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Remark 5.1 ForG ⊂ C open, we use the notation

H(G) = {f : G → C analytic}

for the set (space) of all holomorphic functions onG and

C(G) = {f : G → C continuous}

for the set (space) of all continuous functions onG.
The main change of perspective now is that we move from looking at functions one at a time

to looking at properties of the whole space of functions.
It is a more simple fact thatH(G) andC(G) are algebras than the fact thatM(G) is an

algebra. We define vector space operations onf, g ∈ C(G) andλ ∈ C via

(f + g)(z) = f(z) + g(z) and(λf)(z) = λf(z)

and a multiplication onC(G) by (fg)(z) = f(z)g(z). This makesC(G) a commutative algebra
overC andH(G) a subalgebra.

We are interested in what it might mean for a sequence of functions(fn)∞n=1 (in H(G) say)
to converge to a limitf ∈ H(G). Most of the ideas are the same initially for sequences inC(G)
and but we will come later to properties special to holomorphic functions.

The simplest way to definelimn→∞ fn = f is the notion ofpointwise convergenceon G.
This means that for eachz ∈ G we havelimn→∞ fn(z) = f(z) (convergence as sequences of
complex numbers). Though it easy to define, it is a kind of convergence that has rather unpleasant
properties. Perhaps it is more accurate to say that it fails to have many properties we would like
to have linking behaviour of the functionsfn to the behaviour of the limit functionf . These
drawbacks include

(i) We can define pointwise convergence for sequences inH(G) without insisting that the limit
function be inH(G) or evenC(G). Then there are sequences of holomorphic functions that
converge pointwise to discontinuous limitsf . Such examples are hard to come by and the
easiest way to show they can be found is to invoke Runges theorem (something we will
come to later).
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(ii) We can exhibit a sequence inC(C) that converges to a discontinuous limit. For example
fn(z) = e−n|z| has

lim
n→∞

fn(z) =

{
1 z = 0
0 z 6= 0

(iii) There is no distance onC(G) or H(G) so thatfn → f pointwise onG is equivalent to
convergence in distance, that is to

lim
n→∞

distance(fn, f) = 0

This means in fact that the behaviour of pointwise convergence inH(G) or C(G) belongs
in a more complicated theory than the theory of metric spaces. In metric spaces many, but
not all, familiar properties of limits of sequences of scalars are still true.

The next simplest notion to consider isuniform convergence onG. Recall thatfn → f
uniformly onG (asn →∞) means the following

Givenε > 0 there existsN so that

n > N, z ∈ G ⇒ |fn(z)− f(z)| < ε

With a small bit of work, we could check that this is equivalent to the following formulation

Givenε > 0 there existsN so that

n > N ⇒ sup
z∈G

|fn(z)− f(z)| < ε

In this way we can see a definition of distance we can use to describe this kind of convergence

distance(g, h) = dG(g, h) = sup
z∈G

|g(z)− h(z)|

and this looks promising. We do know thatfn → f uniformly onG and eachfn ∈ C(G) implies
f ∈ C(G) (‘uniform limits of continuous functions are continuous’). We also know a similar
fact about sequences inH(G) (see Exercises 2 where we saw that Moreras theorem could be
used to show that uniform limits of sequences of holomorphic functions are holomorphic).

However, there are still drawbacks:

(a) If we apply this convergence inH(C) (that is to entire functions) we find thatdC(fn, f) <
ε < ∞ implies thatfn(z)−f(z) is a bounded entire function, hence a constant by Liouville’s
theorem. So inH(C) the sequences of functions that converge uniformly are all of the form
fn(z) = f(z) + cn with cn constants converging to 0 (except for some finite number ofn
wherefn can be anything). Thus a very restrictive notion of convergence.
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(b) This is linked to the fact thatdG(g, h) need to be finite forf, g ∈ C(G) (or evenf, g ∈
H(G)). So our notion of ‘distance’ is not so great as it is not always defined.

It is a good notion to use if we looked only at bounded continuous functions onG (or bounded
holomorphic functions, but we see that ifG = C then there are only constant bounded
holomorphic functions). We will not look into these spaces of bounded functions, though
they have been studied extensively, as they are a rather more advanced topic.

(c) The notion of uniform convergence does not cover all the cases where we have already
encountered limits of sequences of functions, especially power series. For example we have

1

1− z
=

∞∑
n=0

zn = lim
n→∞

n∑
j=1

zj = lim
n→∞

sn(z) (|z| < 1)

but we don’t have uniform convergence forz ∈ D(0, 1). Similarly we have

ez =
∞∑

n=0

zn

n!
= lim

n→∞

n∑
j=1

zn

n!
= lim

n→∞
sn(z) (z ∈ C)

but no unform convergence onC. In general for a power series with radius of convergence
R > 0

f(z) =
∞∑

n=0

an(z − a)n = lim
n→∞

n∑
j=1

aj(z − a)j = lim
n→∞

sn(z) (|z − a| < R)

we do not have unform convergence forz ∈ D(a, R) but we do have uniform convergence
for |z − a| ≤ r with anyr < R. (This follows from the WeierstrassM -test.)

This last point shows the way to proceed in general.

Definition 5.2 If (fn)∞n=1 is a sequence of functionsfn : G → C defined on an openG ⊂ C and
f : G → C is another function, then we say the sequence converges tof uniformly on compact
subsets ofG if the following is satisfied

for each compact subsetK ⊂ G the sequence of restrictions(fn |K)∞n=1 converges
uniformly onK to f |K .

Spelling this out more it says

for each compact subsetK ⊂ G and any givenε > 0 we can findN so that

n > N, z ∈ K ⇒ |fn(z)− f(z)| < ε

This can also be reformulated using a distance on eachK, or on C(K) = {g : K →
C continuous}, defined by

dK(g, h) = sup
z∈K

|g(z)− h(z)|
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For g, h ∈ C(K) this supremum is always finite (continuous complex-valued functions on com-
pact sets are always bounded and there is even somez ∈ K where|g(z) − h(z)| achieves its
maximum). ThisdK distance makesC(K) a metric space, that isdK satisfies the following
properties that seem to be natural for familiar distances:

(i) dK(g, h) ≥ 0 ∀g, h ∈ C(K)

(ii) dK(g, h) = dK(h, g) ∀g, h ∈ C(K)

(iii) (triangle inequality)

dK(g1, g3) ≤ dK(g1, g2) + dK(g2, g3) (∀g1, g2, g3 ∈ C(K))

[These properties so far makeC(K) with dK a pseudo-metric space (or sometimes called
a semi-metric space).]

(iv) g, h ∈ C(K) anddK(g, h) = 0 ⇒ g = h.

We can sayfn → f uniformly on compact subsets if and only if the following is true

for each compactK ⊂ G, limn→∞ dK(fn, f) = 0

What we have now is infinitely many distancesdK to consider in order to describe uniform
convergence on compact sets, but we will show soon how to manage with just one distance.
Meantime we show that this kind of convergence has desirable properties (and that it covers the
power series situation).

Proposition 5.3 LetG ⊂ C be open and(fn)∞n=1 a sequence inH(G) that converges uniformly
on compact subsets ofG to some limit functionf : G → C. Thenf ∈ H(G).

Proof. Analyticity of the limit is a local property, something to be shown at each pointa ∈ G.
We need to show thatf ′(a) exists.

For this fix a ∈ G and chooser > 0 so thatD(a, r) ⊂ G. Then pickδ with 0 < δ < r
so thatK = D̄(a, δ) ⊂ G is a compact subset. Sofn → f uniformly on K and sofn → f
uniformly onD(a, δ). By Exercises 2 question 3 (the one that used Moreras theorem) we have
that the restriction off to D(a, δ) is analytic. Sof ′(a) exists.

Proposition 5.4 If G ⊂ C is open, then we can find a sequence(Kn)∞n=1 of compact subsets of
G such that

(i)
⋃∞

n=1 Kn = G

(ii) Kn ⊂ (Kn+1)
◦ = the interior ofKn+1 for eachn = 1, 2, . . .

(iii) if K ⊂ G is any compact subset, then there is somen with K ⊂ Kn

We call such a sequence anexhaustive sequence of compact subsetsof G.
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Proof. We already showed how to construct such a sequence in the proof of 4.21 (and see 4.22).
WhenG = C it was easy — just putKn = D̄(0, n) and forG 6= C we took

Kn = {z ∈ G : dist(z, C \G) ≥ 1

n
and|z| ≤ n}.

Recall also

C \Kn = {w ∈ C : |w| > n} ∪
⋃

w∈C\G

D

(
w,

1

n

)
andz ∈ Kn ⇒ D

(
z, 1

n
− 1

n+1

)
⊂ Kn+1.

We did not note then that theKn satisfy (iii ) but if K ⊂ G is compact thenK ⊂
⋃∞

n=1 Kn ⊂⋃∞
n=1(Kn+1)

◦ and so we have an open cover ofK by the sets(Kn+1)
◦. Hence there is a finite

subcoverK ⊂
⋃N

n=1(Kn+1)
◦ = (KN+1)

◦ ⊂ KN+1. This shows (iii ) holds.

Lemma 5.5 SupposeG ⊂ C is open and(Kn) is an exhaustive sequence of compact subsets of
G. Let(fj)

∞
j=1 be a sequence of functionsfj ∈ C(G) andf ∈ C(G). Thenfj → f uniformly on

compact subsets ofG (asj →∞) if and only if

∀n = 1, 2, . . . , lim
j→∞

dKn(fj, f) = 0

This means that instead of considering the vastly infinite (uncountably infinite) number of
compactK ⊂ G it is enough to look only atK in the sequenceKn.

Proof. Since eachKn ⊂ G is a compact subset it is clear that iffj → f uniformly on compact
subsets ofG thenlimj→∞ dKn(fj, f) = 0 for eachn.

Conversely, suppose we knowlimj→∞ dKn(fj, f) = 0 for eachn and we take anyK ⊂ G
compact. Then there is somen with K ⊂ Kn and it is fairly clear then that

dK(fj, f) ≤ dKn(fj, f) → 0 asj →∞

Example 5.6 It is now clear that in the power series examples with radius of convergenceR > 0

f(z) =
∞∑

n=0

an(z − a)n = lim
n→∞

n∑
j=1

aj(z − a)j = lim
n→∞

sn(z) (|z − a| < R)

we do havesn → f uniformly on compact subsets ofD(a, R).
The reason is every compact subsetK ⊂ D(a, R) is contained in a subdiscD(a, r) with 0 <

r < R (where we do have uniform convergence by the WeierstrassM -test argument). Another
way to see this is to work out what the standard construction gives forKn whenG = D(a, R)
(for n large, a sequence of closed discs of radii< R centered ata).

Remark 5.7 ThesedK (or dKn) have a nice property that they are associated with asemi-norm
on C(G). A semi-norm is a way of associating a length to elements of a vector space that has
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all the usual properties of lengths of vectors except non-zero elements are allowed to have length
= 0. (Also we are not saying that there is any inner product around.)

If we define forK ⊂ G compact (hereG ⊂ C is open as usual) andf ∈ C(G)

‖f‖K = sup
z∈K

|f(z)|

then we have the following characteristic semi-norm properties satisfied

(i) ‖f‖K ≥ 0 for eachf ∈ C(G)

(ii) (triangle inequality)‖f + g‖K ≤ ‖f‖K + ‖g‖K holds for allf, g ∈ C(G)

(iii) λ ∈ C, f ∈ C(G) ⇒ ‖λf‖K = |λ|‖f‖K

The link between the semi-norm‖ · ‖K and the pseudo-metricdK is

dK(g, h) = ‖g − h‖K

and all semi-norms give rise to a pseudo-metric in this way.
We will now show that there is a single metric onC(G) that describes uniform convergence

on compact subsets, but we will lose the connection with a norm (or semi-norm).

Lemma 5.8 LetG ⊂ C be open andK ⊂ G compact. DefineρK(f, g) for f, g ∈ C(G) by

ρK(f, g) =
dK(f, g)

1 + dK(f, g)

Then

(i) ρK is a pseudo metric onC(G)

(ii) 0 ≤ ρK(f, g) < 1 for all f, g ∈ C(G)

(iii) If (fn)∞n=1 is a sequence of functions inC(G) andf ∈ C(G), then

lim
n→∞

dK(fn, f) = 0 ⇐⇒ lim
n→∞

ρK(fn, f) = 0

Proof.

(i) This is the main part requiring proof. It is clear thatρK(f, g) = ρK(g, h) ≥ 0 and the part
that requires an argument is thatρK satisfies the triangle inequality.
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Let ρ(t) = t/(1+ t) for t ≥ 0 and note thatρ′(t) = 1/(1+ t)2 ≥ 0 so thatρ(t) is increasing
(for t ≥ 0). Now the triangle inequality holds fordK and so we can say

ρK(f1, f3) = ρ(dK(f1, f3))

≤ ρ(dK(f1, f2) + dK(f2, f3))

=
dK(f1, f2) + dK(f2, f3)

1 + dK(f1, f2) + dK(f2, f3)

=
dK(f1, f2)

1 + dK(f1, f2) + dK(f2, f3)
+

dK(f2, f3)

1 + dK(f1, f2) + dK(f2, f3)

≤ dK(f1, f2)

1 + dK(f1, f2)
+

dK(f2, f3)

1 + dK(f2, f3)

= ρK(f1, f2) + ρk(f2, f3)

(ii) This is clear from the definition ofρK

(iii) If limn→∞ dK(fn, f) = 0 thenlimn→∞ ρK(fn, f) = 0 because the functionρ(t) = t/(1+t)
is continuous att = 0 andρK(fn, f) = ρ(dK(fn, f)).

Conversely iflimn→∞ ρK(fn, f) = 0, thenlimn→∞ dK(fn, f) = 0 becausedK(fn, f) =
ρK(fn, f)/(1− ρK(fn, f)).

Proposition 5.9 LetG ⊂ C be an open subset and(Kn)∞n=1 an exhaustive sequence of compact
subsets ofG. Then

ρ(f, g) =
∞∑

n=1

1

2n
ρKn(f, g) (f, g ∈ C(G))

defines a metric onC(G). If (fj)
∞
j=1 is a sequence inC(G) andf ∈ C(G) then

lim
j→∞

ρ(fj, f) = 0

if and only iffj → f uniformly on compact subsets ofG (asj →∞).
In other words this metricρ is such that convergence in this distance corresponds to uniform

convergence on compact subsets.

Proof. To show thatρ is a pseudo metric onC(G) is not difficult using Lemma5.8. The series
definingρ(f, g) is convergent since it is smaller than

∑∞
n=1 1/2n = 1 and it clearly has a non-

negative sum. The triangle inequality follows by applying Lemma5.8as doesρ(f, g) = ρ(g, f).
Finally ρ(f, g) = 0 ⇒ ρKn(f, g) = 0∀n ⇒ dKn(f, g) = 0∀n ⇒ f(z) = g(z)∀z ∈

⋃∞
n=1 Kn =

G ⇒ f = g
If fj → f uniformly on compact subsets ofG, thenlimj→∞ dKn(fj, f) = 0 for eachn and

hencelimj→∞ ρKn(fj, f) = 0 (for eachn). To show thatlimj→∞ ρ(fj, f) = 0, start withε > 0
given and chooseN large enough that

∞∑
n=N+1

1

2n
<

ε

2
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Then we have

ρ(fj, f) =
∞∑

n=1

1

2n
ρKn(fj, f) ≤

N∑
n=1

1

2n
ρKn(fj, f) +

∞∑
n=N+1

1

2n
<

N∑
n=1

1

2n
ρKn(fj, f) +

ε

2

Sincelimj→∞
∑N

n=1
1
2n ρKn(fj, f) = 0, if j is large enough (sayj > j0) then this finite sum is

< ε/2 andρ(fj, f) < ε.
Conversely, iflimj→∞ ρ(fj, f) = 0 then notice that, for any fixedn,

ρKn(fj, f) ≤ 2n

∞∑
m=1

1

2m
ρKm(fj, f) = 2nρ(fj, f) → 0 asj →∞

So limj→∞ ρKn(fj, f) = 0 for eachn, hence by Lemma5.8(iii ) limj→∞ dKn(fj, f) = 0 and by
Lemma5.5, fj → f uniformly on compact subsets ofG asj →∞.

Remark 5.10 From now on we will frequently considerH(G) (or C(G)) as equipped with a
metricρ of the above type. So(H(G), ρ) is now a metric space.

We can define open sets in a metric space by analogy with the way we define open subsets in
C. Sometimes it may help to consider a subset ofH(G) as a family of analytic functions (which
means the same as a set of functions). If we fixf0 ∈ H(G) andr > 0 we can define theball
aboutf0 of radiusr as

Bρ(f0, r) = {f ∈ H(G) : ρ(f, f0) < r}

and then we can define a subsetF ⊂ H(G) to be open iff0 ∈ F ⇒ ∃r > 0 with Bρ(f0, r) ⊂ F .
We can define compactness for subsetsF ⊂ H(G) by requiring that every open cover has

a finite subcover. But in metric spaces, we always have an alternative way to describe com-
pactness via sequences (as we do inC). A family F ⊂ H(G) is compact if and only if every
sequence(fn)∞n=1 of functionsfn ∈ F has a subsequence(fnj

)∞j=1 with a limit f ∈ F . (So
limj→∞ ρ(fnj

, f) = 0.)

Lemma 5.11 For G ⊂ C open and letF ⊂ H(G) be a family of holomorphic functions (or
subset ofH(G)). Consider two metricsρ1, ρ2 on H(G) constructed as above (from exhaustive
sequences of compact subsets ofG). ThenF is compact in(H(G), ρ1) if and only if it is compact
in the metric space(H(G), ρ2).

Proof. As noted above compactness of subsets of a metric space can be characterised using limits
of sequences. But both metricsρ1 andρ2 have the same convergent sequences by Proposition5.9.

Remark 5.12 Closures and closed subsets of(H(G), ρ) can also be characterised using limits
of sequences. Hence they are also the same for different metricsρ constructed as before.

Open subsets of(H(G), ρ) are also the same in different such metricsρ (since open sets are
complements of closed sets).

Similar remarks apply to(C(G), ρ).
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Proposition 5.13 Let G ⊂ C be open. ThenH(G) is a closed subset ofC(G) (when we use a
metric of the type constructed above onC(G)).

(As H(G) is a vector subspace ofC(G), it is commonly called a closed subspace.)

Proof. Convergent sequences of functionsfn in H(G) with limn→∞ fn = f ∈ C(G) have limits
f ∈ H(G) by Proposition5.3. It follows thatH(G) is closed.

Lemma 5.14 LetG ⊂ C be open andρ a metric onC(G) constructed as before. LetK ⊂ G be
compact. Then the map

f 7→ ‖f‖K : C(G) → R

is continuous.

Proof. Continuity on metric spaces can be described via sequences. It suffices to prove that
limn→∞ ρ(fn, f) = 0 ⇒ limn→∞ ‖fn‖K = ‖f‖K .

This follows because a version of the triangle inequality says

|‖fn‖K − ‖f‖K | ≤ ‖f − fn‖K → 0

(asn →∞) by uniform convergence of the sequence(fn)∞n=1 to f onK.

Definition 5.15 LetG ⊂ C be open. A subsetF of C(G) (or H(G)) is calledrelatively compact
if and only if its closure is compact. (The closure will be the set of all possible limits of convergent
sequences(fn)∞n=1 with eachfn ∈ F .)

A subsetF is calledboundedif for eachK ⊂ G compact

sup
f∈F

‖f‖K < ∞

(This could be phrased as ‘uniformly bounded on compact subsets’, but the shorter term ‘bounded’
is usually used. In a way, this is the only sensible notion of ‘bounded’. Defining bounded in terms
of the distanceρ is not much use as all distances are bounded by 1.)

Lemma 5.16 LetG ⊂ C be open andF ⊂ C(G) (or F ⊂ H(G)) a subset.

(i) F is relatively compact if and only if every sequence(fn)∞n=1 in F has a convergent subse-
quence(fnj

)∞j=1 (convergent to some limit inC(G))

(ii) Relatively compact familiesF are bounded.

Proof.

(i) (This is actually a general fact, true in any metric space.) If the closure ofF is compact,
then a sequence(fn)∞n=1 in F is also a sequence in the closure. As the closure is compact
there is a subsequence(fnj

)∞j=1 converging to a limit (in the closure, hence inC(G)).

Going the other way, suppose we know every sequence inF has a convergent subsequence.
Take a sequence(gn)∞n=1 in the closureF̄ . Then, for eachn, we can findfn ∈ F so that
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ρ(gn, fn) < 1/n. By assumption, there is a subsequence(fnj
)∞j=1 which converges to some

f ∈ C(G). But thengnj
→ f asj →∞ because

ρ(gnj
, f) ≤ ρ(gnj

, fnj
) + ρ(fnj

, f) ≤ 1

nj

+ ρ(fnj
, f) → 0 (asj →∞).

(ii) Let F ⊂ C(G) be relatively compact. If it is not bounded, then there is someK ⊂ G
compact so that

sup
f∈F

‖f‖K = ∞.

So for eachn, we can findfn ∈ F with ‖fn‖K > n. A convergent subsequence(fnj
)∞j=1

exists (with a limitf ∈ C(G)). By Lemma5.14,

lim
j→∞

‖fnj
‖K = ‖f‖K

but that contradicts‖fnj
‖K > nj →∞ asj →∞.

Theorem 5.17 (Montels Theorem)Let G ⊂ C be open andF ⊂ H(G) a family of analytic
functions. ThenF is relatively compact if and only ifF is bounded (in the sense of Defini-
tion 5.15, that is uniformly on compact subsets).

Remark 5.18 Though this theorem corresponds exactly with the situation for subsets ofC and
finite-dimensional vector spaces likeRn, a similar result is not usually true in infinite dimensional
spaces.

The same statement fails inC(G). An example to show that isF = {fn : n = 1, 2, . . .},
fn(z) = exp(−n|z|) andG any open set containing the origin. The family is bounded because
|fn(z)| = fn(z) ≤ 1, but there is no subsequence of the sequence(fn)∞n=1 that converges in
C(G). If a subsequence did converge in(C(G), ρ) to some limitf ∈ C(G), then the subsequence
would have to converge pointwise to the same limit function. This forcesf(0) = 1 andf(z) = 0
for z 6= 0. Sof cannot be inC(G).

Our proof of Montels Theorem will require the corresponding theorem for families inC(G).
That theorem (the Arzela-Ascoli Theorem) is more complicated to state and also a bit long to
prove. We will relegate the proof of it to an appendix.

Definition 5.19 Let G ⊂ C be openz0 ∈ G a point andF ⊂ C(G) a family of continuous
functions onG. Then the familyF is calledequicontinuous atz0 if for eachε > 0 there is some
δ > 0 so that

|z − z0| < δ, f ∈ F ⇒ |f(z)− f(z0)| < ε.

(Perhaps it is worth comparing this to uniform continuity of a single function on a setE.
Theref is fixed andz, z0 are any two points of the setE with |z − z0| < δ. Here, theδ required
is as in the condition for continuity of a single functionf atz0, but the sameδ has to work for all
f ∈ F .)
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Theorem 5.20 (Arzela-Ascoli Theorem)Let G ⊂ C be open andF ⊂ C(G) a family of con-
tinuous functions onG. ThenF is relatively compact in(C(G), ρ) if and only if it satisfies both
of the following conditions:

(i) F is pointwise bounded onG (that is, for each pointz0 ∈ G, we havesupf∈F |f(z0)| < ∞)

(ii) F is equicontinuous at each point ofG.

Proof. (of Theorem5.17using Theorem5.20) One direction is already covered by Lemma5.16
(i). If F ⊂ H(G) is relatively compact then it must be bounded.

For the other direction, we use Theorem5.20. AssumeF ⊂ H(G) is bounded.
ThenF is certainly pointwise bounded since pointsz0 ∈ G make singleton compact sets

K = {z0} (andF is uniformly bounded onK).
Next we claimF is equicontinuous at eachz0 ∈ G. Fix z0 ∈ G andε > 0.
We can findr > 0 with D(z0, r) ⊂ G. If 0 < δ0 < r/2, then the closed diskK =

D̄(z0, 2δ0) ⊂ D(z0, r) ⊂ G is a compact subset ofG. So

M = sup
f∈F

‖f‖K < ∞.

By the Cauchy integral formula, forz ∈ D(z0, δ0) we have

f ′(z) =
1

2πi

∫
|ζ−z0|=2δ0

f(ζ)

(ζ − z)2
dζ

and so we can estimate

|f ′(z)| ≤ 1

2π
(2π(2δ0))

M

δ2
0

=
2M

δ0

= M1 (say)

(using|ζ − z| = |(ζ − z0)− (z − z0)| ≥ |ζ − z0| − |z − z0| = 2δ0 − |z − z0| ≥ 2δ0 − δ0 = δ0).
Thus for|z − z0| < δ0 we have

|f(z)− f(z0)| =
∣∣∣∣∫ z

z0

f ′(ζ) dζ

∣∣∣∣ ≤ |z − z0|M1

Thus if we takeδ = min(δ0, ε/M1) (which is independent off ∈ F), we have

|z − z0| < δ, f ∈ F ⇒ |f(z)− f(z0)| < ε

Thus, by the Ascoli theorem5.20, we know thatF is relatively compact if we view it as a
family of continuous functions (F ⊂ H(G) ⊂ C(G)). In other words its closure inC(G) is
compact. But, sinceH(G) is closed inC(G), the closure ofF in C(G) is actually contained in
H(G) and so is the same as its closure inH(G). HenceF is relatively compact inH(G).
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Theorem 5.21 SupposeG ⊂ C is open andF ⊂ H(G) a bounded subset. If a sequence
(fn)∞n=1 inF is pointwise convergent to a functionf : G → C, then the sequence is automatically
uniformly convergent on compact subsets (and the limitf ∈ H(G)).

(In other words, forboundedsequences of analytic functions, pointwise convergence is after
all the same as uniform convergence on bounded sets. It follows that if a sequence of analytic
functionsfn : G → C converges pointwise to a limitf : G → C and iff fails to be differentiable
or continuous at a pointz0 ∈ G, then the sequence cannot be bounded (uniformly on compact
subsets ofG). In fact we can replaceG be a small discD(z0, δ) ⊂ G and say that the sequence
could not be bounded on any such disc. So

sup
n

(sup{|fn(z)| : |z − z0| < δ}) = ∞

for eachδ > 0 (small enough thatD(z0, δ) ⊂ G). This makes it quite hard to find such sequences
fn. As stated before, we can use Runges theorem to show there are such sequences, once we find
out about Runges theorem.)

Proof. By Montels Theorem5.17, the sequence has a convergent subsequence(fnj
)∞j=1. So the

subsequence converges in(H(G), ρ) (or equivalently, uniformly on compact subsets ofG) to
some limitg ∈ H(G). As singleton subsetsK = {z} ⊂ G are compact it follows that the
subsequence converges pointwise tog. That is

g(z) = lim
j→∞

fnj
(z) = lim

n→∞
fn(z) = f(z) (eachz ∈ G)

and sof = g ∈ H(G).
To show that the sequence(fn)∞n=1 converges, uniformly on compact subsets ofG, to f we

need to know that for eachK ⊂ G compact

lim
n→∞

‖fn − f‖K = 0.

If that fails to be so, it fails for someK ⊂ G compact. Failing forK means we can find
ε > 0 so that‖fn − f‖K ≥ ε for infinitely manyn. That means a subsequence(fnk

)∞k=1 where
‖fnk

− f‖K ≥ ε for all k.
Using Montels theorem, we can find a subsequence(fnkj

)∞j=1 of the subsequence which con-
verges in(H(G), ρ). We can rename this sub-subsequence as(fmj

)∞j=1. Repeating the argument
at the beginning of the proof we can see that this subsequence must converge tof and so

lim
j→∞

‖fmj
− f‖K = 0

contradicting
‖fmj

− f‖K = ‖fnkj
− f‖K ≥ ε > 0 (∀j).

Thus we must havefn → f in (H(G), ρ).
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Theorem 5.22 (Osgoods theorem)Let G ⊂ C be open and(fn)∞n=1 a sequence of analytic
functionsfn ∈ H(G) that converges pointwise to a limit functionf : G → C.

Then there is a dense open subsetG0 ⊂ G so that the restriction off to G0 is analytic and
the restriction of the sequence(fn)∞n=1 converges uniformly on compact subsets ofG0 to f |G0.

The proof of this relies on the previous theorem (5.21) and the Baire category theorem.
The idea is to take

Sm = {z ∈ G : sup
n
|fn(z)| ≤ m} =

∞⋂
n=1

{z ∈ G : |fn(z)| ≤ m}

Gm = (Sm)◦ the interior ofSm andG0 =
⋃∞

m=1 Gm.
ClearlyG0 is open. The Baire Category theorem can be used to show thatGm is not empty

for m big enough, and in fact thatG0 is dense inG. This is the main part of the proof.
Once these facts are established, we can see that every compact subsetK ⊂ G0 =

⋃∞
m=1 Gm

and so theGm form an open cover ofK. HenceK is contained in a finite union
⋃m0

m=1 Gm = Gm0

and so the sequencefn is uniformly bounded onK (by m0).
From Theorem5.21, the rest of the result follows.
We will leave the rest of the details to an appendix.

A Proof of Arzela-Ascoli Theorem

First, the ‘easy’ direction of the theorem.

Proposition A.1 Let G ⊂ C be open andF ⊂ C(G) a family of continuous functions onG.
Suppose thatF is a relatively compact in(C(G), ρ). Then it satisfies both of the following
conditions:

(i) F is pointwise bounded onG

(ii) F is equicontinuous at each point ofG.

Proof. We know from Lemma5.16(i) thatF is bounded (uniformly on compact subsets) and so
it is pointwise bounded (because singleton subsetsK = {z0} ⊂ G are compact).

To show it must be equicontinuous at each point ofG, fix z0 ∈ G and supposeF fails to be
equicontinuous atz0. Then there is someε > 0 for which noδ > 0 works. Fix such anε > 0
andr > 0 with D(z0, r) ⊂ G. Consider the fact thatδ = r/n does not work. This means there
existszn with |zn − z0| < r/n (hencezn ∈ G) andfn ∈ F so that|fn(zn)− fn(z0)| ≥ ε.

As F is relatively compact inC(G), there is a subsequence(fnj
)∞j=1 which converges in

(C(G), ρ) (equivalently on compact subsets ofG) to somef ∈ C(G). As f is continuous atz0

we know there existsδ0 > 0 so that

|z − z0| < δ0 ⇒ |f(z)− f(z0)| <
ε

3
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We can assume thatδ0 < r so that the closed disc̄D(z0, δ0) ⊂ G is a compact subset ofG. Thus
fnj

→ f uniformly onK = D̄(z0, δ0) and if j is large enough

sup
z∈D̄(z0,δ0)

|fnj
(z)− f(z)| < ε/3

Thus if j is large enough for this to hold and for1/nj < δ0 we have

ε < |fnj
(znj

)−fnj
(z0)| ≤ |fnj

(znj
)−f(znj

)|+|f(znj
)−f(z0)|+|f(z0)−fnj

(z0)| <
ε

3
+

ε

3
+

ε

3
= ε

This contradiction shows thatF must be equicontinuous atz0.

Definition A.2 Let G ⊂ C be open andF ⊂ C(G) a family of continuous function onG. For
E ⊂ G a subset, we say thatF onE if it satisfies:

Givenε > 0 there existsδ > 0 so that

f ∈ F , z0 ∈ E, z ∈ G, |z − z0| < δ ⇒ |f(z)− f(z0)| < ε

(One might describe this better as ‘equicontinuous uniformly at all points ofE’.)

Lemma A.3 Let G ⊂ C be open andF ⊂ C(G) a family of continuous function onG. If F is
equicontinuous at each point ofG and ifK ⊂ G is compact, thenF is equicontinuous onK.

(So equicontinuity at each point implies equicontinuity on compact subsets.)

Proof. Fix K. For eachζ ∈ K, by equicontinuity atζ we know there existsδζ > 0 so that

f ∈ F , |z − ζ| < δζ ⇒ |f(z)− f(ζ)| < ε

2

Now
{

D
(
ζ,

δζ

2

)
: ζ ∈ K

}
is an open cover ofK and so it has a finite subcover

K ⊂ D

(
z1,

δz1

2

)
∪D

(
z2,

δz2

2

)
∪ · · · ∪D

(
zn,

δzn

2

)
Now putδ = min(δz1/2, δz2/2, . . . , δzn/2).

Take nowz0 ∈ K andz with |z− z0| < δ. Thenz0 ∈ D
(
zi,

δzi

2

)
for somei (1 ≤ i ≤ n) and

then

|z − zi| ≤ |z − z0|+ |z0 − zi| ≤ δ +
δzi

2
≤ δzi

⇒ z ∈ D(zi, δzi
) ⊂ G.

So, for arbitraryf ∈ F we have|f(z)− f(zi)| < ε/2 and|f(z0)− f(zi)| < ε/2. Hence

f ∈ F ⇒ |f(z)− f(z0)| ≤ |f(z)− f(zi)|+ |f(z0)− f(zi)| ≤
ε

2
+

ε

2
= ε.

As the sameδ works for allz0 ∈ K, we have the result.
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Proof. (of Theorem5.20) One direction is already done in PropositionA.1 and so what remains
is to show that ifF ⊂ C(G) is both pointwise bounded and equicontinuous at each point ofG,
thenF is relatively compact.

TakeF satisfying the two conditions and(fn)∞n=1 a sequence inF . To find the appropriate
subsequence of functions we use what is known as a diagonal argument.

First we pick a countable dense subset of points ofG. For exampleS = {z ∈ G : <z ∈
Q and=z ∈ Q} is countable and dense inG. To say thatS is countable means we can arrange
all its points in a sequenceS = {s1, s2, . . .} (and dense inG means that its closure relative toG
is all of G, or that each point ofG is a limit of some sequence of points ofS).

Now for the diagonal argument. It involves choosing subsequences of(fn)∞n=1, then further
subsequences of the subsequence, and so on forever. To avoid more and more subscripts, we use
(f1,j)

∞
j=1 rather than(fnj

)∞j=1 for the first subsequence, then(f2,j)
∞
j=1 for the second subsequence

and so on. To get off on the right track, we letf0,n = fn.
SinceF is pointwise bounded,

sup
f∈F

|f(s1)| < ∞⇒ {f(s1) : f ∈ F} ⊂ C is relatively compact

Thus{f0,n(s1) : n = 1, 2, . . .} is a relatively compact (or bounded) subset ofC. Hence the
sequence(f0,n(s1))

∞
n=1 has a subsequence(f1,j(s1))

∞
j=1 that converges to some limit inC. So

∃ lim
j→∞

f1,j(s1) ∈ C

Next {f1,n(s2) : n = 1, 2, . . .} is relatively compact inC and so the sequence(f1,n(s2))
∞
n=1

has a subsequence(f2,j(s2))
∞
j=1 that converges to some limit inC. So

∃ lim
j→∞

f2,j(s2) ∈ C

Continuing in this way, once we have(fn,j)
∞
j=1, we choose a subsequence(fn+1,k)

∞
k=1 so that

∃ lim
k→∞

fn+1,k(sn+1) ∈ C

The diagonal argument is now to choosegn = fn,n. Then (gj)
∞
j=n is a subsequence of

(fn,k)
∞
k=1 and so

lim
j→∞

gj(sn) = lim
k→∞

fn,k(sn) exists inC

We claim thatf(z) = limj→∞ gj(z) exists for allz ∈ G, thatf ∈ C(G) and thatgj → f in
(C(G), ρ) asj →∞.

Fix z ∈ G and we claim that(gj(z))∞j=1 is a Cauchy sequence inC, hence convergent. Let
ε > 0. Then, using the assumption thatF is equicontinuous atz, there existsδ > 0 so that
f ∈ F , |ζ − z| < δ ⇒ |f(ζ)− f(z)| < ε/3. Note that this applies withf = gj sincegj = fj,j is
one of thefn ∈ F . By density, there existssn ∈ S with |sn − z| < δ. Then, since

∃ lim
j→∞

gj(sn) ∈ C
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the sequence(gj(sn))∞j=1 is Cauchy inC and so there isj0 so that

j, k ≥ j0 ⇒ |gj(sn)− gk(sn)| < ε/3

Thus

j, k ≥ j0 ⇒
|gj(z)− gk(z)| ≤ |gj(z)− gj(sn)|+ |gj(sn)− gk(sn)|+ |gk(sn)− gk(z)|

< ε/3 + ε/3 + ε/3 = ε

We now have(gj(z))∞j=1 a Cauchy sequence inC for eachz ∈ G and so we can define
f : G → C by

f(z) = lim
j→∞

gj(z)

To showgj → f uniformly on compact subsets ofG, fix K ⊂ G compact andε > 0.
Then there is a compact subsetK1 ⊂ G so thatK ⊂ (K1)

◦. (For example, using an exhaustive
sequence of compact subsets ofG we can show this.)

Use equicontinuity ofF onK1 to find δ > 0 so that

z ∈ G, z0 ∈ K1, f ∈ F , |z − z0| < δ ⇒ |f(z)− f(z0)| <
ε

4

Now, for eachz ∈ K, sinceS is dense inG, there is somes ∈ S ∩ (Bd(z, δ) ∩ (K1)
◦).

Turning this aroundz ∈ Bd(s, δ) for somes ∈ S ∩ (K1)
◦. We can say then that

{Bd(s, δ) : s ∈ S ∩ (K1)
◦}

is an open cover ofK. Thus there is a finite subcover

K ⊂
n0⋃

n=1

Bd(s
′
n, δ)

for somes′1, s
′
2, . . . , s

′
n0
∈ S ∩ (K1)

◦.

Sincef(s′n) = limj→∞ gj(s
′
n) for eachs′n, there is aj0 so that

j > j0 ⇒ max
1≤n≤n0

|gj(s
′
n)− f(s′n)| < ε

4
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If we now takez ∈ K, there is somes′n with z ∈ Bd(s
′
n, δ) (1 ≤ n ≤ n0). We have, forj > j0,

|gj(z)− gj(s
′
n)| <

ε

4

|gj(s
′
n)− f(s′n)| <

ε

4
|gj(z)− f(s′n)| ≤ |gj(z)− gj(s

′
n)|+ |gj(s

′
n)− f(s′n)|

<
2ε

4
|f(z)− f(s′n)| = lim

j→∞
|gj(z)− f(s′n)|

≤ 2ε

4
|gj(z)− f(z)| ≤ |gj(z)− f(s′n)|+ |f(z)− f(s′n)|

<
2ε

4
+

2ε

4
= ε

This is true for eachz ∈ K and so

j > j0 ⇒ sup
z∈K

|gj(z)− f(z)| = dK(gj, f) < ε

This meansgj → f uniformly onK, for eachK.
Hencef ∈ C(G) andlimj→∞ gj = f in (C(G), ρ).

B Baire Category Theorem and Proof of Osgoods Theorem

The Baire category theorem is usually stated for complete metric spaces. In our case, we can get
by with using it only for compact metric spaces (which are automatically complete).

Definition B.1 A metric space(X, d) is a setX together with a function (which is commonly
called a distance function)d : X ×X → R satisfying

(i) d(x1, x2) ≥ 0 (∀x1, x2 ∈ X)

(ii) d(x1, x2) = d(x2, x1) (∀x1, x2 ∈ X)

(iii) (triangle inequality)d(x1, x3) ≤ d(x1, x2) + d(x2, x3) (∀x1, x2, x3 ∈ X)

(iv) x1, x2 ∈ X, d(x1, x2) = 0 ⇒ x1 = x2

Definition B.2 A sequence(xn)∞n=1 is a metric space(X, d) (soxn ∈ X∀n) is calledconvergent
to a limit x ∈ X (and we writelimn→∞ xn = x) if

lim
n→∞

d(xn, x) = 0

Definition B.3 A sequence(xn)∞n=1 is a metric space(X, d) is called aCauchy sequenceif
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gien anyε > 0 there existsN ∈ N so that

n, m > N ⇒ d(xn, xm) < ε

(This means all the terms of the sequence are close to each other, except for some at the start.)

Lemma B.4 A convergent sequence(xn)∞n=1 in a metric space(X, d) is always aCauchy se-
quence.

Proof. Exercise

Definition B.5 A metric space(X, d) is calledcompleteif every Cauchy sequence inX is con-
vergent (to some limit inX).

Example B.6 R with the usual absolute value distance is complete.Q is not.

Definition B.7 If (X, d) is a metric spacex0 ∈ X and r > 0 then the(open) ball of radiusr
aboutx0 is

Bd(x0, r) = {x ∈ X : d(x, x0) < r}

If S ⊂ X is a subset ands ∈ S, thens is called aninterior point ofS if there is some ball
Dd(s, r) ⊂ S of positive radiusr > 0 abouts contained inS.

TheinteriorS◦ of a subsetS ⊂ X is the set of all its interior points.
A subsetU ⊂ S is calledopenif U◦ = U (all its points are interior points). A subsetE ⊂ S

is calledclosedif its complementS \ E is open.

Proposition B.8 Let (X, d) be a metric space.

(i) arbitrary unions
⋃

i∈I Ui of open subsetsUi ⊂ X (i ∈ I = any index set) are open.

(ii) the interiorS◦ of any subsetS ⊂ X is open

(iii) the interiorS◦ of any subsetS ⊂ X coincides with⋃
{U : U ⊂ S, U open inX}

(iv) the interiorS◦ of any subsetS ⊂ X is the largest open subset ofX that is contained inS

(v) arbitrary intersections
⋂

i∈I Ei of closed subsetsEi ⊂ X (i ∈ I = any index set) are
closed.

(vi) the empty subset∅ andX are both open and closed.
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(vii) For each subsetS ⊂ X, there is a smallest closed subsetS̄ ⊂ X containingS. It is called
theclosure ofS and can be given as

S̄ =
⋂
{E : E ⊂ S, E closed inX}

or as the complement of the interior of the complement:

S̄ = X \ (X \ S)◦

Proof. Exercise.

Definition B.9 Let (X, d) be a metric space andK ⊂ X a subset. Anopen coverof K is any
familyU = {Ui : i ∈ I} of open subsetsUi ⊂ X such thatK ⊂

⋃
i∈I Ui (that is,K is contained

in their union).
A subcover of a coverU of K is a smaller familyV ⊂ V so thatK ⊂

⋃
V =

⋃
{U : U ∈ V}.

A finite subcoveris a subcoverV that has only finitely many sets in it.
A subsetK ⊂ X is calledcompactif every open cover ofK has a finite subcover.

Proposition B.10 For subsets of a metric space(X, d) closure, closedness and compactness can
be characterised via limits of sequences:

(i) if S ⊂ X, thenx ∈ S̄ ⇐⇒ there is a sequence(sn)∞n=1 of pointssn ∈ S with limn→∞ sn =
x.

(ii) if S ⊂ X, thenS is closed if and only if every sequence(sn)∞n=1 of pointssn ∈ S that
converges in(X, d) has its limit inS.

(iii) if K ⊂ S, thenK is compact if and only if every sequence(xn)∞ of pointsxn ∈ K has a
subsequence(xnj

)∞j=1 which converges to a limit inK.

Proof. Omitted.

Proposition B.11 Let (X, d) be a metric space. Then(X, d) is complete if and only if each
Cauchy sequence inX has a convergent subsequence.

Proof. Exercise. It is not hard to show that for a Cauchy sequence with a convergent subse-
quence, the whole sequence must converge (to the same limit as the subsequence).

Corollary B.12 Compact metric spaces are complete.

Definition B.13 A subsetS ⊂ X of a metric space(X, d) is callednowhere denseif the interior
of its closure is empty,(S̄)◦ = ∅.

A subsetE ⊂ X is called offirst categoryif it is a countable union of nowhere dense subsets,
or equivalently, the unionE =

⋃∞
n=1 Sn of a sequence of nowhere dense sets ((S̄n)◦ = ∅∀n).

A subsetY ⊂ X is called ofsecond categoryif it fails to be of first category.
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Example B.14 (a) If a singleton subsetS = {s} ⊂ X fails to be nowhere dense, then the
interior of its closure is not empty. The closureS̄ = S = {s} and if that has any interior it
means it contains a ball of some positive radiusr > 0. So

Bd(s, r) = {x ∈ X : d(x, s) < r} = {s}

and this means thats is an isolated point ofX (no points closer to it thanr).

An example where this is possible would beX = Z with the usual distance (soB(n, 1) =
{n}) andS any singleton subset. Another example isX = D(2, 1) ∪ {0} ⊂ C (with the
distance onX being the same as the usual distance between points inC) andS = {0}.

(b) In many cases, there are no isolated points inX, and then a one point set is nowhere dense.
So is a countable subset is then of first category (S = {s1, s2, . . .} where the elements can
be listed as a finite or infinite sequence).

For exampleS = Z is of first category as a subset ofR, though it of second category as a
subset of itself.S = Q is of first category both inR and in itself (because it is countable and
points are not isolated).

The idea is that first countable means ‘small’ in some sense, while second category is ‘not
small’ in the same sense. While it is often not hard to see that a set is of first category, it
is harder to see that it fails to be of first category. One has to consider all possible ways of
writing the set as a union of a sequence of subsets.

Theorem B.15 (Baire Category)Let (X, d) be a complete metric space. Then the whole space
S = X is of second category in itself.

Proof. If not, thenX is of first category and that meansX =
⋃∞

n=1 Sn where eachSn is a
nowhere dense subsetSn ⊂ X (with (S̄n)◦ = ∅).

The argument may be simplified if we assume eachSn is closed (which we can do if we
replaceSn by its closure) but we will just continue with̄Sn.

SinceS̄n has empty interior, its complement is a dense open set. That is

X \ S̄n = X \ (S̄n)◦ = X

Thus if we take any ballBd(x, r) in X, there is a pointy ∈ (X \ S̄n)∩Bd(x, r) and then because
X \ S̄n is open there is a (smaller)δ > 0 with Bd(y, δ) ⊂ (X \ S̄n) ∩Bd(x, r).

Start with x0 ∈ X any point andr0 = 1. Then, by the above reasoning there is a ball
Bd(x1, r1) ⊂ (X \ S̄1) ∩ Bd(x0, r0). In fact, makingr1 smaller if necessary, we can ensure that
the closed ball

B̄d(x1, r1) = {x ∈ X : d(x, x1) ≤ r1} ⊂ (X \ S̄1) ∩Bd(x0, r0)

andr1 < 1. We can then findx2 andr2 ≤ r1/2 < 1/2 so that

B̄d(x2, r2) ⊂ (X \ S̄2) ∩Bd(x1, r1)
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and we can continue this process to selectx1, x2, . . . andr1, r2, . . . with

0 < rn ≤ rn−1/2 <
1

2n−1
, B̄d(xn, rn) ⊂ (X \ S̄n) ∩Bd(xn−1, rn−1) (n = 1, 2, . . .)

We claim the sequence(xn)∞n=1 is a Cauchy sequence inX. This is becausem ≥ n ⇒ xm ∈
Bd(xn, rn) ⇒ d(xm, xn) < rn < 1/2n. So, ifn, m are both large

d(xm, xn) < min

(
1

2n
,

1

2m

)
is small.

By completeness,x∞ = limn→∞ xn exists inX. Since the closed ball̄Bd(xn, rn) is a
closed set inX and contains allxm for m ≥ n, it follows that x ∈ B̄d(xn, rn) for eachn.
But B̄d(xn, rn) ⊂ X \ S̄n and sox /∈ S̄n. This is true for alln and so we have the contradiction

x /∈
∞⋃

n=1

S̄n = X

ThusX cannot be a union of a sequence of nowhere dense subsets.

Corollary B.16 Let(X, d) be a compact metric space. Then the whole spaceS = X is of second
category in itself.

Proof. Compact metric spaces are complete. So this follows from the theorem.
Proof. (of Osgoods Theorem5.22)

As outlined previously, take

Sm = {z ∈ G : sup
n
|fn(z)| ≤ m} =

∞⋂
n=1

{z ∈ G : |fn(z)| ≤ m}

Gm = (Sm)◦ the interior ofSm andG0 =
⋃∞

m=1 Gm.
ClearlyG0 is open.
Note thatz ∈ G ⇒ limn→∞ fn(z) = f(z) ∈ C and so the sequence(fn(z))∞n=1 must be

bounded. Ifm is big enoughz ∈ Sm and so we have
⋃∞

m=1 Sm = G.
To show thatG0 is dense inG, fix z ∈ G and a discD(z, r) aboutz of small enough radius

that its closureD̄(z, r) ⊂ G. ThenD̄(z, r) is a compact metric space and

D̄(z, r) ⊂ G =
∞⋃

m=1

Sm ⇒ D̄(z, r) =
∞⋃

m=1

Sm ∩ D̄(z, r)

Applying the Baire category theorem to the compact metric spaceD̄(z, r) we find there ism
so thatSm ∩ D̄(z, r) is not nowhere dense in̄D(z, r). As Sm ∩ D̄(z, r) is closed, that means it
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has nonempty interioras a subset of̄D(z, r). There is therefore a ball centerw and radiusδ > 0
in the metric spacēD(z, r) that is contained inSm ∩ D̄(z, r). This ball is in fact the intersection

D(w, δ) ∩ D̄(z, r)

of an open and a closed disc. ThusD(w, δ) ∩ D(z, r) is not empty, open and is contained in
Sm ∩ D̄(z, r). SoD(w, δ) ∩D(z, r) ⊂ (Sm)◦ = Gm ⊂ G0 and we have

D(z, r) ∩G0 6= ∅

This shows thatG0 is dense inG.
The rest of the proof of Osgoods theorem was given earlier.

Richard M. Timoney February 22, 2004
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