
Chapter 6: The metric spaceM(G) and normal families

Course 414, 2003–04

March 29, 2004

Remark 6.1 ForG ⊂ C open, we recall the notationM(G) for the set (algebra) of all mero-
morphic functions onG. We now consider convergence inM(G) is a way analogous to what we
did forH(G) in Chapter 5.

Before we do that, we explain how meromorphic functions onG can be regarded as functions
or maps fromG to an extended complex planeC∪ {∞} with one extra ‘point at infinity’ added.

While the process of adding a point at ‘infinity’ can be carried out very abstractly (Alexan-
droff one point compactification of a locally compact topological space), for the complex plane
we can visualise it rather geometrically via stereographic projection.

Stereographic Projection 6.2There is a transformation which maps the complex planeC bi-
jectively to a sphere inR3 with one point removed. To explain it we considerC as embedded in
spaceR3 in the most obvious way:

z = x+ iy ∈ C 7→ (x, y, 0) ∈ R3 (x, y ∈ R)

and we consider the unit sphereS2 in R3

S2 = {(ξ, η, ζ) ∈ R3 : |ξ|2 + |η|2 + |ζ|2 = 1}.

The ‘North Pole’ of the sphere(0, 0, 1) will be a special point in our discussion and we sometimes
writeNP for (0, 0, 1).

Define a mapping

P : C→ S2

by the geometrical rules thatP (z) is the point (other than the North PoleNP) where the line
joiningNP to z = (x, y, 0) intersectsS2. This mapP is calledstereographic projection.

From a picture you can see that if|z| > 1, thenP (z) is on the upper hemisphere. If|z| = 1,
thenP (z) will be the ‘same’ asz or (x, y, 0) while for |z| < 1, P (z) will be in the lower
hemisphere.
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Proposition 6.3 The stereographic projection mapP : C→ S2 \ {NP} = S2 \ {(0, 0, 1)} is a
bijection and is given by

P (z) = P (x+ iy) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
. (1)

The inverse map is

P−1(ξ, η, ζ) =

(
ξ

1− ζ
,

η

1− ζ
, 0

)
(2)

Proof. The line inR3 we used to defineP has parametric equations

(ξ, η, ζ) = (0, 0, 1) + t((x, y, 0)− (0, 0, 1)) = (tx, ty, 1− t)

and this meetsS2 at the values oft where

ξ2 + η2 + ζ2 = 1

t2x2 + t2y2 + (1− t)2 = 1

t2x2 + t2y2 + 1− 2t+ t2 = 1

t2(x2 + y2 + 1)− 2t = 0

t(t(x2 + y2 + 1)− 2) = 0

and so wheret = 0 (the North PoleNP) and wheret = 2/(x2 + y2 + 1). This must be the value
of t for the pointP (z), and so

P (z) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
, 1− 2

x2 + y2 + 1

)
=

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.

One can check in a straightforward way that the mapQ : S2 \ {NP} → C given by

Q(ξ, η, ζ) =

(
ξ

1− ζ
,

η

1− ζ
, 0

)
is the inverse by verifyingQ ◦ P = idC andP ◦Q = id are both identity maps.
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Definition 6.4 Theextended complex planêC defined as the complex planeC with one extra
point, denoted∞, adjoined.

If P (∞) is defined to be the North PoleNP = (0, 0, 1) in S2, then stereographic projection
P : Ĉ→ S2 is a bijection.

The sphereS2 (or Ĉ which we can identify withS2 via the stereographic projection mapP )
is called theRiemann sphere.

For z, w ∈ Ĉ we introduce a notationσ(z, w) for the Euclidean distance betweenP (z) and
P (w). (This means the straight line distance inR3, as opposed to the length of the shortest path
on the sphere.)σ is called the chordal distance orchordal metricon the Riemann sphere.

Lemma 6.5 For z, w ∈ C,

σ(z, w) =
2|z − w|√

(1 + |z|2)(1 + |w|2)

σ(z,∞) =
2√

(1 + |z|2)

Also if z, w are not zero

σ

(
1

z
,

1

w

)
= σ(z, w)

σ

(
1

z
,∞
)

= σ(z, 0)

Proof. We have

P (x+ iy) =

(
2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
and we want to compute

‖P (x+ iy)− P (r + is)‖
Observe that for unit vectorsv, w ∈ R3

‖v − w‖2 = (v − w).(v − w) = ‖v‖2 + ‖w‖2 − 2v.w = 2− 2v.w

and so

‖P (x+ iy)− P (r + is)‖2(x2 + y2 + 1)(r2 + s2 + 1)

= 2
[
(x2 + y2 + 1)(r2 + s2 + 1)− (4xr + 4ys+ (x2 + y2 − 1)(r2 + s2 − 1))

]
= 2[(x2 + y2)(r2 + s2) + (r2 + s2) + (x2 + y2) + 1

−4(xr + ys)− (x2 + y2)(r2 + s2) + (r2 + s2) + (x2 + y2)− 1]

= 2
[
2(x2 + y2) + 2(r2 + s2)− 4(xr + ys)

]
= 4[(x2 − 2xr + r2) + (y2 − 2ys+ s2)]

= 4[(x− r)2 + (y − s)2]

= 4|(x+ iy)− (r + is)|2
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Thus
σ(z, w)2(|z|2 + 1)(|w|2 + 1) = 4|z − w|2

and the formula forσ(z, w) is as claimed.
All the other statements in the proposition are quite easy to check.

σ(z,∞)2 = ‖P (x+ iy)− (0, 0, 1)‖2

=

∥∥∥∥( 2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1
− 1

)∥∥∥∥2

=

∥∥∥∥( 2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,

−2

x2 + y2 + 1

)∥∥∥∥2

=
1

(x2 + y2 + 1)2
(4x2 + 4y2 + 4)

=
4

x2 + y2 + 1
=

4

|z|2 + 1
=

(
2√

1 + |z|2

)2

σ

(
1

z
,

1

w

)
=

2
∣∣1
z
− 1

w

∣∣√(
1 + 1

|z|2

)(
1 + 1

|w|2

) =
2|w − z|√

(|z|2 + 1)(|w|2 + 1)
= σ(z, w)

where we multiplied above and below by|zw| =
√
|z|2|w|2. Finally,

σ

(
1

z
,∞
)

=
2√(

1 +
∣∣1
z

∣∣2) =
2|z|√

(|z|2 + 1)
= σ(z, 0).

Remark 6.6 Now (Ĉ, σ) is a metric space (in fact the ‘same’ as the sphereS2 in R3 with the
subset metric, or the distance fromR3 restricted toS2) and so we can look at open balls in̂C,
open sets inC2, limits of sequences inC2, continuous functions and so on.

Proposition 6.7 A subsetU ⊂ Ĉ is open in the metric space(Ĉ, σ) ⇐⇒ is satisfies both

(i) U ∩ C is open (inC in the usual sense)

(ii) if ∞ ∈ U then there is somer > 0 so that

{z ∈ C : |z| > r} ⊂ U

Proof. Note that the mapP |C : C → S2 \ {NP} is continuous because the formula (1) for P
in Proposition6.3 is clearly continuous fromR2 to R3. Hence ifU is open inĈ thenP (U) is
open inS2 (because the metrics on̂C andS2 are copies of one another) and the inverse image
(P |C)−1(P (U)) = U ∩ C is therefore open inC. If ∞ ∈ U (U ⊂ Ĉ open), thenU contains a
ball of some positive radiusδ > 0 about∞. That is

Bσ(∞, δ) = {z ∈ Ĉ : σ(∞, z) < δ} ⊂ U.
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Assumingδ < 2 (we can makeδ smaller if necessary) we have forz ∈ C

σ(∞, z) =
2√

1 + |z|2
< δ ⇐⇒ 1 + |z|2 > 4

δ2
⇐⇒ |z| >

√
4

δ2
− 1

and so withr = (1/δ)
√

4− δ2 we have

{z ∈ C : |z| > r} ⊂ U

This was under the assumption∞ ∈ U ⊂ Ĉ open.
Conversely assumeU ⊂ Ĉ satisfies the two conditions. The second condition tells us that∞

is an interior point ofU if it is in U at all.

∞ ∈ U and{z ∈ C : |z| > r} ⊂ U ⇒ Bσ(∞, δ) ⊂ U

with δ = 2/
√

1 + r2.
The first conditionU ∩C open inC plus continuity ofP−1 : S2 \{NP} → C (which is clear

from the formula (2) in Proposition6.3) implies that

(P−1)−1(U ∩ C) = P (U ∩ C)

is open inS2 \ {NP}. It follows that every point ofP (U ∩ C) is an interior point relative toS2

and so (sinceP transforms the distanceσ to the distances onS2) all points ofU ∩C are interior
points (with respect to(Ĉ, σ)).

Definition 6.8 If G ⊂ C is open andf : G→ Ĉ is a function, then we say thatf is analytic if it
satisfies

(a) f it is continuous (fromG with its usual metric to(Ĉ, σ));

(b)
f |f−1(C) : f−1(C)→ C

is analytic (in the usual sense); [Note thatf−1(C) is open inG by continuity off , hence
f−1(C) is open inC and so there is no problem looking at analyticity of this function.]
and

(c) the restriction of
1

f(z)
to f−1(Ĉ) \ {0} is analytic when we define1/f(z) = 0 at points

wheref(z) =∞.

Note that1/f(z) is continuous because of Lemma6.5and so the third condition means that
f and1/f are treated equally.

A reasonable way to look at it is that the two mapsz ∈ Ĉ \ {∞} = C 7→ z ∈ C and
w ∈ Ĉ \ {0} 7→ 1/w ∈ C (with 1/∞ interpreted as 0) are two coordinate charts onĈ. In this
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way we can regard̂C as a 2-dimensional manifold1. Because the transition from coordinatez to
coordinatew is given by an analytic transition functionw = 1/z on the intersectionC∩(Ĉ\{0})
where both coordinates can be used, and the oppositew 7→ z = 1/w is also analytic, we say
that Ĉ is a complex analytic manifold (of complex dimension 1, and these are actually called
Riemann surfaces).

A mapf with values in a complex manifold is analytic iff is continuous and each coordinate
map composed withf is analytic (on the open set where it makes sense). Our definition of
f : G → Ĉ analytic fits the pattern that is used for maps with values in a general Riemann
surface.

Proposition 6.9 If G ⊂ C is open and connected andf : G → Ĉ is analytic but not identically
∞, then the points off−1(∞) are isolated inG.

That isz0 ∈ f−1(∞) implies there is a punctured discD(z0, r) \ {z0} ⊂ G \ f−1(∞).

Proof. Note thatf−1(Ĉ \ {0}) is open and1/f is analytic there. Ifz0 ∈ f−1(∞), thenz0 ∈
f−1(Ĉ\{0}) and so there isr > 0 withD(z0, r) ⊂ f−1(Ĉ\{0}) and1/f is analytic onD(z0, r).
Notice1/f(z0) = 1/∞ = 0. If z0 is not an isolated point off−1(∞) thenz0 is not an isolated
zero of1/f inD(z0, r). Then1/f is identically 0 onD(z0, r) by the identity theorem for analytic
function, and in fact1/f is identically 0 on the connected component ofz0 in f−1(Ĉ\{0}). Call
this connected componentG0. Thenf ≡ ∞ onG0 and (because connected components are open
and closed)G0 is open inf−1(Ĉ \ {0}), hence inG.

ButG0 is also closed inG because if(zn)∞n=1 is a sequence inG0 converging to a limitz ∈ G,
then continuity off implies f(z) = limn→∞ f(zn) = ∞. Soz ∈ f−1(Ĉ \ {0}). SinceG0 is
closed inf−1(Ĉ \ {0}) (being a connected component), we havez ∈ G0.

Thusz0 ∈ G0 ⊂ G is open inG, closed inG and nonempty. AsG is connected,G0 = G and
sof ≡ ∞. But this contradicts the assumptions.

Theorem 6.10 If G ⊂ C is open andf is a meromorphic function onG, then we can define an
analyticĈ-valued functionf : G→ Ĉ be settingf(z) =∞ at poles off .

Conversely, ifG ⊂ C is open and connected andf : G → Ĉ is analytic but not identically
∞, thenf is a meromorphic function onG with poles at the points inf−1(∞).

Proof. Starting withf meromorphic onG, we have an open setG0 ⊂ G on whichf is analytic
(in the usual sense with finite values) and so that each point ofG \G0 is a pole off . If we define
f(z) =∞ for eachz ∈ G \G0, thenf : G→ Ĉ will be continuous.

To verify continuity at pointsz0 ∈ G wheref(z0) ∈ C is finite (so thatz0 ∈ G0) use
limz→z0 f(z) = f(z0) (or limz→z0 |f(z)− f(z0)| = 0) to deduce

lim
z→z0

σ(f(z), f(z0)) = lim
z→z0

2|f(z)− f(z0)|√
(1 + |f(z)|2)(1 + |f(z0)|2

= 0.

1a metric space or topological space where in an open set around each point there is a coordinate system that
identifies it with an open piece ofR2; we assume the coordinate functions are continuous from their domain to their
range inR2 and have continuous inverses; usually we also make the slightly technical assumption that there is a
countable dense subset in a manifold (or that the topology is second countable if we don’t use a metric)
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At polesz0 we knowlimz→z0 |f(z)| =∞ and so

lim
z→z0

σ(f(z), f(z0)) = lim
z→z0

σ(f(z),∞) = lim
z→z0

2√
1 + |f(z)|2

= 0

Hencef : G→ Ĉ is continuous.
As f−1(C) is the complement of the poles off in G, we know that the restriction off to

f−1(C) is analytic. Since1/f is meromorphic on each connected component ofG unlessf ≡ 0
on the component (by Corollary 4.25) we can also see that1/f is analytic on the setf−1(Ĉ\{0}.
Hencef : G→ Ĉ is analytic.

For the converse, ifG is connected,f : G → Ĉ is analytic butf 6≡ ∞, then the points of
f−1(∞) are isolated inG by Proposition6.9. Thusf is analytic onH = f−1(C), the points of
G \H = f−1(∞) are isolated inG and at pointsz0 ∈ G \H

0 = lim
z→z0

σ(f(z), f(z0)) = lim
z→z0

σ(f(z),∞) = lim
z→z0

2√
1 + |f(z)|2

implies limz→z0 |f(z)| =∞. Thusz0 is a pole off by Proposition 4.16.

Remark 6.11 We now extend the notion of analyticity one step further to functions defined on
(open subsets of)̂C (and still allowing values in the extended complex plane).

Definition 6.12 If G ⊂ Ĉ is open we say that a functionf : G→ Ĉ is analyticif

(i) f is continuous (fromG with the metricσ to Ĉ with the metricσ)

(ii) f is analytic onG ∩ C

(iii) g(z) = f(1/z) is analytic on{z ∈ C : 1/z ∈ G} (we includez = 0 if ∞ ∈ G andg(0)
meansf(∞) in that case).

Lemma 6.13 If G ⊂ C, the same functionsf : G → Ĉ are analytic according to Definition6.8
and Definition6.12.

Proof. The type of continuity required in each case is different, as in one case we considerG
with the usual metric onC while in the other we use the metricσ. However, the open subsets
V ⊂ G are the same in either case by Proposition6.7. Thus looking at continuity in the form
U ⊂ Ĉ open⇒ f−1(U) ⊂ G open, we can see that the continuity requirements are equivalent.

The rest of the proof is straightforward.

Example 6.14 All rational functions

r(z) =
p(z)

q(z)

(with p, q polynomials andq 6≡ 0) are analyticr : Ĉ→ Ĉ.
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Proof. By the Fundamental theorem of algebra, we can factorp andq and cancel common factors
to write

r(z) = λ

∏j
i=1(z − αi)∏k
i=1(z − βi)

wherej ≥ 0, k ≥ 0 and{α1, α2, . . . , αj} ∩ {β1, β2, . . . , βk} = ∅.
It follows thatr(z) is meromorphic onC with poles atz = βi (1 ≤ i ≤ k). When suitably

interpreted atz = βi, r(z) therefore becomes analyticr : C → Ĉ. r(1/z) is also rational and so
there is a suitable value forr(1/0) = r(∞) to makeg(z) = r(1/z) analyticg : C→ Ĉ. One can
verify thatr : Ĉ→ Ĉ is continuous.

Remark 6.15 It is in fact the case that rational functions and the constant∞ are the only analytic
functionsf : Ĉ → Ĉ. The first step of the proof is to observe thatf−1(∞) cannot be an infinite
set iff is not identically∞.
Proof. As Ĉ is compact, an infinite number of distinct pointszn ∈ Ĉ would have to have a
convergent subsequence. If the limit was inC, we would have a contradiction to Proposition6.9.
If the limit was∞, we can switch that to 0 by looking atf(1/z) instead.

For each of pointsa ∈ C with f(a) =∞, we have a pole of the meromorphic function onC.
Hence a Laurent series abouta with a finite number of negative terms

f(z) =
∞∑

n=−p

an(z − a)n (0 < |z − a| < δ)

We call the sum of the negative terms theprincipal part of f ata and write it as

Pf,a(z) =
−1∑

n=−p

an(z − a)n

The sum of the principal parts off at the (finitely many) pointsa ∈ Cwheref(a) =∞ produces
a rational functionr(z). Subtracting fromf , givesf(z)− r(z) analytic at all points ofC. Hence
it has a power series about the origin. Asf(1/z)− r(1/z) has a pole or a removable singularity
at z = 0, it follows (as in Remark 4.18) thatf(z) − r(z) = p(z) = a polynomial. Hence
f(z) = r(z) + p(z) is rational.

Remark 6.16 We now describe the version of convergence appropriate forĈ-valued analytic
functions.

Definition 6.17 For G ⊂ C is open we letC(G, Ĉ) = the set of all continuous functions: G→
Ĉ, andH(G, Ĉ) the analytic (or holomorphic) functions. A sequence(fn)∞n=1 in C(G, Ĉ) is said
to convergeuniformly with respect toσ on compact subsets ofG if for eachK ⊂ G compact we
have

lim
n→∞

sup
z∈K

σ(fn(z), f(z)) = 0
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Lemma 6.18 If (fn)∞n=1 is a sequence inC(G, Ĉ) that converges uniformly with respect toσ on
compact subsets ofG to a limit functionf : G→ Ĉ, thenf ∈ C(G, Ĉ).

If (fn)∞n=1 is a sequence inH(G, Ĉ) that converges uniformly with respect toσ on compact
subsets ofG to a limit functionf : G→ Ĉ, thenf ∈ H(G, Ĉ).

Proof. Omitted. The first part is a standard fact from metric space theory. For the second,
analyticity off at pointsz0 ∈ G wheref(z) ∈ C is finite can be shown by establishing that forn
largefn has finite values nearz0 andfn → f uniformly (with respect to absolute value distance)
on some disk aboutz0. For points wheref(z0) =∞, we can consider1/fn → 1/f .

Proposition 6.19 LetG ⊂ C be open. There is a metric̃ρ onC(G, Ĉ) so that convergence of
sequences iñρ corresponds to uniform convergence with respect toσ on compact subsets ofG.

Proof. Choose an exhaustive sequence(Kn)∞n=1 of compact subsets ofG and define

ρ̃(f, g) =
∞∑
n=1

1

2n
sup
z∈Kn

σ(f(z), g(z))

The rest is not much different from the earlier case where we constructedρ on C(G). One
simplification here results fromsupz∈Kn σ(f(z), g(z)) ≤ 2.

Definition 6.20 LetG ⊂ C be open. A familyF of meromorphic functions onG is called a
normal family if each sequence(fn)∞n=1 in F has a subsequence that converges uniformly with
respect toσ on compact subsets ofG to a limit function that is either

• a meromorphicf onG, or

• the constant function∞

Proposition 6.21 If G ⊂ C is connected then a familyF of meromorphic functions onG is a
normal family⇐⇒ F is relatively compact when considered as a subset of(H(G, Ĉ), ρ̃).

Proof. In the case ofG connectedH(G, Ĉ) = the meromorphic functions onG together with
the constant∞ (by Theorem6.10). Proposition6.19implies the result.

Definition 6.22 Let G ⊂ C be open. A familyF ⊂ C(G, Ĉ) is called equicontinuous (with
respect toσ) at a pointz0 ∈ G if for eachε > 0 it is possible to findδ > 0 so that

|z − z0| < δ, f ∈ F ⇒ σ(f(z), f(z0)) < ε.

Theorem 6.23 (version of Ascoli)For G ⊂ C open, a familyF ⊂ C(G, Ĉ) is relatively com-
pact in(C(G, Ĉ), ρ̃) if and only if it is equicontinuous at each point ofG.

Proof. Omitted. It is not so different from the Ascoli theorem we had before (5.20), where we
left the proof to an appendix. The pointwise boundedness condition is not needed now because
Ĉ is compact.
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Remark 6.24 Montel’s theorem does not work for meromorphic functions. There is a theorem
for meromorphic functions that takes the place of Montels theorem. It relies on the notion of a
spherical derivativeµ(f) of a meromorphic functionf . At points wheref(z) ∈ C is finite, the
spherical derivative is

µ(f)(z) =
|f ′(z)|

1 + |f(z)|2

and the definition at poles (wheref(z) =∞) relies on taking reciprocals. Whenf(z) is neither
0 nor∞ one can see that

µ

(
1

f

)
(z) = µ(f)(z)

Theorem 6.25 (Marti criterion) If G ⊂ C is open and connected andF is a family of mero-
morphic functions onG, thenF is a normal family if and only if it satisfies

sup
f∈F

sup
z∈K

µ(f)(z) <∞

for each compactK ⊂ G.
This means uniform boundedness of the spherical derivative on each compact subset ofG.

Proof. Omitted.

Remark 6.26 One application of these ideas (or variants of them) is in the topic of iteration
theory for analytic functions.

The most commonly studied case is the situation of rational mapsf : Ĉ → Ĉ and iteration
means considering the composites

f, f2 = f ◦ f, f3 = f ◦ f 2, . . .

Slightly more precisely, one considers a pointz ∈ Ĉ and the long term behaviour of the iterated
images

z, f(z), f2(z) = f(f(z)), f3(z), . . .

and examines whether there is a trend.
The ‘well-behaved set’ ofz (for a given rationalf ) is called the Fatou setF (f) of f . It is

the largest open subset ofĈ on which the family of iterates{f, f2, f3, . . .} is an equicontinuous
family. This means that a small change inz has a small long term effect on the iteratesfn(z).

The Julia setJ(f) is the complement in̂C of the Fatou set. The Julia set is the ‘bad’ set
where a small change inz can produce a major change in the behaviour of the sequencefn(z)
of iterates.

One basic theorem is that for polynomialsf of degree 2 or more,∞ is in the Fatou set and
the Julia set is not empty. The Mandelbrot set consists of those values of a parameterc ∈ C for
which the the Julia setJ(pc) is connected, wherepc(z) = z2 + c.

For lack of time, we won’t deal with this topic.

Richard M. Timoney March 29, 2004


