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Remark 6.1 For G C C open, we recall the notatiok/ (G) for the set (algebra) of all mero-
morphic functions ortz. We now consider convergencelii(G) is a way analogous to what we
did for H(G) in Chapter 5.
Before we do that, we explain how meromorphic functiongoran be regarded as functions
or maps from7 to an extended complex plafigu {oo} with one extra ‘point at infinity’ added.
While the process of adding a point at ‘infinity’ can be carried out very abstractly (Alexan-
droff one point compactification of a locally compact topological space), for the complex plane
we can visualise it rather geometrically via stereographic projection.

Stereographic Projection 6.2 There is a transformation which maps the complex pl@ns-
jectively to a sphere ifR* with one point removed. To explain it we considgas embedded in
spaceR? in the most obvious way:

z=x+iy € Crs (z,y,0) €R® (z,y €R)
and we consider the unit sphefé in R?

S?={(&n¢) eR: ¢ + n* + ¢ = 1}.

The ‘North Pole’ of the spher@, 0, 1) will be a special point in our discussion and we sometimes
write AP for (0,0, 1).
Define a mapping
P:C— 52

by the geometrical rules tha(z) is the point (other than the North PaP) where the line
joining NP to z = (z,y,0) intersectsS?. This mapP is calledstereographic projection

From a picture you can see thatif > 1, thenP(z) is on the upper hemisphere.|H = 1,
then P(z) will be the ‘same’ as: or (z,y,0) while for |z| < 1, P(z) will be in the lower
hemisphere.
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P(2)

Proposition 6.3 The stereographic projection mdp: C — 5%\ {N'P} = 52\ {(0,0,1)} isa
bijection and is given by

, 2z 2y 4yt -1
P(z) =P = : 1
(2) = Pl +iy) <x2+y2+1’x2+y2+1’x2+y2+1 @
The inverse map is
_ § 7
P! =|——,— 2
(6’”74’) (1_<71_C70 ()

Proof. The line inR? we used to definé” has parametric equations

and this meets$? at the values of where
E+n+ =
tQI‘Q +t2y2 + (1 _ t)2 —
PPyl -2+ =
B’ +y*+1) -2t =
tt@*+y*+1)—2) =
and so where = 0 (the North Pole\'P) and whereg = 2/ (2>
of ¢ for the pointP(z), and so

+ oo~ = &~

y* +1). This must be the value

2z 2y 2
P = 1-
=) (x2+y2+1’x2+y2+1’ x2+y2+1)
B 2z 2y 22+t -1
o\ 22+ 2+ U242+ a2+ y2 4+ 1)
One can check in a straightforward way that the rgapS? \ {\"P} — C given by
_(_£ U
Q(£7U7C>_<1_C71_g70
is the inverse by verifying) o P = id¢c and P o (Q = id are both identity maps.
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Definition 6.4 Theextended complex plan@ defined as the complex plafiwith one extra
point, denotedwo, adjoined.

If P(c0) is defined to be the North Pal&P = (0,0, 1) in S?, then stereographic projection
P: C — S%is a bijection.

The spheres? (or C which we can identify witt$?2 via the stereographic projection map)
is called theRiemann sphere

For z,w € C we introduce a notation(z, w) for the Euclidean distance betweétiz) and
P(w). (This means the straight line distanceRA, as opposed to the length of the shortest path
on the sphere.y is called the chordal distance @hordal metricon the Riemann sphere.

Lemma 6.5 For z, w € C,

2|z — w|
VA [P)(1 A+ [w]?)
2
(14121

o(z,w) =

o(z,00) =
Also if z, w are not zero
> = o(z,w)
) = o0

Proof. We have

Ple+ iy) 21 2y 2+ -1
X (3 =
Y 24yt 412+ 1 224y 41

and we want to Compute
|P(x +iy) — P(r + is)||

Observe that for unit vectors w € R3
v —w|? = (v —w).(v—w) = ||v]|* + ||w|* - 2v.w =2~ 2v.w
and so
|1P(x+iy) — P(r+is)|*(«® + y* + D)(r* + s° + 1)
= 2[(@+ P+ 1)+ +1) — (dar +4dys + (22 + > — 1)(r* + s> — 1))]
= 2((@® + )" + 57 + (P + 5°) + (2" + ) + 1
—d(zr +ys) — (® + ) (* +5°) + (P + %) + (® +¢7) — 1]

= 2[2(2® +y%) + 2(r* + 5*) — 4(ar + ys)]

= 4[(1’2 —2xr 47 ) + (y2 —2ys + 32)]

= 4l(z =7+ (y —9)%

= 4|(z +iy) — (r +is)?
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Thus
o(z,w)?(|z + 1) (Jw]* + 1) = 4]z — w/?

and the formula for (z, w) is as claimed.
All the other statements in the proposition are quite easy to check.

o(z,00)% = ||P(z+iy) — (0,0,1)?

B 2 2y 2 4+y? -1
I R e R e e I |
2

- 2 2 =)
B 2+ + 1?2+ 2+ 1 22+ 42+ 1
1
= (42 + 47+ 4
@rErip T Y

2
B 4 B 4 B 2
o2 y? 4+l 221 V1+]z]2

U(;;); 2|2 -4 _ 2w — 2| oz w)
Zw \/<1+|Z%> (1+ ) VP + D(jwP + 1)

where we multiplied above and below byw| = /|z|?|w|?. Finally,

2 B 2|z|

’ GOO) B \/<1+ ) = JiErn @Y

Remark 6.6 Now (C, o) is a metric space (in fact the ‘same’ as the sph&rén R? with the
subset metric, or the distance frdii restricted taS?) and so we can look at open balls@h
open sets irC?, limits of sequences ifi?, continuous functions and so on.

Proposition 6.7 A subset/ c C is open in the metric spao{éi, o) <= is satisfies both

(i) UnNCisopen (inC in the usual sense)
(ii) if co € U then there is some > 0 so that

{zeC:lz]>r}CU

Proof. Note that the mapg® |c: C — S? \ {N'P} is continuous because the formulg for P

in Proposition6.3 is clearly continuous fronk? to R3. Hence ifU is open inC then PU)is
open inS? (because the metrics @i and S? are copies of one another) and the inverse image
(P |c)(P(U)) = UNC is therefore open ift. If co € U (U c C open), therl/ contains a
ball of some positive radius > 0 aboutoo. That is

By(00,8) ={z € C:0o(c0,2) <} CU.
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Assumingd < 2 (we can make smaller if necessary) we have forc C

(00, 2) 2 <(5<:>1+\|2>4<:>|]>\/4 1
0(00,2) = —F——— z — z = —
V14 ]|z|? 62 2

and so withr = (1/6)v4 — 62 we have
{zeC: |z >r}CU

This was under the assumption € U ¢ C open.
Conversely assunié C C satisfies the two conditions. The second condition tells ussthat
is an interior point ol ifitis in U at all.

cweUand{zeC:|z| >r} CU = B,(c0,d) CU

with § = 2/v/1 + 2.
The first condition7 N C open inC plus continuity ofP~': 5%\ {\"P} — C (which is clear
from the formula @) in Proposition6.3) implies that

(PHUnC)=PUNC)

is open inS? \ {N'P}. It follows that every point of?(U N C) is an interior point relative t&>
and so (since” transforms the distanceto the distances o6?) all points of U N C are interior
points (with respect toC, 0)).

Definition 6.8 If G  Cis open andf: G — C is a function, then we say thdtis analytic if it
satisfies

(a) f itis continuous (fronG with its usual metric tdC, o));

(b)
[l fH(C)—=C

is analytic (in the usual sense); [Note that!(C) is open inG by continuity off, hence
f7X(C) is open inC and so there is no problem looking at analyticity of this function.]
and

(c) the restriction of% to f~1(C) \ {0} is analytic when we defing/f(z) = 0 at points
z

wheref(z) = co.

Note thatl/ f(z) is continuous because of Lemrig and so the third condition means that
fandl/f are treated equally.

A reasonable way to look at it is that the two maps C \ {x} = C — z € C and
w e C\ {0} — 1/w e C (with 1/occ interpreted as 0) are two coordinate chartsCbnin this
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way we can regar( as a 2-dimensional manifdldBecause the transition from coordinateo
coordinatew is given by an analytic transition functioan= 1/ on the intersectio£ N (C\ {0})
where both coordinates can be used, and the opposite = = 1/w is also analytic, we say
that C is a complex analytic manifold (of complex dimension 1, and these are actually called
Riemann surfaces).

A map f with values in a complex manifold is analyticfifis continuous and each coordinate
map composed withf is analytic (on the open set where it makes sense). Our definition of
f: G — C analytic fits the pattern that is used for maps with values in a general Riemann
surface.

Proposition 6.9 If G c C is open and connected arnfd G — C is analytic but not identically
oo, then the points of ~!(cc) are isolated inG.
Thatisz, € f~!(cc) implies there is a punctured dide(zy,7) \ {20} C G\ f~*(0).

Proof. Note thatf~'(C \ {0}) is open and./f is analytic there. Iz, € f~!(c0), thenz, €
f71(C\ {0}) and so there is > 0 with D(z,, ) c f~*(C\{0}) and1/f is analytic onD(z, r).
Notice1/f(z) = 1/o0 = 0. If 2, is not an isolated point of ~!(co) thenz, is not an isolated
zeroofl/fin D(z,r). Thenl/f isidentically 0 onD(zy, r) by the identity theorem for analytic
function, and in fact / f is identically O on the connected componentpin f~*(C\ {0}). Call
this connected compone@t. Thenf = oo on G, and (because connected components are open
and closed), is open inf~'(C \ {0}), hence inG.

But Gy is also closed ity because ifz,, )2 ; is a sequence i, converging to a limit € G,
then continuity off implies f(z) = lim, .. f(z.) = 00. S0z € f~1(C\ {0}). SinceG, is
closed inf~1(C \ {0}) (being a connected component), we hawe G,.

Thusz, € Gy C G is open inG, closed inG and nonempty. A€ is connected(z, = G and
SO f = oo. But this contradicts the assumptions.

Theorem 6.101f G C C is open andf is a meromorphic function o&, then we can define an
analyticC-valued functionf: G — C be settingf(z) = co at poles off.

Conversely, if7 c C is open and connected and G — C is analytic but not identically
oo, thenf is a meromorphic function of' with poles at the points ifi—!(co).

Proof. Starting withf meromorphic orz, we have an open sét, C G on which f is analytic
(in the usual sense with finite values) and so that each pofft\af, is a pole off. If we define
f(z) = oo for eachz € G \ G, thenf: G — C will be continuous.

To verify continuity at pointsy, € G where f(z,) € C is finite (so thatz, € Gy) use
lim_.., f(z) = f(20) (Orlim._., [ f(z) — f(20)| = 0) to deduce

lim o (£(2), f(z0)) = lim —— W E &I _,
o =20 \(L+ ()P + [ f(20)]?
1a metric space or topological space where in an open set around each point there is a coordinate system that
identifies it with an open piece @?2; we assume the coordinate functions are continuous from their domain to their
range inR? and have continuous inverses; usually we also make the slightly technical assumption that there is a
countable dense subset in a manifold (or that the topology is second countable if we don’t use a metric)
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At poleszy we knowlim, ., | f(2)| = oo and so

: = lim o = im#:
litn o(/(2): o)) = Jim (7 (2).00) = Jin — e =0

Hencef: G — C is continuous.

As f~1(C) is the complement of the poles ¢fin G, we know that the restriction of to
f~YC) is analytic. Sincd /f is meromorphic on each connected componeitt ohlessf = 0
on the component (by Corollary 4.25) we can also seelthats analytic on the sef 1 (C\ {0}.
Hencef: G — C is analytic.

For the converse, if! is connectedf: G — C is analytic butf # oo, then the points of
f~Y(o0) are isolated irG' by Proposition6.9. Thusf is analytic ond = f~!(C), the points of
G\ H = f~1(o00) are isolated i and at points, € G\ H

0= lim (7 (2) (a0) = iy o(7(2)0) =l — e

implieslim,_.., | f(z)| = co. Thusz, is a pole off by Proposition 4.16.

Remark 6.11 We now extend the notion of analyticity one step further to functions defined on
(open subsets ofy (and still allowing values in the extended complex plane).

Definition 6.12 If G c C is open we say that a functigit G — C is analyticif
(i) fis continuous (fronty with the metrics to C with the metrico)
(i) fis analyticonG NC

(iii) g(z) = f(1/z)is analyticon{z € C : 1/z € G} (we includez = 0 if co € G andg(0)
meansf(oco) in that case).

Lemma 6.13 If G C C, the same functiong: G — C are analytic according to Definitiof.8
and Definition6.12

Proof. The type of continuity required in each case is different, as in one case we cofisider

with the usual metric o€ while in the other we use the metric However, the open subsets

V' C @G are the same in either case by Proposition Thus looking at continuity in the form

U c C open= f~YU) c G open, we can see that the continuity requirements are equivalent.
The rest of the proof is straightforward.

Example 6.14 All rational functions

(with p, ¢ polynomials and; # 0) are analyticr: C — C.
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Proof. By the Fundamental theorem of algebra, we can factardg and cancel common factors
to write

r(z) = 2:1(2 @)
[T (= = 8)
wherej > 0, k > 0 and{ay, as,...,a;} N {B1, o, ..., Bk} = 0.

It follows thatr(z) is meromorphic orC with poles atz: = ; (1 < i < k). When suitably
interpreted at = (3;, () therefore becomes analytic C — C. r(1/z) is also rational and so
there is a suitable value fof1/0) = r(cc) to makeg(z) = r(1/z) analyticg: C — C. One can
verify thatr: C — C is continuous.

Remark 6.15 Itis in fact the case that rational functions and the constaate the only analytic
functionsf: C — C. The first step of the proof is to observe thfat' (o) cannot be an infinite
set if f is not identicallyoc.
Proof. As C is compact, an infinite number of distinct points € C would have to have a
convergent subsequence. If the limit wagipwe would have a contradiction to Propositi®s.
If the limit was co, we can switch that to 0 by looking gt1/z) instead.

For each of pointa € C with f(a) = oo, we have a pole of the meromorphic function©@n
Hence a Laurent series abauwvith a finite number of negative terms

oo

)= an(z—a)" (0<]z—a|<0)

n=—p
We call the sum of the negative terms tréncipal partof f ata and write it as

-1

Pro(2) = Z an(z —a)"

n=—p

The sum of the principal parts gfat the (finitely many) points € C wheref(a) = oo produces

a rational functiorr(z). Subtracting fromf, givesf(z) — r(z) analytic at all points ofc. Hence

it has a power series about the origin. Ad/z) — r(1/z) has a pole or a removable singularity
atz = 0, it follows (as in Remark 4.18) that(z) — r(z) = p(z) = a polynomial. Hence
f(2) =r(2) + p(2) is rational.

Remark 6.16 We now describe the version of convergence appropriat€foalued analytic
functions.

Definition 6.17 For G C Cis open we leC(G, C) = the set of all continuous functionsz —
C, andH (G, C) the analytic (or holomorphic) functions. A sequelige> , in C(G, C) is said
to convergauniformly with respect ta on compact subsets 6f if for each K C G compact we
have

lim sup o (fn(2), f(2)) =0

n—oo 2eK
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Lemma 6.18 If (f,)>°, is a sequence if(G, C) that converges uniformly with respectdan
compact subsets ¢ to a limit functionf: G — C, thenf € C(G,C).

If (f,)22, is a sequence iti (G, C) that converges uniformly with respectdocon compact
subsets of; to a limit functionf: G — C, thenf € H(G, C).

Proof. Omitted. The first part is a standard fact from metric space theory. For the second,
analyticity of f at pointsz, € G wheref(z) € Cis finite can be shown by establishing that for
large f,, has finite values neay and f,, — f uniformly (with respect to absolute value distance)

on some disk abouy. For points wheref(z,) = oo, we can considet/f,, — 1/f.

Proposition 6.19 Let G C C be open. There is a metricon C(G, @) so that convergence of
sequences ip corresponds to uniform convergence with respeet tm compact subsets Of.

Proof. Choose an exhaustive sequeég, )2, of compact subsets ¢f and define

The rest is not much different from the earlier case where we constrpctedC(G). One
simplification here results fromup, ., o(f(2),9(2)) < 2.

Definition 6.20 Let G C C be open. A familyF of meromorphic functions o&' is called a
normal familyif each sequencgf,,)s°, in F has a subsequence that converges uniformly with
respect tar on compact subsets 6fto a limit function that is either

e a meromorphicf onG, or

e the constant functiono

Proposition 6.21 If G C C is connected then a famil§f of meromorphic functions o6 is a
normal family <= F is relatively compact when considered as a subsétdf~, C), p).

Proof. In the case of¥ connectedd (G, C) = the meromorphic functions off together with
the constanto (by Theoren6.10. Proposition5.19implies the result.

Definition 6.22 Let G C C be open. A familyr C C(G, @) is called equicontinuous (with
respect tar) at a pointz, € G if for eache > 0 it is possible to find > 0 so that

|z — 20| <0, f € F=0(f(2), f(20)) <e.

Theorem 6.23 (version of Ascoli)For G C C open, a familyF C C(G, C) Is relatively com-
pact in(C(G,C), p) if and only if it is equicontinuous at each pointGf

Proof. Omitted. It is not so different from the Ascoli theorem we had before (5.20), where we
left the proof to an appendix. The pointwise boundedness condition is not needed now because
C is compact.
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Remark 6.24 Montel's theorem does not work for meromorphic functions. There is a theorem
for meromorphic functions that takes the place of Montels theorem. It relies on the notion of a
spherical derivative.( f) of a meromorphic functiorf. At points wheref(z) € C is finite, the
spherical derivative is
/' (2)]
u(f)(z) =

CLH[f(2)P
and the definition at poles (whefgz) = oo) relies on taking reciprocals. Wheftz) is neither
0 nor oo one can see that .

u(7) @ =utne)

Theorem 6.25 (Marti criterion) If G C C is open and connected arf is a family of mero-
morphic functions o7, thenF is a normal family if and only if it satisfies

supsup i f)(z) < o0
fEF zeK
for each compack’ C G.
This means uniform boundedness of the spherical derivative on each compact suhset of

Proof. Omitted.

Remark 6.26 One application of these ideas (or variants of them) is in the topic of iteration
theory for analytic functions.

The most commonly studied case is the situation of rational nfafis — C and iteration
means considering the composites

ffP=fof fP=fof...

Slightly more precisely, one considers a paint C and the long term behaviour of the iterated
images

2, [(2), f2(2) = [(f(2), P (=), ..

and examines whether there is a trend.

The ‘well-behaved set’ of (for a given rationalf) is called the Fatou s€t(f) of f. Itis
the largest open subset@fon which the family of iterate$f, f2, f3,...} is an equicontinuous
family. This means that a small changezihas a small long term effect on the iteraf@sgz).

The Julia set/(f) is the complement it of the Fatou set. The Julia set is the ‘bad’ set
where a small change incan produce a major change in the behaviour of the sequétiee
of iterates.

One basic theorem is that for polynomigl®f degree 2 or morexo is in the Fatou set and
the Julia set is not empty. The Mandelbrot set consists of those values of a paramédieior
which the the Julia sef(p.) is connected, wherg.(z) = 22 + c.

For lack of time, we won’t deal with this topic.

Richard M. Timoney March 29, 2004



