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7.1 Theorem (Hurwitz’ Theorem). LetG be a connected open set inC and(fn)n a sequence
in H(G) which converges tof ∈ H(G) (uniformly on compact subsets ofG). Supposef 6≡ 0,
D̄(a,R) ⊂ G andf(z) is never zero on|z − a| = R. Then there existn0 such that forn ≥ n0,
fn andf have the same number of zeros (counting multiplicities) inD(a,R).

Proof. Sincef(z) is never zero on the circle, we have

inf
|z−a|=R

|f(z)| = δ > 0.

Forn large enough (say forn ≥ n0)

sup
|z−a|=R

|fn(z)− f(z)| < δ/2

and thus on the circle|z − a| = R we have

|f(z)− fn(z)| < δ/2 < δ ≤ |f(z)|.

By Rouch́es theorem,fn andf have the same total number of zeros inside the circle|z− a| = R
(counting multiplicity) forn ≥ n0.

7.2 Corollary. LetG be a connected open set inC and(fn) a sequence inH(G) such that each
fn is neverzero in G. Supposefn → f in H(G). If f(z) is ever zero inG, thenf ≡ 0.

Proof. This follows immediately from7.1.
If f is not identically zero butf(a) = 0, then by the identity theorem we can chooseR > 0

sufficiently small thatz = a is the only zero off in the closed disk̄D(z, R) and alsoD̄(z, R) ⊂
G. Counting multiplicity,f will have a positive number of zeros inD(a,R) and by Hurwitz so
mustfn for n large.

7.3 Definition. If G ⊂ C is open andf : G → C is an injective analytic function, thenf is
called aconformal mappingfromG to f(G).

Recall thatf(G) is necessarily open andf−1 : f(G) → G is automatically analytic by the
open mapping theorem. Also,f ′(z) is never zero inG and this leads to the angle-preserving
property of conformal mapping that gives them their name:
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If γ1 andγ2 are twoC1 curves inG which meet at an angleθ to one another at
a ∈ G (sayγ1(0) = γ2(0) = a andarg(γ′1(0)) − arg(γ′2(0)) = θ), thenf ◦ γ1 and
f ◦ γ2 also meet at an angleθ atf(a).

To avoid worrying about ambiguity of the argument, we could restate

arg(γ′1(0))− arg(γ′2(0)) = θ

as

e−iθ
γ′1(0)

γ′2(0)
> 0

(with θ restricted to a range such as[0, 2π) — which meansθ is the angle you would need to turn
γ′2(0) anticlockwise to align it withγ′1(0)).

The reasoning for the angle preserving property is that

e−iθ
(

(f ◦ γ1)′(0)

(f ◦ γ2)′(0)

)
= e−iθ

(
f ′(a)(γ1)′(0)

f ′(a)(γ2)′(0)

)
= e−iθ

(
γ′1(0)

γ′2(0)

)
> 0.

The termconformalreally means angle-preserving at each point, but it is usual in complex
analysis to use it for injective analytic functions.

7.4 Corollary. If G ⊂ C is a connected open set and(fn)n is a sequence of injective functions
in H(G) such thatfn → f ∈ H(G), then the limitf is either constant or injective.

Proof. Supposef is not constant and not injective. Then there exista, b ∈ G, a 6= b, with
f(a) = f(b) = w. Takingfn(z) − w andf(z) − w instead of the originalfn andf , we can
assume thatw = 0.

We can find a positiveδ < |a− b|/2 so thatD̄(a, δ) ⊂ G, D̄(b, δ) ⊂ G andf(z) never0 on
the circles|z − a| = δ, |z − b| = δ. Applying Hurwitz’ theorem (7.1), we find that for all large
n there existsan ∈ D(a, δ) with fn(an) = 0 = w. Similarly, for all largen there isbn ∈ D(b, δ)
with fn(bn) = 0 = w. By the choice ofδ, D(a, δ) ∩ D(b, δ) = ∅ and thereforean 6= bn. Thus
fn(an) = fn(bn) = 0 and this contradicts injectivity offn.

7.5 Examples. (i) The map

f : {z ∈ C : − π/2 < =(z) < π/2} → {z ∈ C : <(z) > 0}
f(z) = ez

is a conformal mapping (of its domain onto its target set, the right half plane).

(ii) There is no conformal mapφ of the unit discD(0, 1) onto the whole complex planeC
(because the inverse functionφ−1 : C→ D(0, 1) would be a bounded entire function which
was not constant, contradicting Liouvilles theorem).
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(iii) If ad− bc 6= 0, then the function

φ(z) =
az + b

cz + d

is called aMöbius transformationor a linear fractional transformation. Since these maps
are rational functions, we can (and often do) regard them as analytic functions

φ : Ĉ→ Ĉ.

The conditionad − bc 6= 0 is there to rule out constant functions and the ‘missing’ values
areφ(∞) = a/c, φ(−d/c) = ∞ (unlessc = 0, in which casea 6= 0 andd 6= 0, and we
haveφ(z) = (a/d)z + (b/d), φ(∞) =∞.)

7.6 Proposition. Letφ, ψ be Möbius transformations. Then

(i) φ ◦ ψ is a Möbius transformation.

(ii) φ : Ĉ→ Ĉ is a bijection and its inverseφ−1 : Ĉ→ Ĉ is also a M̈obius transformation.

(iii) The M̈obius transformations form a group (under composition).

Proof. Exercise.

7.7 Proposition. Every M̈obius transformation can be expressed as a composition of Möbius
transformations of the following kinds:

(i) z 7→ z + a (translation)

(ii) z 7→ λz (λ > 0) (dilation)

(iii) z 7→ eiαz (α ∈ R) (rotation)

(iv) z 7→ 1
z
.

Proof. If φ(z) = az+b
cz+d

andc 6= 0, we can write

φ(z) =
a
c
(cz + d) +

(
b− ad

c

)
cz + d

=
a

c
+

(
b

c
− ad

c2

)
1

z + d
c

= φ5 ◦ φ4 ◦ φ3 ◦ φ2 ◦ φ1(z),
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where

φ1(z) = z +
d

c

φ2(z) =
1

z

φ3(z) =

∣∣∣∣bc − ad

c2

∣∣∣∣ z
φ4(z) = eiαz

(
α = arg

(
b

c
− ad

c2

))
φ5(z) =

a

c
+ z

In the casec = 0,

φ(z) = (a/d)z + (b/d) =
∣∣∣a
d

∣∣∣ eiβz +
b

d
,

with β = arg(a/d), and thusφ is a composition of a rotation, a dilation and a translation.

7.8 Proposition. LetP : C → S2 denote the stereographic projection map fromC to the Rie-
mann sphere. IfC is a circle inC, then its imageP (C) is a circle onS2. If L is a straight line in
C, thenP (L) ∪ {(0, 0, 1)} is also a circle onS2.

Conversely, ifC1 is a circle onS2, thenP−1(C1) is either a circle or a line inC.
In other words, circles on the Riemann sphere correspond to circles and lines in the plane

under stereographic projection (but the point at∞ or the north pole has to be added to lines to
close the circle on the sphere).

Proof. A circle (or line) inC has an equation

A(x2 + y2) + 2βx+ 2γy + C = 0

with A, β, γ, C ∈ R. In complex terms, this can be rewritten in the form

Azz̄ + B̄z +Bz̄ + C = 0.

(B = β + iγ.) If A 6= 0 we can multiply across byA and rearrange this as

|Az +B|2 = (Az +B)(Az̄ + B̄) = A2|z|2 + AB̄z + ABz̄ + |B|2 = |B|2 − AC

and the condition|B|2 > AC corresponds to a positive radius (not an empty ‘circle’ or a single
point). If A = 0, then|B|2 > AC = 0 is the condition for the equation to be that of a genuine
line.

Now

P−1(ξ, η, ζ) =
ξ + iη

1− ζ
,
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and we can use this in the equation of the circle/line to say that the points(ξ, η, ζ) on the stereo-
graphic projection of the circle/line onto the sphere must be those that satisfy

A
(ξ + iη)(ξ − iη)

(1− ζ)2 + B̄
ξ + iη

1− ζ
+B

ξ − iη
1− ζ

+ C = 0

(and for lines the north poleP (∞) as well). Observe that

(ξ + iη)(ξ − iη)

(1− ζ)2 =
ξ2 + η2

(1− ζ)2 =
1− ζ2

(1− ζ)2 =
1 + ζ

1− ζ

becauseξ2 + η2 + ζ2 = 1. Using this, we can simplify the equation to get

2βξ + 2γη + (A− C)ζ + (A+ C) = 0.

This is the equation of a plane inR3, which intersects the sphere in a circle. HenceP maps
circles and lines to circles.

Conversely, starting with the equation of any plane inR3

a1ξ + a2η + a3ζ + c = 0.

We can chooseβ = a1/2, γ = a2/2, A = (a3 + c)/2 andC = (c − a3)/2. The point on the
plane closest to the origin is

(ξ, η, ζ) =
−c

a2
1 + a2

2 + a2
3

(a1, a2, a3)

and this is inside the sphere exactly when√
a2

1 + a2
2 + a2

3 > |c|.

So the condition for the plane to intersect the sphere in more than one point is

c2 = (A+ C)2 < a2
1 + a2

2 + a2
3 = 4β2 + 4γ2 + (A− C)2

or
4AC < 4(β2 + γ2).

This is exactly what is needed to get a genuine circle or line.

7.9 Theorem. Let C denote the class of all circles in̂C (by which we mean all circles inC
together with the setsL ∪ {∞} withL a line inC). Then M̈obius transformations mapC to C.

Proof. The equation of a circle or line inC can be written in the form

Azz̄ + B̄z +Bz̄ + C = 0,

with A,C ∈ R,B ∈ C, and|B|2 > AC.
It is quite easy to verify that an equation of this kind transforms to another equation of the

same type under the basic kinds of Möbius transformations (translations, rotations, dilations and
inversion in the unit circle). Since every M̈obius transformation is a composition of these, the
result follows.
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7.10 Proposition.Given two lists of three distinct point in̂C, sayz1, z2, z3 andw1,w2,w3, there
exists a unique M̈obius transformationφ satisfyingφ(zj) = wj (j = 1, 2, 3).

Proof. It is sufficient (for the existence part) to show that we can always findφ with

φ(z1) = 0, φ(z2) = 1, φ(z3) =∞,

because if we can do this, we can findψ which does the same forw1, w2, w3 and then we will
have(ψ−1 ◦ φ)(zj) = wj.

If z1, z2, z3 ∈ C, the requiredφ is provided by

φ(z) =
z2 − z3

z2 − z1

z − z1

z − z3

.

If one of thezj is∞, we have the following formulae which work

φ(z) =


(z2 − z3)

1

z − z3

if z1 =∞
z − z1

z − z3

if z2 =∞
1

z2 − z1

(z − z1) if z3 =∞

To establish the uniqueness part of the result, supposeφ andψ are two M̈obius transforma-
tions that map thezj ’s to the correspondingwj ’s. Thenψ−1 ◦ φ is a Möbius transformation that
fixes thezj, j = 1, 2, 3. But if

(ψ−1 ◦ φ)(z) =
az + b

cz + d
,

the equation
az + b

cz + d
= z

multiplies out to
az + b = cz2 + dz.

This is a quadratic equation which can only have two solutions unless it simplifies to0 = 0 —
which meansb = c = 0, a = d and

az + b

cz + d
=
az

d
= z.

This reasoning works too if we consider the case where one of thezj is∞— if (az+b)/(cz+d) =
z has∞ as a solution, thenc = 0 and then the equation we get on multiplying out is linear (only
one finite solution unless it reduces to0 = 0).

7.11 Theorem.If |a| < 1 and|λ| = 1, then

φ(z) = λ
z − a
1− āz

is a Möbius transformation that maps the unit discD(0, 1) bijectively to itself and also maps the
unit circle |z| = 1 to itself.
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Proof. If |z| = 1, then

|φ(z)| =

∣∣∣∣λ z − a1− āz

∣∣∣∣
=

∣∣∣∣ z − a1− āz

∣∣∣∣
=

∣∣∣∣1z̄ z − a1− āz

∣∣∣∣ since|z| = |z̄| = 1

=

∣∣∣∣ z − a
z̄ − ā|z|2

∣∣∣∣
=

∣∣∣∣z − az̄ − ā

∣∣∣∣ since|z| = 1

= 1

Thusφ maps the unit circle into itself. The image of the unit circle underφ must be the whole
circle by7.9, and thusφ maps the unit circle to itself bijectively. Sinceφ : Ĉ→ Ĉ is a bijection,
we must also have a bijectionφ : Ĉ \ {|z| = 1} → Ĉ \ {|z| = 1}.

Note thatφ is continuous and̂C \ {|z| = 1} has two connected components — the disc
D(0, 1) and the complement of the closed unit disc inĈ. Now φ(0) = −λa ∈ D(0, 1), and
henceφ(D(0, 1)) ⊂ D(0, 1). Sinceφ(1/ā) = ∞, the same reasoning tells us thatφ maps
the exterior of the closed disc into itself. Sinceφ is a bijection ofĈ to Ĉ, we must have that
φ(D(0, 1)) = D(0, 1) (and also thatφ maps the exterior of the unit disc onto itself).

7.12 Corollary. If a, b ∈ D(0, 1), then there exist a conformal mapφ : D(0, 1) → D(0, 1) with
φ(a) = b.

In fact the set of conformal maps of the unit disc onto itself forms a group under composition
(easy to check) and this corollary can be stated as saying that this group of self-transformations
of the unit disc actstransitivelyon the disc.

Proof. Take

φ1(z) =
z − a
1− āz

, φ2(z) =
z − b
1− b̄z

.

Thenφ1(a) = 0, φ2(b) = 0 andφ1, φ2 are conformal maps of the disc to itself. The one we want
is φ−1

2 ◦ φ1, which satisfies
(φ−1

2 ◦ φ1)(a) = b.

7.13 Theorem (Schwarz Lemma).Let f : D(0, 1) → D(0, 1) be an analytic function which
maps the unit discD(0, 1) to itself. Iff(0) = 0, then

(i) |f(z)| ≤ |z| for 0 < |z| < 1;

(ii) |f ′(0)| ≤ 1;
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(iii) If equality holds in (ii) or if equality holds in (i) for any singlez 6= 0, then

f(z) ≡ λz

whereλ is a constant of modulus|λ| = 1.

Proof. Let g(z) = f(z)
z

.
Theng(z) is analytic for0 < |z| < 1 and it is has a removable singularity atz = 0 since

f(0) = 0. It becomes analytic at0 if we define

g(0) = lim
z→0

f(z)

z
= f ′(0).

Fix a number0 < r < 1. For |z| = r

|g(z)| =
∣∣∣∣f(z)

z

∣∣∣∣ < 1

r
.

By the maximum modulus theorem for the analytic functiong, it follows that |g(z)| < 1/r for
|z| ≤ r. Fix z ∈ D(0, 1) and letr → 1− to get

|g(z)| ≤ 1.

This is true for allz ∈ D(0, 1) and we deduce∣∣∣∣f(z)

z

∣∣∣∣ ≤ 1, (0 < |z| < 1)

and from this
|f(z)| ≤ |z| (0 6= z ∈ D(0, 1)).

This proves (i) and the fact that|g(0)| ≤ 1 proves (ii).
To prove (iii), observe that if we get equality, then we must have a pointz ∈ D(0, 1) where

|g(z)| = 1 — in other words, a point where the maximum modulus ofg is attained. By the
maximum modulus theorem again, this means thatg must be a constant function —g(z) ≡ λ
and then we must have|λ| = 1. Hencef(z) = λz.

7.14 Corollary. Let φ : D(0, 1) → D(0, 1) be any conformal map of the unit disc onto itself.
Then there exist|λ| = 1 anda ∈ D(0, 1) such that

φ(z) = λ
z − a
1− āz

(that is,φ is a Möbius transformation of the kind studied above).
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Proof. Supposeφ(0) = a. Then let

ψ(z) =
φ(z)− a
1− āφ(z)

.

Being the composition of two conformal mappings,ψ : D(0, 1) → D(0, 1) is a conformal map
andψ(0) = 0.

By the Schwarz lemma (7.13), |ψ′(0)| ≤ 1.
But also,ψ−1 : D(0, 1) → D(0, 1) is conformal and hasψ−1(0) = 0. Again by the Schwarz

lemma,

|(ψ−1)′(0)| ≤ 1∣∣∣∣ 1

ψ′(ψ−1(0))

∣∣∣∣ ≤ 1∣∣∣∣ 1

ψ′(0)

∣∣∣∣ ≤ 1

|ψ′(0)| ≥ 1

Combining with|ψ′(0)| ≤ 1 gives|ψ′(0)| = 1. Therefore, by the Schwarz lemma,

ψ(z) ≡ λz (|λ| = 1)

φ(z)− a
1− āφ(z)

≡ λz

φ(z) =
λz + a

1 + λāz

= λ
z + λ̄a

1 + λāz

7.15 Theorem (Riemann Mapping Theorem).LetG ⊂ C be a simply connected connected
open set withG 6= C. Let a ∈ G be arbitrary. Then there exists a (unique) conformal map
f : G→ D(0, 1) ofG onto the unit disc which satisfies

f(a) = 0 andf ′(a) > 0.

Proof of uniqueness.If there was a second conformal mapg : G → D(0, 1) with the given
properties, then

f ◦ g−1 : D(0, 1)→ D(0, 1)

would be a conformal map and it would satisfy

(f ◦ g−1)(0) = f(a) = 0.
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Hence by7.14,
(f ◦ g−1)(z) ≡ λz for someλ with |λ| = 1.

Looking at the derivative at the origin, we find

(f ◦ g−1)′(0) = f ′(g−1(0))(g−1)′(0) = f ′(a)
1

g′(g−1(0))
=
f ′(a)

g′(a)
> 0.

But, calculating it another way, we getλ. Henceλ is a positive real number. But also|λ| = 1
and that meansλ = 1. Thusf ◦ g−1 is the identity functionz andf = g.

The proof of existence will be divided into several steps.

Lemma 7.16. If G ⊂ C is a simply connected connected open set andf : G→ C is analytic and
never vanishes, thenf has an analytic square root — that is, there exists an analyticg : G→ C

with g(z)2 ≡ f(z).

Proof. There exists a branch oflog f in G (see chapter 2).

g(z) = e(1/2) log f(z)

will do.

7.17 Lemma. If G ⊂ C (G 6= C) is a connected open set with the property that every nowhere-
vanishing analytic function onG has an analytic square root, then there exists an injective ana-
lytic functionf onG with f(G) ⊂ D(0, 1).

Proof. Pick b ∈ C \ G. Then there existsg : G → C analytic withg(z)2 = z − b. This g is
injective since

g(z1) = g(z2)⇒ z1 − b = g(z1)2 = g(z2)2 = z2 − b⇒ z1 = z2.

Now, by the open mapping theorem,g(G) is open. Pickw0 ∈ g(G) and chooser > 0
so thatD(w0, r) ⊂ g(G). ThenD(−w0, r) ⊂ C \ g(G) because if there exists a pointw ∈
D(−w0, r) ∩ g(G), thenw = g(z1) for somez1 ∈ G and also−w ∈ D(w0, r) ⊂ g(G) which
tells us that−w = g(z2) for somez2 ∈ G. Now

g(z1) = −g(z2) ⇒ g(z1)2 = g(z2)2

⇒ z1 − b = z2 − b
⇒ z1 = z2

⇒ g(z2) = g(z1) = −g(z2)

⇒ g(z2) = 0

⇒ 0 = g(z2)2 = z2 − b
⇒ z2 = b ∈ C \G

and this contradictsz2 ∈ G.
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Put
f(z) =

r

2(g(z) + w0)
.

Thenf is analytic onG (|g(z) + w0| ≥ r for all z ∈ G is proved above, and shows that the
denominator is never0), injective onG sinceg is and alsof satisfies|f(z)| ≤ 1/2 < 1 for
z ∈ G.

7.18 Lemma. With the same hypothesis onG as in Lemma7.17, and fora ∈ G a given point,
there exists an injective analytic function onG satisfying

f(G) ⊂ D(0, 1)

f(a) = 0

f ′(a) > 0

Proof. Replace thef(z) obtained in Lemma7.17by

λ
f(z)− f(a)

1− f(a)f(z)

with |λ| = 1, λ suitably chosen to make the derivative ata positive.

7.19 Lemma.LetG ⊂ C be a connected open set ,G 6= C, with the property that every nowhere-
vanishing analytic function has an analytic square root. Leta ∈ G be fixed. Then there exists
a conformal mapf : G → D(0, 1) of G onto the unit disc with the propertiesf(a) = 0 and
f ′(a) > 0.

Observe that this lemma will complete the proof of the Riemann mapping theorem (7.15).

Proof. Let F denote the family of all analytic functionsf : G → C such that eitherf ≡ 0 or
else

f is injective,f(G) ⊂ D(0, 1), f(a) = 0 andf ′(a) > 0.

By Lemma7.18, F contains nonzero functions.
By Montels theoremF is relatively compact inH(G). By Corollary7.4to Hurwitz’ theorem,

we can see that all functions in the closure ofF in H(G) are either constant or injective. Since
all the function inF have the value0 at a, this must be true of all functions in the closure of
F . Hence the only constant function in the closure is 0 (which is inF).The other functions
f in the closure must havef(G) ⊂ D̄(0, 1). Sincef(G) is open (open mapping theorem),
f(G) ⊂ D(0, 1). Also, because the mapf 7→ f ′(a) : H(G)→ C is continuous, all functions in
the closure ofF must satisfyf ′(a) ≥ 0. Since they are injective if not identically zero,f ′(a) 6= 0
and sof ′(a) > 0 (unlessf ≡ 0). The conclusion from these observations is thatF is actually
closed inH(G). HenceF is compact inH(G).
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Since the mapf 7→ f ′(a) : F → R is a continuous function on a compact set, it must attain
its maximum value. Letf ∈ F be a function withf ′(a) as large as possible. As remarked earlier,
f is not the zero function andf ′(a) > 0.

We now show that thisf mapsG onto the unit disc (and so it is the required Riemann
mapping).

Suppose for the sake of obtaining a contradiction thatf(G) 6= D(0, 1) and choosew ∈
D(0, 1)\f(G). By the assumption onG about analytic square roots, we can findh ∈ H(G) with

h(z)2 =
f(z)− w
1− w̄f(z)

. (1)

Let

g(z) = λ
h(z)− h(a)

1− h(a)h(z)

where|λ| = 1 andλ is chosen to ensure thatg′(a) > 0.
Now g ∈ F and

g′(a) = |g′(a)| = |(φ ◦ h)′(a)|,

whereφ(ζ) = (ζ − h(a))/(1− h(a)ζ). This leads to

g′(a) = |φ′(h(a))h′(a)| = 1

1− |h(a)|2
|h′(a)|.

Differentiating (1) gives

2h(z)h′(z) =
1− w̄f(z) + w̄(f(z)− w)

(1− w̄f(z))2 f ′(z).

Evaluating atz = a we get
2h(a)h′(a) = (1− |w|2)f ′(a).

|h′(a)| = f ′(a)(1− |w|2)

2|h(a)|
=
f ′(a)(1− |w|2)

2
√
|w|

(recallh(a)2 = (f(a)− w)/(1− w̄f(a)) = −w).
Thus

g′(a) =
1

1− |h(a)|2
|h′(a)|

=
1

1− |w|
1− |w|2

2
√
|w|

f ′(a)

=
1 + |w|
2
√
|w|

f ′(a)

> f ′(a).
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The last step is justified because

1 + |w| > 2
√
|w|

1− 2
√
|w|+ |w| > 0

(1−
√
|w|)2 > 0.

The fact thatg′(a) > f ′(a) contradicts the choice off ∈ F as maximisingf ′(a). This contra-
diction shows thatf(G) = D(0, 1).

7.20 Theorem.LetG ⊂ C be a connected open set. Then the following are equivalent properties
for G

(i) G is simply connected

(ii) Indγ(a) = 0 for each piecewiseC1 closed curve inG and eacha ∈ C \G.

(iii) For each analytic functionf : G → C and each piecewiseC1 closed curveγ in G,∫
γ
f(z) dz = 0.

(iv) Every analytic functionf : G→ C has an antiderivative.

(v) For every analytic functionf : G → C which never vanishes inG, there is a branch of
log f in G.

(vi) Every never-vanishing analyticf : G→ C has an analytic square root.

(vii) G is homeomorphic to the unit discD(0, 1) (that is, there exists a continuous bijection
f : G→ D(0, 1) with a continuous inversef−1).

(viii) Ĉ \ G is connected (this says exactly thatG has no “holes” — no bounded connected
components ofC \G).

Proof. We know
(i) ⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v)

(see Chapter 2).
(v)⇒ (vi) is easy —e(1/2) log f is an analytic square root off .
(vi) ⇒ (vii): In the caseG 6= C, Lemma7.19gives this. ForG = C, f(z) = z/(1 + |z|) is a

homeomorphism ofC to the unit disc.
(vii) ⇒ (i) is straightforward — since the disc is simply connected, so is anything homeo-

morphic to the disc.
It remains therefore to show that (viii) is equivalent to the rest.
(viii) ⇒ (ii): First, the assumption implies that every connected component ofC \ G is

unbounded. A bounded connected componentE of C \ G would be open and closed inC \ G.
HenceE would be closed inC sinceC \ G is closed. AsE is also bounded, it would be closed
in Ĉ. HenceE is closed inĈ \G. E open inC \G impliesE = (C \G)∩U with U ⊂ C open.
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HenceE = (Ĉ \ G) ∩ U is open inĈ \ G. Being an open and closed subset it must be a union
of connected components ofĈ \ G, but that is impossible if̂C \ G is connected and contains
∞ /∈ E.

To show (ii) take any piecewiseC1 closed curveγ in G. We know Indγ(w) is constant on
connected components ofC \ γ. Hence constant on connected components ofC \ G ⊂ C \ γ.
(Each connected component of the smaller set is contained in a connected component of the
larger one.) But we also know that there is just one unbounded connected component ofC \ γ
and Indγ = 0 there. As all components ofC\G are unbounded, they must all be in the unbounded
component ofC \ γ. HenceC \G is contained in the unbounded component ofC \ γ and so we
must have Indγ(w) = 0 for all w ∈ C \G.

(iv) ⇒ (viii): Suppose that (iv) holds but̂C \G is not connected. Then we can write

Ĉ \G = K ∪ L

whereK andL are disjoint nonempty relatively closed subsets ofĈ \ G. SinceG is open inC,
it is also open as a subset ofĈ and hencêC \ G is closed inĈ. HenceK andL are closed in
Ĉ (even compact). Now∞ ∈ K or∞ ∈ L — say∞ ∈ L. ThenK ⊂ C andK is compact.
G̃ = G ∪K is open inC.

Essentially, the idea is that we can find a finite number of closed curvesγj in G̃ \ K = G
with ∑

j

Indγj(a) = 1 for all a ∈ K

This is contradicts (iv) becausef(z) = 1/(z − a) is analytic onG, hence has an antiderivative
by (iv) and so

Indγj(a) =
1

2πi

∫
γj

1

z − a
dz = 0

for eachj.
The proof that we can find suchγj is a bit tricky and so we will check out something a little

simpler which is good enough for our purpose. We use here the notation that fora, b ∈ C,
[a, b] denotes the line segment froma to b, or the parameterised pathΓ(t) = (1 − t)a + tb
(0 ≤ t ≤ 1).

Lemma 7.21. If G̃ ⊂ C is open andK ⊂ G̃ is compact then we can find a finite number of
closed line segmentsΓj = [aj, bj] (j = 1, 2, . . . , n) in G̃ \K such that

1. For eachf : G̃→ C analytic anda ∈ K,

n∑
j=1

∫
Γj

f(z)

z − a
dz = 2πif(a) (2)

2. The number of times any given pointw occurs in the lista1, a2, . . . , an of initial points of
the line segments is the same as the number of timesw occurs in the listb1, b2, . . . , bn of
the end points.
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Armed with this Lemma, we can use it forf(z) = 1 to get

n∑
j=1

∫
Γj

1

z − a
dz = 2πi (a ∈ K).

Using our assumption (iv) tells us that1/(z − a) has an antiderivative (call itg) onG = G̃ \K
and so we have

n∑
j=1

∫
Γj

1

z − a
dz =

n∑
j=1

g(bj)− g(aj) =
n∑
j=1

g(bj)−
n∑
k=1

g(ak) = 0

by the second property in the Lemma. This contradiction shows that (iv)⇒ (viii), once we verify
the Lemma.

Proof. (of Lemma7.21)
If G̃ = C we can takeΓ1,Γ2,Γ3,Γ4 to be the four sides of a large square, where the square

containsK in its interior and the sides are traversed anticlockwise. Statement 1 of the Lemma is
true by the Cauchy integral formula.

The case whereK is empty is also trivial.
Assuming thatG̃ 6= C andK 6= ∅. there is a positive shortest distance

δ = inf{|a− w| : a ∈ K,w ∈ C \ G̃}

fromK to the complement of̃G.
We now consider an infinite grid on the plane of squares with sides parallel to the real and

imaginary axes and a fixed side lengthr < δ/
√

2. To be exact, take all the squares of the grid
with vertices at the pointsnr + imr (n,m ∈ Z). By boundedness ofK only a finite number of
these square can have a point ofK in them. We list all the squaresS1, S2, . . . , SN of the grid
which intersectK at any point (inside or on the edge ofSj). To make things more precise let us
say thatSj means the set of points inside or on the edge of the square. Because the squares have
diagonalr

√
2 < δ, no two points ofSj can be separated by as much as distanceδ. Since there is

one of the points ofSj that belongs toK, we can conclude from the choice ofδ thatSj ⊂ G̃.
Now write down for eachSj the 4 sides of it so that the boundary square is traversed anti-

clockwise. We end up with4N line segmentsΓ∗1, Γ∗2, . . . ,Γ∗4N and let us write

Γ∗j = [a∗j , b
∗
j ]

From Cauchys integral formula we have that∫
∂Sj

f(z)

z − a
dz = 2πif(a)

for a in the interior ofSj (and anyf ∈ H(G̃)). The integral is zero fora outsideSj and so

N∑
j=1

∫
∂Sj

f(z)

z − a
dz =

4N∑
k=1

∫
Γ∗k

f(z)

z − a
dz = 2πif(a)
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holds fora in the union of the interiors of theSj.
Also observe that each corner ofSj occurs once as a starting point and once as an ending

point of a side ofSj. Hence the number of times any given point occurs amonga∗k (1 ≤ k ≤ 4N )
is the same as the number of times it occurs amongb∗k (1 ≤ k ≤ 4N ).

Some segments may occur twice in the listΓ∗1,Γ
∗
2, . . . ,Γ

∗
4N . This happens if two adjacent

squares of the original grid meetK, but then the two segments will be traversed in opposite
directions. We can omit both from the listΓ∗1,Γ

∗
2, . . . ,Γ

∗
4N without disturbing either the property∑

k

∫
Γ∗k

f(z)

z − a
dz = 2πif(a)

or the property that every endpoint occurs as often as every initial point. Removing all such pairs
of segments, we end up with a listΓ1,Γ2, . . .Γn (whereΓj = [aj, bj]).

We then have (2) for a in the union of the interiors of theSj. Both sides of (2) give continuous
functions ofa. The left side is continuous fora not on

⋃
j Γj while the right hand side is continu-

ous onG̃. It follows that the equality persists at all pointsa ∈ G̃ which are limits of points in the
union of the interiors of theSj, but not in

⋃
j Γj. This will include alla ∈ K because ifa ∈ K

thena belongs in at least oneSj. If a is an interior point ofSj, then we already know (2) holds.
If a is on the edge ofSj but not a corner ofSj, the adjacent square on the original grid must also
be one of theSk and the side containinga would be canceled out. Ifa is a corner ofSj then all
4 squares of the grid that meet at that corner are among theSk and all 4 segments that containa
(East, North, West and South ofa) must have been canceled out.

Thus all remaining segmentsΓj are inG̃ \K and (2) holds fora ∈ K.

7.22 Remark. As a consequence of the Riemann mapping theorem any questions about analytic
functions on a simply connected connected open setG ⊂ C can be reduced to questions on
two simple domains —G = C andG = D(0, 1). However, translating some problems from
G to the unit disc may require some specific knowledge about the “Riemann mapping function”
f : G→ D(0, 1), or equivalently information about its inversef−1 : D(0, 1)→ G.

This leads to the study of problems concerning injective analytic functions on the unit disc.
One such problem attracted a lot of attention since the early part of the 20th century, although it
actually does not seem to have much practical value. It was known as the Bieberbach conjecture
and relates to the power series coefficients of injective functions on the unit disc. It said that if∑∞

n=0 anz
n is the power series of an injective analytic function on the disc, then

|an|
|a1|
≤ n

It is possible to have equality. The function

k(z) =
∞∑
n=1

nzn =
z

(1− z)2

is injective on the unit disc. It is known as the Koebe function.
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Bieberbach proved that|a2| ≤ 2|a1| for any injective analytic function on the disc and that if
|a2| = 2|a1|, then

∞∑
n=0

anz
n = a0 + a1ᾱk(αz) (3)

for someα, |α| = 1. In other words he proved his conjecture for the casen = 2 and showed that
equality holds only if the function is closely related to the Koebe function. He conjectured that
if |an| = n|a1| for anyn ≥ 2, then the function has to be as in (3).

A lot of work was done, much of it related to the Bieberbach conjecture in some way, where
the Koebe function (or really the functions (3)) was the extremal case. The Bieberbach conjecture
itself was making slow progress (it was proved for most values ofn up ton = 7) until Louis de
Branges proved the whole conjecture in 1985 (Acta Math. volume 154, pages 137-152).

It does not seem that knowing the Bieberbach conjecture has any important consequence, but
the result attracted a lot of attention because the conjecture remained unsolved for so long. The
original result of Bieberbach forn = 2 can be used to prove the following elegant result (which
is quite useful).

7.23 Theorem (Koebe1/4-theorem). If f is an injective analytic function on the unit disc, then
the range off contains the disc

D

(
f(0),

1

4
|f ′(0)|

)
.

Unlessf has the form (3), the range off will contain a disc aboutf(0) of radiusr > (1/4)|f ′(0)|.

I omit the proof of this as I have also omitted the (reasonably elementary) material necessary
to show|a2| ≤ 2|a1|.

One other theorem that was mentioned earlier, but we have not covered, is Runges theorem.

Theorem 7.24 (Runges theorem).LetG ⊂ C be open andE ⊂ Ĉ\G a subset with the property
that the closure ofE intersects every connected component ofĈ \ G. Then the set of rational
functions with poles only at points ofE (here we includez = ∞ as a possible pole) is dense in
H(G).

Again we omit the full proof, although Lemma7.21helps quite a lot in the proof. Here is a
sketch. IfK ⊂ G is compact, andf ∈ H(G), then Lemma7.21expressesf(a) for a ∈ K as an
integral (hence approximable by a Riemann sum) of functions

gz(a) =
1

2πi

f(z)

z − a

with poles at pointsz ∈ G \K. The essential part of the proof (not a very short part) consists in
showing the functionsgz : K → C can be approximated uniformly onK by rational functions
with poles inE.
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The conclusion of this argument is that forf ∈ H(G) andK ⊂ G compact, it is possible to
find a rational functionr(z) with poles only inE so that

sup
z∈K
|f(z)− r(z)|

is small. Finally, we do this for an exhaustive sequenceK1 ⊂ K2 ⊂ K2 ⊂ · · · of compact
subsets ofG to produce a sequence of rational functionsrn(z), each with poles only onE so that

sup
z∈Kn

|f(z)− rn(z)| < 1

n
.

It follows then thatrn → f in H(G).

Corollary 7.25. Let G ⊂ C be open and assumêC \ G is connected. The the polynomial
functions are dense inH(G).

Proof. Apply Runges theorem withE = {∞} and note that rational functions with poles only
at∞ are polynomials.

Remark 7.26. One reason to advertise the existence of Runges theorem in advance was to state
that it can be used to exhibit pointwise convergent sequences of analytic functions with discon-
tinuous limits.

LetGn = {z ∈ C : <z 6= 1/(2n)} (the complex plane minus a vertical line) and letKn ⊂ Gn

be the compact set

Kn = Ln ∪Rn, Ln = {z ∈ C : |z| ≤ n,<z ≤ 0}, Rn = {z ∈ C : |z| ≤ n,<z ≥ 1/n}

Let fn : Gn → C be the analytic function

fn(z) =

{
0 <z < 1/(2n)
z <z > 1/(2n)

ThenĈ\Gn is connected and so the Corollary to Runges theorem says we can find a polynomial
pn(z) so that

sup
z∈Kn

|f(z)− pn(z)| < 1

n

It follows that

lim
n→∞

pn(z) =

{
0 z ∈

⋃
Ln = {z ∈ C : <z ≤ 0}

z z ∈
⋃
Rn = {z ∈ C : <z > 0}

So the pointwise limit fails to be continuous along the imaginary axis (except at the origin and it
fails to be analytic along the whole imaginary axis).

Richard M. Timoney March 30, 2004


