Mathematics 414 2003–04 Exercises 4 [Due Monday February 2nd, 2004.]

1. Let γ be a piecewise C^1 closed curve in $\mathbb{C} \setminus \{i, -i\}$. Find all possible values for

$$\int_{\gamma} \frac{1}{z^2 + 1} \, dz$$

2. Let $\gamma: [0, 2\pi] \to \mathbb{C}$ be the curve $\gamma(t) = re^{it}$ where r > 0 and $r \neq 2$. Find

$$\int_{\gamma} \frac{z^2 + 1}{z(z^2 + 4)} \, dz$$

as a function of r.

3. Suppose f(z) is analytic in an annulus $R_1 < |z - a| < R_2$ (where $0 \le R_1 < R_2 \le \infty$). Show that f has a Laurent series expansion

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n \qquad (R_1 < |z - a| < R_2).$$

4. Suppose f(z) is analytic in an annulus $R_1 < |z - a| < R_2$ (where $0 \le R_1 < R_2 \le \infty$) and that f has two Laurent series expansions

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n = \sum_{n = -\infty}^{\infty} b_n (z - a)^n \qquad (R_1 < |z - a| < R_2).$$

Show that $a_n = b_n$ for all n. [Hint: Laurent series converge uniformly on |z - a| = r for $R_1 < r < R_2$. Allows justification of exchange of integration and sum.]

{**Note.** We have been using this quite often, though it was not stated in the notes. We did justify the power series version of this.}

- 5. Show that $f(z) = \exp(1/z^2)$ has an essential singularity at z = 0. Given $w \in \mathbb{C} \setminus \{0\}$, show that there is a sequence $(z_n)_{n=1}^{\infty}$ with $\lim_{n\to\infty} z_n = 0$ and $f(z_n) = w$.
- 6. Give an example of an analytic function that is analytic except at z = 1 and z = 2, has an essential singularity at z = 1 and a pole of order 3 at z = 2. Find its residue at z = 2.