Mathematics 414 2003–04 Exercises 2 [Due Tuesday November 18th, 2003.]

Suppose S ⊆ C is any set and f_n: S → C (n = 1, 2, 3, ...) are a sequence of continuous functions. Suppose f_n → f uniformly on S (as n → ∞) for a function f: S → C. Suppose γ: [a, b] → S is a piecewise C¹ curve in S. Show that

$$\lim_{n \to \infty} \int_{\gamma} f_n(z) \, dz = \int_{\gamma} f(z) \, dz$$

2. Suppose $G \subseteq \mathbb{C}$ is an open set and $\phi: [a, b] \times G \to \mathbb{C}$ is a continuous function (on $[a, b] \times \mathbb{C} \subseteq \mathbb{R} \times \mathbb{C} \equiv \mathbb{R}^3$). Define a function $f: G \to \mathbb{C}$ by

$$f(z) = \int_{t=a}^{b} \phi(t, z) dt \qquad (z \in G).$$

Show that f is continuous on G. [Hint. Fix $z \in G$ and show how to choose $\delta_0 > 0$ so that $\overline{D}(z, \delta_0) \subseteq G$. Use uniform continuity of ϕ on the compact set $[a, b] \times \overline{D}(z, \delta_0)$.]

(This fact is used in the proof of Theorem 1.20, to show that $\operatorname{Ind}_{\gamma}$ is a continuous function on $\mathbb{C} \setminus \gamma$ when γ is a piecewise C^1 curve. We can write

$$\operatorname{Ind}_{\gamma}(z) = \frac{1}{2\pi i} \sum_{j=1}^{n} \int_{a_{j-1}}^{a_j} \frac{\gamma'(t)}{\gamma(t) - z} \, dt$$

where $\gamma: [a, b] \to \mathbb{C}$, $a = a_0 < a_1 < \cdots < a_n = b$ and γ is C^1 on each interval $[a_{j-1}, a_j]$. Our exercise shows that each of the integrals is a continuous function of z.)

- 3. Suppose $G \subseteq \mathbb{C}$ is an open set and $f_n: G \to \mathbb{C}$ (n = 1, 2, 3...) are a sequence of analytic functions which converge uniformly on G to a function $f: G \to \mathbb{C}$.
 - (a) Show that f must be analytic. [Hint. Morera's Theorem.]
 - (b) Show that

$$\lim_{n \to \infty} f'_n(z) = f'(z)$$

for each $z \in G$. [Hint. Fix z and choose δ_0 as in question 2. Use the Cauchy integral formula to express $f'_n(z)$ as an integral around $|\zeta - z| = \delta_0$. Apply question 1.]

4. Suppose $f: \mathbb{C} \to \mathbb{C}$ is an entire function and it satisfies

$$|f(z)| \le C(|z|+1)^n \qquad (\text{all } z \in \mathbb{C}),$$

for some constant $C \ge 0$ and some nonnegative $n \in \mathbb{Z}$. Show that f must be a polynomial of degree at most n. [Hint: Consider the proof of Liouville's theorem.]

5. Suppose $f: \mathbb{C} \to \mathbb{C}$ is an entire function which is not constant and let $w \in \mathbb{C}$, $\delta > 0$. Show that there is some $z \in \mathbb{C}$ with $|f(z) - w| < \delta$. [Hint. If not, apply Liouville's theorem to g(z) = 1/(f(z) - w).]

(Thus fact is called the Casorati-Weierstrass theorem. Notice that it says that $f(\mathbb{C})$ is dense in \mathbb{C} for any nonconstant entire function f.)

- 6. Let $G \subseteq \mathbb{C}$ be open and let γ be a piecewise C^1 curve in G which is null-homotopic in G.
 - (a) Show that $\operatorname{Ind}_{\gamma}(a) = 0$ for each $a \in \mathbb{C} \setminus G$.
 - (b) Let $a \in G \setminus \gamma$ and let $f: G \to \mathbb{C}$. Show that the Cauchy integral formula

$$\frac{m!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^m} dz = f^{(m)}(a) \operatorname{Ind}_{\gamma}(a)$$

holds. [Hint: Let σ be the circle |z - a| = r traversed $-\operatorname{Ind}_{\gamma}(a)$ where r > 0 is suitably small so that $\sigma \subset G$. Consider the chain $\Gamma = \gamma + \sigma$ in $G \setminus \{a\}$.]