Mathematics 414 2003–04 Exercises 6 [Due Monday March 1st, 2004.]

1. Let $(f_n)_{n=1}^{\infty}$ be a sequence in C(G) (where $G \subset \mathbb{C}$ is open), $f: G \to \mathbb{C}$ a function and $K \subset G$ compact. Verify carefully that $f_n \to f$ uniformly on K (as $n \to \infty$) if and only if

$$d_K(f_n, f) = \sup_{z \in K} |f_n(z) - f(z)| \to 0$$

as $n \to \infty$.

- 2. For each of the following open $G \subset \mathbb{C}$, exhibit explicitly an exhaustive sequence $(K_n)_{n=1}^{\infty}$ of compact subsets of G.
 - (a) G = D(a, r)
 - (b) $G = \{ z \in \mathbb{C} : r_1 < |z| < r_2 \}$
 - (c) $G = \mathbb{C} \setminus \mathbb{Z}$
 - (d) $G = \{ z \in \mathbb{C} : 0 < \Re z < 1 \}$
- Let G ⊂ C be open, (f_n)[∞]_{n=1} a sequence of functions f_n: G → C and f: G → C a function. We say that f_n → f locally uniformly on G if for each z₀ ∈ G there is a disk D(z₀, δ) about z₀ (of positive radius δ > 0) so that f_n → f uniformly on D(z₀, δ).

Show that $f_n \to f$ locally uniformly if and only if $f_n \to f$ uniformly on compact subsets of G.

Let G ⊂ C be open and ρ a metric on H(G) such that convergence in ρ corresponds to uniform convergence on compact subsets of G. Fix z₀ ∈ G. Show that that the point evaluation map δ_{z₀}: H(G) → C given by δ_{z₀}(f) = f(z₀) is continuous.

That is show that if $f_n \to f$ in $(H(G), \rho)$ then $\delta_{z_0}(f_n) \to \delta_{z_0}(f)$.

Show that δ_{z_0} is linear and multiplicative $(\delta_{z_0}(fg) = \delta_{z_0}(f)\delta_{z_0}(g))$. Deduce that $\mathcal{I} = \ker \delta_{z_0} = \{f \in H(G) : \delta_{z_0}(f) = 0\}$ is a closed ideal in H(G) (that is \mathcal{I} is a vector subspace, has the property $fg \in \mathcal{I}$ if $f \in \mathcal{I}, g \in H(G)$ and is also closed as a subset of H(G)).

- 5. Let $G \subset \mathbb{C}$ be open and ρ a metric on H(G) such that convergence in ρ corresponds to uniform convergence on compact subsets of G.
 - (a) Show that the map $f \mapsto f' : H(G) \to H(G)$ is continuous. That is show that if $f_n \to f$ in $(H(G), \rho)$ then $f'_n \to f'$ in $(H(G), \rho)$. [Hint: Use the Cauchy integral formula to show local uniform convergence.]
 - (b) Show that if $\mathcal{F} \subset H(G)$ is relatively compact, then $\{f' : f \in \mathcal{F}\}$ is also relatively compact in H(G).