*(R) N L*(R) =

IFCf) = FF)lle = 1F(fr = f)ll2 = 12 = fall2

and so, given any € > 0, || f1 — falla < 0 = = [|F(f1) — F(f2)|2 < e.

Now Flestricted 18 @ uniformly continuous function on a dense subset
L'(R) N L*(R) of L*(R) with values in a complete space L*(R), and from
this there is a general theorem that states that F..qi1icteq Nas a unique
continuous extension to a continuous

Fextended: L*(R) — L*(R).

Moreover, it is easy to see that this o tangeq 18 linear.

The general way to define Fo tondedf for f € L*(R) is to take any se-
quence (f,)2; in L*(R)NL?*(R) which converges to f in L*(R). Then (f,)>,
is a Cauchy sequence in L?*(R) and by uniform continuity (]——restricted L]‘”n):):1
must be Cauchy in L*(R). Hence lim, o Fpogtrictodfr Must exist in L*(R)
by completeness and we define Foytonded/ to be that limit. The thing we
need to check is that we only get one value for Foytandeqf 0 this way, that
is that if (g,)%; is another sequence in L'(R) N L*(R) which converges to f

in L*(R), then

im Fpostrictedfn = 1M Froctricteddn (2)

n—oo n—oo

but this can be verified by interspersing the two sequences to consider the
sequence

(f1,91, f2, g2, ...) — [ in L*(R).

Since

(F, restrictedf 1, F restricted 91> F restrictedf 2, 7, restricted92 - - )

must have a limit, we get (P).
A more concrete way to say what the extension is is to choose the sequence
(fn)o2, explicitly to be

if |[x] <n
if |[x] > n

) = Xm0 ) = { J
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Then

1= FlE = / @) — f@) de

N /_OO (X(=o0-m) () + Xm0 () | (2) | dz

o
— Qasn— o

by the Lebesgue dominated convergence theorem (because the integrand — 0
pointwise as n — oo and is pointwise dominated in absolute value by |f(z)|?
which is integrable). Note that f, € L'(R) N L*(R) as it is easily seen
to be in L*(R) and it is compactly supported (on [—n,n] and so || f,|1 <
V20| fall2 < V20| f|l2 — see proof of part (iv) of Proposition [L.5). Thus we

can say explicitly that
Fextended/ = nh_,IEo Ffa

(limit in L?(R) norm). For Ff, we have the integral formula
File) = [ h@e
= /n f(z)e 2™ dg;
The extension of F to L*(R) will satisfy

||fextendedf||2 = |I.f[l2

and we usually denote the extension by F.

An important fact about this extension is that it has an inverse (so it is
a bijection of L*(R) to L*(R)) and the inverse mapping is given by almost
the same formula as F. The inverse will be the extension (in the same way
as F is extended) of the mapping on L!'(R) N L?(R) given by

(Flg)(x) = / " g(e)eE de

—00
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