Chapter 7: Riemann Mapping Theorem
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7.1 Theorem (Hurwitz’ Theorem). Let G be a connected open set@and( f,,), a sequence
in H(G) which converges t¢ € H(G) (uniformly on compact subsets G). Supposef # 0,

D(a, R) C G and f(z) is never zero oz — a| = R. Then there exist, such that forn > n,
f» and f have the same number of zeros (counting multiplicitied)(n, R).

Proof. Sincef(z) is never zero on the circle, we have

inf =40 >0.
|Z_1£1‘:R|f(2)l

Forn large enough (say for > ng)

sup | fn(2) — f(2)] < 6/2

|z—a|=R

and thus on the circle — a| = R we have

[f(2) = fu(2)] < 6/2 <0 <[f(2)].

By Rouclés theoremf,, and f have the same total number of zeros inside the cjeclea| = R
(counting multiplicity) forn > ny. O

7.2 Corollary. LetG be a connected open set@hand ( f,,) a sequence it (G) such that each
fn is neverzero in G. Suppose,, — fin H(G). If f(z) is ever zero irGG, thenf = 0.

Proof. This follows immediately fronv.L

If fis not identically zero buf(a) = 0, then by the identity theorem we can chodse- 0
sufficiently small that = a is the only zero off in the closed diskD(z, R) and alsaD(z, R) C
G. Counting multiplicity, f will have a positive number of zeros in(a, R) and by Hurwitz so
must f,, for n large. O

7.3 Definition. If G C Cis open andf : G — C is an injective analytic function, thef is
called aconformal mappingrom G to f(G).

Recall thatf(G) is necessarily open anfi*: f(G) — G is automatically analytic by the
open mapping theorem. Alsg/(z) is never zero inG and this leads to the angle-preserving
property of conformal mapping that gives them their name:
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If v, and, are twoC* curves inG which meet at an angl¢to one another at
a € G (sayy1(0) = 12(0) = a andarg(v;(0)) — arg(y4(0)) = 0), thenf o v, and
f o7, also meet at an angteat f(a).
To avoid worrying about ambiguity of the argument, we could restate

arg(v1(0)) — arg(v5(0)) = 0

as

2~ (0
6—10 fy}( ) > O
75(0)
(with @ restricted to a range such @is27) — which meand is the angle you would need to turn
v5(0) anticlockwise to align it withy; (0)).
The reasoning for the angle preserving property is that

The termconformalreally means angle-preserving at each point, but it is usual in complex
analysis to use it for injective analytic functions.

7.4 Corollary. If G C Cis a connected open set afd,), is a sequence of injective functions
in H(G) such thatf,, — f € H(G), then the limitf is either constant or injective.

Proof. Supposef is not constant and not injective. Then there exist € G, a # b, with
f(a) = f(b) = w. Taking f,(z) — w and f(z) — w instead of the originaf,, and f, we can
assume that = 0.

We can find a positivé < |a — b|/2 so thatD(a,d) C G, D(b,§) C G andf(z) never0 on
the circles|z — a| = ¢, |z — b| = . Applying Hurwitz’ theorem {.1), we find that for all large
n there exists,, € D(a,d) with f,(a,) = 0 = w. Similarly, for all largen there isb,, € D(b, )
with f,(b,) = 0 = w. By the choice o), D(a,d) N D(b,0) = 0 and thereforer,, # b,. Thus
fulan) = fu(b,) = 0 and this contradicts injectivity of;,. O

7.5 Examples. (i) The map

fi{zeC: —7/2<3(2) <7/2} — {2e€C:R(z) >0}
fz) = ¢

is a conformal mapping (of its domain onto its target set, the right half plane).

(i) There is no conformal map of the unit discD(0, 1) onto the whole complex plan€
(because the inverse functign': C — D(0, 1) would be a bounded entire function which
was not constant, contradicting Liouvilles theorem).
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(iii) If ad — bc # 0, then the function
_az+b

9(z) = cz+d

is called aMobius transformatioror a linear fractional transformation. Since these maps
are rational functions, we can (and often do) regard them as analytic functions

The conditionad — be # 0 is there to rule out constant functions and the ‘missing’ values
areg(oco) = a/c, p(—d/c) = oo (unlessc = 0, in which caser # 0 andd # 0, and we
have¢(z) = (a/d)z + (b/d), ¢p(o0) = 0.)

7.6 Proposition. Let ¢, 1) be Mobius transformations. Then
(i) ¢ o is a Mobius transformation.
(i) ¢: C — Cisa bijection and its inverse—': C — C is also a Mobius transformation.

(i) The Mobius transformations form a group (under composition).

Proof. Exercise. O

7.7 Proposition. Every Mdbius transformation can be expressed as a compositiondifihd
transformations of the following kinds:

(i) z — z+ a (translation)
@i) z+— Az (A > 0) (dilation)
(i) z+— ez (o € R) (rotation)

(iv) z — %

Proof. If ¢(z) = ijfl andc # 0, we can write

Gz +d)+ (b— )

o(z) = cz+d )

_a+bad1
¢ cczz—l—g

= ¢50¢4O¢3O¢20¢1(2);
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where
Bi(z) = z+=
hie) = 2
b(a) = |2-%
T )
O5(2) = —+=z

In the case: = 0,
8(2) = (afd)z + (b)d) = 5| Pz +

with 3 = arg(a/d), and thusp is a composition of a rotation, a dilation and a translation. [

7.8 Proposition. Let P : C — S? denote the stereographic projection map fr@hto the Rie-
mann sphere. I€' is a circle inC, then its image”(C) is a circle onS?. If L is a straight line in
C, thenP(L) U {(0,0,1)} is also a circle onS=.

Conversely, i} is a circle onS?, thenP~1(C)) is either a circle or a line inC.

In other words, circles on the Riemann sphere correspond to circles and lines in the plane
under stereographic projection (but the pointaator the north pole has to be added to lines to
close the circle on the sphere).

Proof. A circle (or line) inC has an equation
A@® +y*) + 2B +2yy+C =0
with A, 3,v,C € R. In complex terms, this can be rewritten in the form
Azz+ Bz +Bz+C =0.
(B = +1iv.) If A+#0we can multiply across byl and rearrange this as
|Az + B> = (A2 + B)(Az + B) = A%2|* + ABz + ABz + |B|* = |B]* — AC
and the conditionB|* > AC corresponds to a positive radius (not an empty ‘circle’ or a single
point). If A = 0, then|B|> > AC = 0 is the condition for the equation to be that of a genuine

line.
Now
§+in

P& M Q) =3 ave
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and we can use this in the equation of the circle/line to say that the ggints() on the stereo-
graphic projection of the circle/line onto the sphere must be those that satisfy

A@+JT;?W+Bit?+Bi:?+C:o
(and for lines the north pol®(co) as well). Observe that
E+in(E—in)  &4+n*  1-¢ 14¢
(1-¢)? (1-¢)* (1-¢* 1-¢
because? + n? + (2 = 1. Using this, we can simplify the equation to get
2B +2ym+(A-C)+ (A+C) =0.

This is the equation of a plane ®?, which intersects the sphere in a circle. Hertenaps
circles and lines to circles.
Conversely, starting with the equation of any plan&n

a1 § + asn + as¢ + ¢ = 0.

We can choos® = a;/2, v = a2/2, A = (az + ¢)/2 andC = (¢ — a3)/2. The point on the
plane closest to the origin is

(€n,¢) =

| )
ai, ag, as
a? + a3 + a?

and this is inside the sphere exactly when

\Jai+ a3+ a3 > |c.

So the condition for the plane to intersect the sphere in more than one point is
C=(A+0)P <al+as+a3=45"+4y*+ (A - 0)?
or
4AC < 4(B* + 7).
This is exactly what is needed to get a genuine circle or line. O

7.9 Theorem. Let C denote the class of all circles i (by which we mean all circles ift
together with the seté U {co} with L a line inC). Then Mobius transformations mapto C.

Proof. The equation of a circle or line i@ can be written in the form
AzzZ4+ B2+ Bz+C =0,

with A,C € R, B € C, and|B|> > AC.

It is quite easy to verify that an equation of this kind transforms to another equation of the
same type under the basic kinds obMus transformations (translations, rotations, dilations and
inversion in the unit circle). Since every@ius transformation is a composition of these, the
result follows. O
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7.10 Proposition. Given two lists of three distinct point i}, sayz1, zs, 23 andws, ws, ws, there
exists a unique Kbius transformatio satisfyinge(z;) = w; (j = 1,2, 3).

Proof. It is sufficient (for the existence part) to show that we can alwaysdinith

¢(21) =0, ¢(22) =1, ¢(2’3) = 00,

because if we can do this, we can findvhich does the same far,, w,, w3 and then we will
have(y ™ o ¢)(z;) = w;.
If 21, 29, 23 € C, the requiredp is provided by

Z9 —R3 %2 — 21

9(z) = 2o — 21 2 — 23
If one of thez; is co, we have the following formulae which work
1 .
(29 — 23) if 21 =00
Z — Z3
o) = 21 if 2 = 00
Z — Z3
1 .
(z—2) if z3=00
z2 — %1

To establish the uniqueness part of the result, suppased«) are two Mibius transforma-
tions that map the;’s to the corresponding),’s. Theny ! o ¢ is a Mobius transformation that
fixes thez;, j = 1,2,3. Butif

4 _az+b
(W o)) =,
the equation
az+b
cz+d -

multiplies out to
az +b=cz? + dz.
This is a quadratic equation which can only have two solutions unless it simplifies-t0 —
which mean$ = c¢=0,a = d and
az+b az
= — =z
cz+d d

This reasoning works too if we consider the case where one of theo — if (az+b)/(cz+d) =
z hasco as a solution, then = 0 and then the equation we get on multiplying out is linear (only
one finite solution unless it reducesoe= 0). O

7.11 Theorem.If |a| < 1 and|A| = 1, then

Z—a

B(z) = A

is a Mobius transformation that maps the unit diBg0, 1) bijectively to itself and also maps the
unit circle |z| = 1 to itself.

1—az
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Proof. If |z| = 1, then

zZ—a

[p(z)] = |A

Z—a

1—az

1—az
1 z—a

z1—az

since|z| = |z| =1

Z—a

zZ —alz|?

——| since|z| =1
Z—a

=1

Thus¢ maps the unit circle into itself. The image of the unit circle undenust be the whole
circle by 7.9, and thus) maps the unit circle to itself bijectively. Singe C — C is a bijection,
we must also have a bijectiain C\ {|z| =1} — C\ {|z| = 1}.

Note that¢ is continuous and \ {|z| = 1} has two connected components — the disc
D(0,1) and the complement of the closed unit discdn Now ¢(0) = —Xa € D(0,1), and
hence¢(D(0,1)) C D(0,1). Since¢(l/a) = oo, the same reasoning tells us thamaps
the exterior of the closed disc into itself. Singds a bijection ofC to C, we must have that
»(D(0,1)) = D(0,1) (and also that maps the exterior of the unit disc onto itself). O

7.12 Corollary. If a,b € D(0,1), then there exist a conformal map D(0,1) — D(0, 1) with
d(a) =b.

In fact the set of conformal maps of the unit disc onto itself forms a group under composition
(easy to check) and this corollary can be stated as saying that this group of self-transformations
of the unit disc actsransitivelyon the disc.

Proof. Take
zZ—a z—0b
¢1(z) = 1—az $2(2) = 1— b
Theng;(a) = 0, ¢2(b) = 0 and¢y, ¢, are conformal maps of the disc to itself. The one we want
is ¢, ' o ¢y, which satisfies

(62" 0 ¢1)(a) =b.
O

7.13 Theorem (Schwarz Lemma).Let f : D(0,1) — D(0,1) be an analytic function which
maps the unit dis®(0, 1) to itself. If f(0) = 0, then

) |f(z)] <|z|for0 < |z] < 1;
(i) [£(0)] <1
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(i) If equality holds in (ii) or if equality holds in (i) for any single+# 0, then

f(z) =Xz

where) is a constant of modulys\| = 1.

Proof. Letg(z) = @
Theng(z) is analytic for0 < |z| < 1 and it is has a removable singularity at= 0 since
f(0) = 0. It becomes analytic a@if we define

g(0) = lim M = 1'(0).

z—0 2z

Fixanumbe) < r < 1. For|z| =r

By the maximum modulus theorem for the analytic functigrit follows that|g(z)| < 1/r for
|z| <r.Fixz e D(0,1) and letr — 1~ to get

l9(2)] < 1.

This is true for allz € D(0, 1) and we deduce

‘@‘ <1, (0<|z|<1)
and from this
[f(2)] < 2| (0# 2 € D(0,1)).
This proves (i) and the fact tha(0)| < 1 proves (ii).
To prove (iii), observe that if we get equality, then we must have a painD (0, 1) where
lg(2)] = 1 — in other words, a point where the maximum modulug;a$ attained. By the

maximum modulus theorem again, this means thatust be a constant function ¢{z) = A
and then we must have| = 1. Hencef(z) = Az. O

7.14 Corollary. Let¢: D(0,1) — D(0,1) be any conformal map of the unit disc onto itself.
Then there exigt\| = 1 anda € D(0, 1) such that

Z—a

¢(2) = A

1—az

(that is, ¢ is a Mobius transformation of the kind studied above).
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Proof. Supposes(0) = a. Then let

_ ) —a
AR TE
Being the composition of two conformal mappings, D(0,1) — D(0, 1) is a conformal map
andy(0) = 0.
By the Schwarz lemmar(13), |¢'(0)| < 1.
But also,s»~': D(0,1) — D(0,1) is conformal and hag—'(0) = 0. Again by the Schwarz
lemma,

WO < 1
1
‘wwo»’ =
1
wm‘ =
H(O) > 1

Combining with|¢’(0)| < 1 gives|y’(0)| = 1. Therefore, by the Schwarz lemma,

v(z) = Az (]A[=1)

¢(z) —a _
T—aoz) —
Az +a
o(z) = 1+ Maz
- 2+ A\a
T4 )Nz

O

7.15 Theorem (Riemann Mapping Theorem).Let G C C be a simply connected connected
open set withG # C. Leta € G be arbitrary. Then there exists a (unique) conformal map
f:G — D(0,1) of G onto the unit disc which satisfies

f(a) =0andf'(a) > 0.

Proof of uniquenesslf there was a second conformal map: G — D(0, 1) with the given
properties, then
fog™':D(0,1) — D(0,1)

would be a conformal map and it would satisfy

(fog7)(0) = f(a) =0.
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Hence by7.14,
(fog ')(2) = Az for some) with [A| = 1.

Looking at the derivative at the origin, we find

(fog™)(0) = f(g'(0))(¢g™)'(0) = fl(d)g/(g—l(o)) = 7@

But, calculating it another way, we ga&t Hence)\ is a positive real number. But al$d| = 1
and that means = 1. Thusf o g~ ! is the identity function: and f = g.
The proof of existence will be divided into several steps.

Lemma 7.16.1f G C Cis a simply connected connected open setAnd: — C is analytic and
never vanishes, thefihas an analytic square root — that is, there exists an analytic: — C

with g(2)* = f(2).
Proof. There exists a branch &fg f in G (see chapter 2).

g(z) = el/D 18 f(2)

will do. O

7.17 Lemma.If G C C (G # C) is a connected open set with the property that every nowhere-
vanishing analytic function o6&’ has an analytic square root, then there exists an injective ana-
lytic function f on G with f(G) C D(0, 1).

Proof. Pickb € C\ G. Then there exists : G — C analytic withg(z)* = z — b. Thisg is
injective since

g(=1) =g(z) =2 —b=g(z) =g() =2 -b=2 =2

Now, by the open mapping theoremi( () is open. Pickw, € ¢(G) and choose: > 0
so thatD(wy, ) C ¢(G). ThenD(—wy,r) C C\ g(G) because if there exists a poiat €
D(—wy,r) N g(G), thenw = ¢(z) for somez; € G and also—w € D(wy,r) C g(G) which
tells us that-w = g(z,) for somez, € G. Now

9(z1) = —g(z2) = g(z1)* = g(z)*

= z1—b=2-0

= 21 =2

= g(z) = g(z1) = —g(22)
= g(z2) =0

= 0:g(z2)2—22—b

= 2=beC\G

and this contradicts, € G.
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Put
T

&) = 50 )

Then f is analytic onG (|g(z) + wo| > r for all z € G is proved above, and shows that the
denominator is neveb), injective onG sinceg is and alsof satisfies|f(z)| < 1/2 < 1 for
z €. O

7.18 Lemma. With the same hypothesis 6has in Lemma/.17, and fora € G a given point,
there exists an injective analytic function 6hsatisfying

f(G) < D(0,1)
fla) =0
f'(a) > 0

Proof. Replace the(z) obtained in Lemm&.17by

NEEG
1= (@)

with |A\| = 1, X suitably chosen to make the derivativeigiositive. O

7.19 Lemma.LetG C C be a connected open se&t,# C, with the property that every nowhere-
vanishing analytic function has an analytic square root. ket G be fixed. Then there exists
a conformal mapf : G — D(0, 1) of G onto the unit disc with the propertie§a) = 0 and
f'(a) > 0.

Observe that this lemma will complete the proof of the Riemann mapping thebrEn (

Proof. Let F denote the family of all analytic functions: G — C such that eitheyf = 0 or
else

fisinjective, f(G) C D(0,1), f(a) = 0andf’(a) > 0.

By Lemma7.18 F contains nonzero functions.

By Montels theorenf is relatively compact i (G). By Corollary7.4to Hurwitz’ theorem,
we can see that all functions in the closurefofn H(G) are either constant or injective. Since
all the function inF have the valu® at a, this must be true of all functions in the closure of
F. Hence the only constant function in the closure is 0 (which ig)iThe other functions
f in the closure must havé(G) c D(0,1). Since f(G) is open (open mapping theorem),
f(G) c D(0,1). Also, because the map— f'(a) : H(G) — C is continuous, all functions in
the closure ofF must satisfyf’(a) > 0. Since they are injective if not identically zerfi{a) # 0
and sof’(a) > 0 (unlessf = 0). The conclusion from these observations is that actually
closed inH (G). HenceF is compact inH (G).
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Since the magf — f’(a) : 7 — Ris a continuous function on a compact set, it must attain
its maximum value. Lef € F be a function withf’(a) as large as possible. As remarked earlier,
f is not the zero function anff(a) > 0.

We now show that this’ mapsG onto the unit disc (and so it is the required Riemann
mapping).

Suppose for the sake of obtaining a contradiction th@t) # D(0,1) and choosev €
D(0,1)\ f(G). By the assumption o' about analytic square roots, we can find H(G) with

h(z)? = % 1)
- h(z) - hia)
z) = /\;
92 = M)

where|A| = 1 and)\ is chosen to ensure thel(a) > 0.
Now g € F and

g'(a) =1g'(a)] = [(¢ 0 h)'(a)l,
whereg(¢) = (¢ — h(a))/(1 — h(a)¢). This leads to

g'(a) = [¢'(h(a))l' ()| 1 ,2|h’(a)\-

" 1— |h(a)

Differentiating () gives

2h(2)h'(2)

Evaluating at: = a we get
2h(a)l'(a) = (1 — |w]*) f'(a).

_ f@)@ = wP) _ fa)d = |wP)

(recallh(a)® = (f(a) —w)/(1 — wf(a)) = —w).
Thus

! . 1 h/

g'(a) = W’ (a)
_ 1 1_|w|2 "(a
TN AR
_ Lful,,
= S @

> f(a).
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The last step is justified because

L+ |w| > 2¢/|w]
1 -2/ |w|+|w| > 0
(1—+/|w))> > o,

The fact thaty’(a) > f'(a) contradicts the choice of € F as maximisingf’(a). This contra-
diction shows thaf (G) = D(0, 1). O

7.20 Theorem.LetGG C C be a connected open set. Then the following are equivalent properties
for G

(i) Gis simply connected
(i) Ind,(a) = 0 for each piecewis€" closed curve irG and eachu € C \ G.

(iii) For each analytic functionf : G — C and each piecewis€ closed curvey in G,

[, f(z)dz=0.
(iv) Every analytic functiorf : G — C has an antiderivative.

(v) For every analytic functiorf : G — C which never vanishes i@, there is a branch of
log finG.

(vi) Every never-vanishing analytit: G — C has an analytic square root.

(vii) G is homeomorphic to the unit disB(0, 1) (that is, there exists a continuous bijection
f: G — D(0,1) with a continuous invers¢—1).

(viii) C \ G is connected (this says exactly thdthas no “holes” — no bounded connected
components of \ G).

Proof. We know
() = (i) = (i) <= (v) < (V)

(see Chapter 2).

(v) = (vi) is easy —e(1/21°¢f js an analytic square root gt

(vi) = (vii): In the caselz # C, Lemma7.19gives this. FoiG = C, f(z) = z/(1 +|z|) isa
homeomorphism of to the unit disc.

(vii) = (i) is straightforward — since the disc is simply connected, so is anything homeo-
morphic to the disc.

It remains therefore to show that (viii) is equivalent to the rest.

(viii) = (ii): First, the assumption implies that every connected componefit 0f7 is
unbounded. A bounded connected comporief C \ G would be open and closed @\ G.
HenceFE would be closed irC sinceC \ G is closed. AsF is also bounded, it would be closed
in C. HenceF is closed inC \ G. E openinC \ G impliesE = (C\ G) N U with U c C open.
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HenceE = (C\ G)N U is open inC \ G. Being an open and closed subset it must be a union
of connected components 6f\ G, but that is impossible i€ \ G is connected and contains
oo ¢ E.

To show (i) take any piecewis€’ closed curvey in G. We know Ind (w) is constant on
connected components @f\ v. Hence constant on connected componentS §fG C C \ ~.
(Each connected component of the smaller set is contained in a connected component of the
larger one.) But we also know that there is just one unbounded connected compo@entof
and Ind, = 0 there. As all components @f\ G are unbounded, they must all be in the unbounded
component ofC \ v. HenceC \ G is contained in the unbounded componentof~ and so we
must have Ing(w) = 0forallw € C\ G.

(iv) = (viii): Suppose that (iv) holds butt \ G is not connected. Then we can write

C\G=KUL

where K and L are disjoint nonempty relatively closed subsetéjqf G. SinceG is open inC,
it is also open as a subset ©fand henceC \ G is closed inC. HenceK andL are closed in
C (even compact). Nowo € K orco € L — sayoc € L. Thenk c C and K is compact.
G =G UK is openinC.
Essentially, the idea is that we can find a finite number of closed cytviesG' \ K = G
with
Y Ind, (a) =1foralla € K

This is contradicts (iv) becaugéz) = 1/(z — a) is analytic onG, hence has an antiderivative

by (iv) and so
Ind,, (a) = L/ ! dz=0

211 v 2 a

for eachy.

The proof that we can find sue} is a bit tricky and so we will check out something a little
simpler which is good enough for our purpose. We use here the notation thattfax C,
[a,b] denotes the line segment fromto b, or the parameterised pati{t) = (1 — t)a + tb
O<t<. O

Lemma 7.21.1f G ¢ Cis open andk C G is compact then we can find a finite number of
closed line segmentis; = [a;,b;] (j = 1,2,...,n)in G\ K such that

1. For eachf: G — C analytic anda € K,

3 1) g~ oni f(a) )

7=1 Ly c—a
2. The number of times any given pointoccurs in the listiy, as, . . ., a,, of initial points of
the line segments is the same as the number of timescurs in the list, b, ..., b, of

the end points.
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Armed with this Lemma, we can use it fgfz) = 1 to get

& 1
Z/ dz = 2mi (a € K).
i Jr 2T a

Using our assumption (iv) tells us thit(z — a) has an antiderivative (call if) onG = G \ K
and so we have

Z/p Ziadz B Zg(bj) —g(a;) = Zg(bj) _Zg(ak) =

by the second property in the Lemma. This contradiction shows that(ifiii), once we verify
the Lemma.

Proof. (of Lemma7.21])

If G = C we can takd';, T, I's, T4 to be the four sides of a large square, where the square
containsK in its interior and the sides are traversed anticlockwise. Statement 1 of the Lemma is
true by the Cauchy integral formula.

The case wher& is empty is also trivial.

Assuming thatG # C andK # (). there is a positive shortest distance

6 =inf{la —w|:a € K,weC\G}

from K to the complement of:.

We now consider an infinite grid on the plane of squares with sides parallel to the real and
imaginary axes and a fixed side lengthc 6/+/2. To be exact, take all the squares of the grid
with vertices at the pointsr + imr (n,m € Z). By boundedness ok only a finite number of
these square can have a pointfofin them. We list all the squares,, Ss, ..., Sy of the grid
which intersectk” at any point (inside or on the edge 8f). To make things more precise let us
say thatS; means the set of points inside or on the edge of the square. Because the squares have
diagonalr/2 < 4, no two points ofS; can be separated by as much as distan&ince there is
one of the points of); that belongs tdv, we can conclude from the choice dthatS; c G.

Now write down for eaclt; the 4 sides of it so that the boundary square is traversed anti-
clockwise. We end up with NV line segment$’;, I';, ..., I';y and let us write
It = a3, 0]

J J 7
From Cauchys integral formula we have that

f(2)

8s; < —a

dz = 2mif(a)

for a in the interior ofS; (and anyf € H(Q)). The integral is zero fou outsideS; and so

Z

d —Z F*Z_adz:Qm'f(a)

d8; zZ—Qa
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holds fora in the union of the interiors of ths;.

Also observe that each corner 8f occurs once as a starting point and once as an ending
point of a side ofS;. Hence the number of times any given point occurs amgr(@ < £ < 4N)
is the same as the number of times it occurs antgr(g < k& < 4N).

Some segments may occur twice in the IigtI';, ..., [';y. This happens if two adjacent
squares of the original grid meéf, but then the two segments will be traversed in opposite
directions. We can omit both from the Ii5t, I';, ..., '} without disturbing either the property

zk:/r jSZ)a dz =2mif(a)

or the property that every endpoint occurs as often as every initial point. Removing all such pairs
of segments, we end up with a list, I'y, .. . T',, (wherel'; = [a;, b;]).

We then haved) for a in the union of the interiors of thg;. Both sides of%) give continuous
functions ofa. The left side is continuous farnot onlJ; I'; while the right hand side is continu-

ous onG. It follows that the equality persists at all pointss G which are limits of points in the
union of the interiors of the;, but notin{J, I';. This will include alla € K because ifi € K
thena belongs in at least ong;. If a is an interior point ofS;, then we already know2j holds.
If a is on the edge of; but not a corner ob};, the adjacent square on the original grid must also
be one of the5;, and the side containingwould be canceled out. tf is a corner ofS; then all
4 squares of the grid that meet at that corner are among,thed all 4 segments that contain
(East, North, West and South @f must have been canceled out.

Thus all remaining segmenty are inG \ K and @) holds fora € K. O

7.22 Remark. As a consequence of the Riemann mapping theorem any questions about analytic
functions on a simply connected connected openGset C can be reduced to questions on

two simple domains — = C andG = D(0,1). However, translating some problems from

G to the unit disc may require some specific knowledge about the “Riemann mapping function”
f: G — D(0,1), or equivalently information about its inverge!: D(0,1) — G.

This leads to the study of problems concerning injective analytic functions on the unit disc.
One such problem attracted a lot of attention since the early part of the 20th century, although it
actually does not seem to have much practical value. It was known as the Bieberbach conjecture
and relates to the power series coefficients of injective functions on the unit disc. It said that if
> s an2™ is the power series of an injective analytic function on the disc, then

|an]

<n
[

It is possible to have equality. The function

k(z) = 2712” = a —22)2

is injective on the unit disc. It is known as the Koebe function.
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Bieberbach proved th&i,| < 2|a;| for any injective analytic function on the disc and that if
|CL2| = 2|CL1|, then

[e.9]

Z anz" = ag + ajak(az) 3

n=0

for somea, |a| = 1. In other words he proved his conjecture for the case 2 and showed that
equality holds only if the function is closely related to the Koebe function. He conjectured that
if |a,| = n|a,| for anyn > 2, then the function has to be as ) (

A lot of work was done, much of it related to the Bieberbach conjecture in some way, where
the Koebe function (or really the functior®) was the extremal case. The Bieberbach conjecture
itself was making slow progress (it was proved for most values @b ton = 7) until Louis de
Branges proved the whole conjecture in 1985 (Acta Math. volume 154, pages 137-152).

It does not seem that knowing the Bieberbach conjecture has any important consequence, but
the result attracted a lot of attention because the conjecture remained unsolved for so long. The
original result of Bieberbach for = 2 can be used to prove the following elegant result (which
is quite useful).

7.23 Theorem (Koebel /4-theorem). If f is an injective analytic function on the unit disc, then
the range off contains the disc

1
b (10)41701).
Unlessf has the formg), the range off will contain a disc abouf (0) of radiusr > (1/4)|f/(0)|.

| omit the proof of this as | have also omitted the (reasonably elementary) material necessary
to show|as| < 2|ay].
One other theorem that was mentioned earlier, but we have not covered, is Runges theorem.

Theorem 7.24 (Runges theorem)LetG C C be open and? C @\G a subset with the property
that the closure o intersects every connected componentof G. Then the set of rational

functions with poles only at points éf (here we include = oc as a possible pole) is dense in
H(G).

Again we omit the full proof, although LemmaZ21helps quite a lot in the proof. Here is a
sketch. IfK C G is compact, ang’ € H(G), then Lemma/.21expresseg(a) fora € K as an
integral (hence approximable by a Riemann sum) of functions

g(a) = 1 f(?)

2mz —a

with poles at points € GG\ K. The essential part of the proof (not a very short part) consists in
showing the functiong.: K — C can be approximated uniformly did by rational functions
with poles inFE.
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The conclusion of this argument is that fore H(G) and K C G compact, it is possible to
find a rational function(z) with poles only inE so that

sup | f(z) —r(2)|

zeK
is small. Finally, we do this for an exhaustive sequehgeC K, C K, C --- of compact
subsets of~ to produce a sequence of rational functiopé: ), each with poles only o&’ so that

sup 1) = ra(2)] < o

It follows then that-,, — fin H(G).

Corollary 7.25. Let G c C be open and assune \ G is connected. The the polynomial
functions are dense i (G).

Proof. Apply Runges theorem witlt = {co} and note that rational functions with poles only
atoo are polynomials. O

Remark 7.26. One reason to advertise the existence of Runges theorem in advance was to state
that it can be used to exhibit pointwise convergent sequences of analytic functions with discon-
tinuous limits.

LetG, = {z € C: Rz # 1/(2n)} (the complex plane minus a vertical line) andAgt C G,
be the compact set

K,=L,UR,, L,={2€C:|z]<nRz<0},R,={2€C:|z|]<n,Rz>1/n}
Let f,,: G,, — C be the analytic function

0 Rz<1/(2n)
f"(z)_{ z Rz >1/(2n)

ThenC \ G, is connected and so the Corollary to Runges theorem says we can find a polynomial
pn(2) SO that

sup [£(2) — pal2)] < =
zeK, n

It follows that
lim p,(z) =

n—oo

0 ze UL, ={z€C:Rz<0}
z ze|JR,={z€C: Rz >0}

So the pointwise limit fails to be continuous along the imaginary axis (except at the origin and it
fails to be analytic along the whole imaginary axis).

Richard M. Timoney March 30, 2004



