Chapter 5: The metric spacé(G)
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Remark 5.1 For G C C open, we use the notation
H(G) ={f: G — Canalytic
for the set (space) of all holomorphic functions@rand
C(G) ={f: G — C continuous

for the set (space) of all continuous functions@n

The main change of perspective now is that we move from looking at functions one at a time
to looking at properties of the whole space of functions.

It is a more simple fact that/ (G) and C(G) are algebras than the fact thaéf(G) is an
algebra. We define vector space operationg,anc C'(G) and\ € C via

(f +9)(2) = f(2) + g(z) and(Af)(z) = Af(2)

and a multiplication o' (G) by (fg)(z) = f(2)g(z). This makes”(G) a commutative algebra
overC andH(G) a subalgebra.

We are interested in what it might mean for a sequence of functigng> , (in H(G) say)
to converge to a limiff € H(G). Most of the ideas are the same initially for sequences(iy)
and but we will come later to properties special to holomorphic functions.

The simplest way to definem,, ..., f, = f iS the notion ofpointwise convergencen G.
This means that for each € G we havelim,,_.., f,.(z) = f(z) (convergence as sequences of
complex numbers). Though it easy to define, it is a kind of convergence that has rather unpleasant
properties. Perhaps it is more accurate to say that it fails to have many properties we would like
to have linking behaviour of the functiong to the behaviour of the limit functiorf. These
drawbacks include

(i) We can define pointwise convergence for sequencég ) without insisting that the limit
function be inH (G) or evenC(G). Then there are sequences of holomorphic functions that
converge pointwise to discontinuous limifs Such examples are hard to come by and the
easiest way to show they can be found is to invoke Runges theorem (something we will
come to later).
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(i) We can exhibit a sequence @ C) that converges to a discontinuous limit. For example
fn(z) = el has

i ={ 0 70

(iii) There is no distance of(G) or H(G) so thatf,, — f pointwise onG is equivalent to
convergence in distance, that is to

lim distance f,,, f) =0

This means in fact that the behaviour of pointwise convergenég(i#) or C(G) belongs
in a more complicated theory than the theory of metric spaces. In metric spaces many, but
not all, familiar properties of limits of sequences of scalars are still true.

The next simplest notion to consider usiform convergence ofy. Recall thatf, — f
uniformly onG (asn — oo) means the following

Givene > 0 there existsV so that

n>NzeG=|fuz)— f(2)| <e

With a small bit of work, we could check that this is equivalent to the following formulation

Givene > 0 there existsV so that

n> N =sup|f,(z) - f(2)] <e
zeG

In this way we can see a definition of distance we can use to describe this kind of convergence

distanceg, h) = da(g, h) = sup [g(z) — h(z)|
zeG

and this looks promising. We do know th&t — f uniformly onG and eacty,, € C(G) implies

f € C(G) (‘uniform limits of continuous functions are continuous’). We also know a similar

fact about sequences i (G) (see Exercises 2 where we saw that Moreras theorem could be

used to show that uniform limits of sequences of holomorphic functions are holomorphic).
However, there are still drawbacks:

(a) If we apply this convergence i (C) (that is to entire functions) we find thdt(f,, /) <
e < oo implies thatf,,(z) — f(z) is a bounded entire function, hence a constant by Liouville’s
theorem. So in{ (C) the sequences of functions that converge uniformly are all of the form
fn(2) = f(2) + ¢, with ¢, constants converging to O (except for some finite number of
wheref, can be anything). Thus a very restrictive notion of convergence.
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(b) This is linked to the fact thad.(g, ) need to be finite forf,g € C(G) (or evenf,g €
H(G)). So our notion of ‘distance’ is not so great as it is not always defined.

Itis a good notion to use if we looked only at bounded continuous functions(onbounded
holomorphic functions, but we see thatGf = C then there are only constant bounded
holomorphic functions). We will not look into these spaces of bounded functions, though
they have been studied extensively, as they are a rather more advanced topic.

(c) The notion of uniform convergence does not cover all the cases where we have already
encountered limits of sequences of functions, especially power series. For example we have

o0

= Zz" = lim sz = lim s,(2) (]| <1)
j=1

n=0

but we don’t have uniform convergence foe D(0, 1). Similarly we have

=3 JEI;OZ = lim s(z) (€ C)
n:() '

but no unform convergence di In general for a power series with radius of convergence
R>0

Zan (z—a)" = lim Zaj(z —a)! = lim s,(2) (]z—al <R)
n=0 j=1

we do not have unform convergence foe D(a, R) but we do have uniform convergence
for |z — a| < r with anyr < R. (This follows from the Weierstrasy/-test.)

This last point shows the way to proceed in general.

Definition 5.2 If (f,,)s°, is a sequence of functiorfs: G — C defined on an ope& C C and
f: G — Cis another functlon then we say the sequence converggsihiformly on compact
subsets of; if the following is satisfied

for each compact subséf C G the sequence of restrictiong, |x)5>, converges
uniformly onK to f |k.

Spelling this out more it says

for each compact subsét C G and any giverz > 0 we can findV so that

n>NzeK=|fuz)— f(z)|<e

This can also be reformulated using a distance on daclor onC(K) = {g: K —
C continuous, defined by
dx(g,h) = sup|g(z) — h(z)|

zeK
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Forg, h € C(K) this supremum is always finite (continuous complex-valued functions on com-
pact sets are always bounded and there is even somes where|g(z) — h(z)| achieves its
maximum). Thisdy distance make€'(K) a metric spacethat isdy satisfies the following
properties that seem to be natural for familiar distances:

(i) dx(g,h) >0 Vg,he C(K)
(i) dx(g,h)=dk(h,g) Vg, he C(K)
(i) (triangle inequality)

dr (91, 93) < di(g1,92) + dr(92,93) (Vg1, 92,93 € C(K))

[These properties so far makg K') with dx a pseudo-metric space (or sometimes called
a semi-metric space).]

(iv) g,h € C(K)anddk(g,h) =0= g = h.
We can sayf,, — f uniformly on compact subsets if and only if the following is true
for each compack’ C G, lim,, .o, dg(fn, f) =0

What we have now is infinitely many distancés to consider in order to describe uniform
convergence on compact sets, but we will show soon how to manage with just one distance.
Meantime we show that this kind of convergence has desirable properties (and that it covers the
power series situation).

Proposition 5.3 Let G C C be open andf,)>° , a sequence it/ (G) that converges uniformly
on compact subsets 6fto some limit functiory: G — C. Thenf € H(G).

Proof. Analyticity of the limit is a local property, something to be shown at each poiatG.
We need to show that'(a) exists.

For this fixa € G and choose: > 0 so thatD(a,r) C G. Then pickd with 0 < § < r
so thatK = D(a,d) C G is a compact subset. S — f uniformly on K and sof,, — f
uniformly on D(a, §). By Exercises 2 question 3 (the one that used Moreras theorem) we have
that the restriction of to D(a, ¢) is analytic. Sof’(a) exists.

Proposition 5.4 If G C C is open, then we can find a sequeriég, )2 , of compact subsets of
G such that

() Uiz BKn =G
(i) K, C (K,41)° = theinterior of K, foreachn = 1,2, ...
(i) if K C G is any compact subset, then there is sonvéth K C K,

We call such a sequence arhaustive sequence of compact subséts.
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Proof. We already showed how to construct such a sequence in the proof of 4.21 (and see 4.22).
WhenG = C it was easy — just puk’,, = D(0,n) and forG # C we took

K, ={>cG:distz,C\G) > % and|z| < n}.

Recall also

C\K,={weC:|uw>n}u |J D(wyl)

n
weC\G

andz € K, = D (2,2 — #1) C K.
We did not note then that th,, satisfy (i) but if X' C G is compact thed C |~ , K,, C
U2, (K,+1)° and so we have an open coverfgfby the set§ K,,,1)°. Hence there is a finite

n=1

subcoverk C U,]LI(K,LH)" = (Kn+1)° C Ky41. This showsi(i) holds.

Lemma 5.5 Supposé&r C C is open and K,) is an exhaustive sequence of compact subsets of
G. Let(f;)52, be a sequence of functiofis€ C'(G) and f € C(G). Thenf; — f uniformly on
compact subsets 6f (asj — oo) if and only if

Vn=1,2,..., limdg, (f;,f)=0
j—o0

This means that instead of considering the vastly infinite (uncountably infinite) number of
compactK C G itis enough to look only ak’ in the sequencé,,.

Proof. Since eachk,, C G is a compact subset it is clear thatfif — f uniformly on compact
subsets ot thenlim; ., dk, (f;, f) = 0 for eachn.

Conversely, suppose we kndwn; ., dg, (f;, f) = 0 for eachn and we take anyX C G
compact. Then there is somewith K C K,, and it is fairly clear then that

di(fi ) < dg, (f, f) — 0asj — oo

Example 5.6 Itis now clear that in the power series examples with radius of convergencé

n

F(2) =Y an(z—a)" = lim > a;(z—a) = lim s,() (]z—a| <R)
n=0 j=1
we do haves,, — f uniformly on compact subsets df(a, R).
The reason is every compact sub&etC D(a, R) is contained in a subdis(a, r) with 0 <
r < R (where we do have uniform convergence by the Weierstrtagsst argument). Another
way to see this is to work out what the standard construction give& fovhenG = D(a, R)
(for n large, a sequence of closed discs of radiRk centered at).

Remark 5.7 Thesedy (or dg,) have a nice property that they are associated wgarai-norm
on C(G). A semi-norm is a way of associating a length to elements of a vector space that has
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all the usual properties of lengths of vectors except non-zero elements are allowed to have length
= 0. (Also we are not saying that there is any inner product around.)
If we define forK” C G compact (her&; C C is open as usual) anfle C(G)

I fllx = Sup £ (2)]

then we have the following characteristic semi-norm properties satisfied

(i) || fllx > 0foreachf € C(G)

(i) (triangle inequality)| f + gllx < [|f|lx + [lg]/x holds for allf, g € C(G)
(i) AeC,fel(G)= Mk =Allfllx

The link between the semi-norin || x and the pseudo-metrity is
di (g, h) = llg = hllx

and all semi-norms give rise to a pseudo-metric in this way.

We will now show that there is a single metric 6f{GG) that describes uniform convergence
on compact subsets, but we will lose the connection with a norm (or semi-norm).

Lemma 5.8 LetG C C be open and{ C G compact. Definex(f, g) for f,g € C(G) by

dK(f?Q)

pr(f.9) = 1+dg(f,9)

Then
(i) px is a pseudo metric of'(G)
(i) 0<pk(f,g) <1forall f,g € C(Q)
(i) If (f,)2, is a sequence of functions@(G) and f € C(G), then

lim dic(fu, ) =0 <= lim pic(fu, ) =0

Proof.

(i) This is the main part requiring proof. Itis clear that(f,g9) = px(g,h) > 0 and the part
that requires an argument is that satisfies the triangle inequality.
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Letp(t) = t/(1+t) fort > 0 and note thap'(t) = 1/(1+¢)? > 0 so thatp(t) is increasing
(for t > 0). Now the triangle inequality holds fal; and so we can say

pr(fi, f3) = pldr(fi, f3))
< pld(fi, f2) + dg(f2, f3))

di (f1, f2) + di(f2, f3)

L +dx(f1, f2) + dr(f2, f3)
di (f1, fa) dr(f2, f3)

L+dg(fi, f2) +dr(fo, f3) 1+ dr(fi, f2) + di(fa, [3)

di(f1, f2) N dr(f2, f3)
1+dg(fi, f2)  1+dk(fz, f3)
= pr(fi, f2) + pr(f2, f5)

(i) This is clear from the definition qfx

<

(iii)) If lim,, 0o dx (fn, f) = Othenlim, .. px(fn, f) = 0 because the functign(t) = t/(1+t)
is continuous at = 0 andpk (f,., f) = p(dx(fn, f)).

Conversely iflim,, .. px(fn, f) = 0, thenlim,, ., dx(f., f) = 0 becauselx(f,, f) =

Proposition 5.9 Let G C C be an open subset aii&’,,)>° ; an exhaustive sequence of compact
subsets ofy. Then

pF.9)=Y or(fie)  (fg€C(@)

defines a metric ot/(G). If (f;)52, is a sequence it'(G) and f € C(G) then
ﬁgdhﬁzo

if and only if f; — f uniformly on compact subsets@f(as; — o).
In other words this metrip is such that convergence in this distance corresponds to uniform
convergence on compact subsets.

Proof. To show thai is a pseudo metric 06'(G) is not difficult using Lemm&.8. The series
definingp(f, g) is convergent since it is smaller thdn >~ , 1/2" = 1 and it clearly has a non-
negative sum. The triangle inequality follows by applying Lenfivtaas does(f,g) = p(g, f).
Finally p(f,9) = 0 = px,(f,9) = 0Vn = dx, (f,9) = 0Vn = f(z) = g()Vz € UL, K =
G=f=yg

If f; — f uniformly on compact subsets 6f, thenlim;_., dg, (f;, f) = 0 for eachn and
hencelim;_. pk, (f;j, f) = 0 (for eachn). To show thatim; ., p(f;, f) = 0, start withe > 0
given and choosé&/ large enough that

o0

1<
2n

DO ™

n=N-+1
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Then we have

o0 N
1 1 1 1
f]’ Z?pl{n fj7 2_ K’n f]’ Z 2_n<z2_npKn<f]7f)+

n=1 n=1 n=N+1 n=1

Mz

Sincelim;_, ZL Q%pKn(fj, f) =0, if 5 is large enough (say > j,) then this finite sum is

<e/2andp(f;, f) <e.
Conversely, iflim;_., p(f;, f) = 0 then notice that, for any fixed,

o0

pra (3 £) S 27 S pren (i f) = 20l ) — D asj — oo

m= 1

Solim;_. px, (fj, f) = 0 for eachn, hence by Lemma&.§(iii) lim;_., dk, (f;, f) = 0 and by
Lemmas.5, f; — f uniformly on compact subsets 6fasj — oc.

Remark 5.10 From now on we will frequently consided (G) (or C(G)) as equipped with a
metric p of the above type. SEH (G), p) is now a metric space.

We can define open sets in a metric space by analogy with the way we define open subsets in
C. Sometimes it may help to consider a subsel{¢f7) as a family of analytic functions (which
means the same as a set of functions). If weffixc H(G) andr > 0 we can define théall
about f, of radiusr as

By(fo,r) ={f € H(G) : p(f, fo) <1}

and then we can define a subgett H(G) to be open iffy € F = 3r > 0 with B,(fy,r) C F.

We can define compactness for subsgts. H(G) by requiring that every open cover has
a finite subcover. But in metric spaces, we always have an alternative way to describe com-
pactness via sequences (as we d&)n A family 7 C H(G) is compact if and only if every
sequencd f,);2, of functions f, € F has a subsequenc¢,; )52, with a limit f € F. (So

lim; . p(fn,, f) = 0.)

Lemma5.11 For G C C open and letF C H(G) be a family of holomorphic functions (or
subset off (G)). Consider two metricg;, p» on H(G) constructed as above (from exhaustive
sequences of compact subset&pf ThenF is compact in H(G), p;) if and only if it is compact

in the metric spacéH (G), p2).

Proof. As noted above compactness of subsets of a metric space can be characterised using limits
of sequences. But both metrigsandp, have the same convergent sequences by PropoSition

Remark 5.12 Closures and closed subsets(éf(G), p) can also be characterised using limits
of sequences. Hence they are also the same for different metasstructed as before.

Open subsets ¢f{ (G), p) are also the same in different such metridsince open sets are
complements of closed sets).

Similar remarks apply toC(G), p).
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Proposition 5.13 Let G C C be open. Thei#{ (G) is a closed subset @f(G) (when we use a
metric of the type constructed above @(7)).
(As H(G) is a vector subspace 6f(G), itis commonly called a closed subspace.)

Proof. Convergent sequences of functiofysin H(G) with lim,,_., f, = f € C(G) have limits
[ € H(G) by Propositiorb.3. It follows that 7 (G) is closed.

Lemma 5.14 LetG C C be open angh a metric onC'(G) constructed as before. Lé&f C G be
compact. Then the map
f=fllk: C(G) =R

iS continuous.

Proof. Continuity on metric spaces can be described via sequences. It suffices to prove that

lim,, o p(fna f) =0 = lim, . an”K = Hf”K
This follows because a version of the triangle inequality says

W falle = N fllwcd < (1 = fallx — 0

(asn — o) by uniform convergence of the sequeri¢g)> , to f on K.

Definition 5.15 LetG C C be open. A subsef of C'(G) (or H(G)) is calledrelatively compact
if and only if its closure is compact. (The closure will be the set of all possible limits of convergent
sequencesf, )2, with eachf,, € F.)

A subsetF is calledboundedf for each K ¢ G compact

sup || f[lx < oo

feF
(This could be phrased as ‘uniformly bounded on compact subsets’, but the shorter term ‘bounded’
is usually used. In a way, this is the only sensible notion of ‘bounded’. Defining bounded in terms
of the distance is not much use as all distances are bounded by 1.)

Lemma 5.16 LetG C C be open andF C C(G) (or F C H(G)) a subset.

(i) Fisrelatively compact if and only if every sequeii¢g)se , in F has a convergent subse-
quence(f,,; )52, (convergent to some limit i¥(G))

(i) Relatively compact familieg are bounded.

Proof.

() (This is actually a general fact, true in any metric space.) If the closufe isfcompact,
then a sequendgf,,)72, in F is also a sequence in the closure. As the closure is compact

there is a subsequengg,; )52, converging to a limit (in the closure, hencedi{()).

Going the other way, suppose we know every sequengetias a convergent subsequence.
Take a sequendgy, )22, in the closureF. Then, for eachn, we can findf,, € F so that
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p(gn; fn) < 1/n. By assumption, there is a subsequefit;e);, which converges to some
f € C(G). Buttheng,, — fasj — oo because

$ony f) < Pl )+ P ) S 5 plfay. f) =0 (@8] = o).

J

(i) Let F C C(G) be relatively compact. If it is not bounded, then there is sdthe- G
compact so that

sup || f{|x = oo

feF
So for eacn, we can findf,, € F with || f.|[x > n. A convergent subsequencg, )52,
exists (with a limitf € C'(G)). By Lemma5.14

Jimn {1 f, e = [1Fllx
but that contradict§ f,,, || x > n; — oo asj — oo.

Theorem 5.17 (Montels Theorem)Let G C C be open andF C H(G) a family of analytic
functions. ThenF is relatively compact if and only i is bounded (in the sense of Defini-
tion 5.15 that is uniformly on compact subsets).

Remark 5.18 Though this theorem corresponds exactly with the situation for subsétsnt
finite-dimensional vector spaces lik&, a similar result is not usually true in infinite dimensional
spaces.

The same statement fails @(G). An example to show that i = {f, : n = 1,2,...},
fn(z) = exp(—nl|z|) andG any open set containing the origin. The family is bounded because
|fn(2)] = fu(2) < 1, but there is no subsequence of the sequérigg° , that converges in
C(@G). If asubsequence did convergd i(G), p) to some limitf € C(G), then the subsequence
would have to converge pointwise to the same limit function. This fof¢es= 1 andf(z) =0
for z # 0. So f cannot be irC(G).

Our proof of Montels Theorem will require the corresponding theorem for famili€f @).
That theorem (the Arzela-Ascoli Theorem) is more complicated to state and also a bit long to
prove. We will relegate the proof of it to an appendix.

Definition 5.19 Let G C C be openz, € G a point andF C C(G) a family of continuous
functions onGG. Then the familyF is calledequicontinuous ai, if for eache > 0 there is some
0 > 0 so that

|2 — 20| <90, f € F=[f(2) = f(20)| <e.

(Perhaps it is worth comparing this to uniform continuity of a single function on d&'set
Theref is fixed andz, z, are any two points of the sét with |z — z| < §. Here, the) required
is as in the condition for continuity of a single functigrat =y, but the samé has to work for all
feF)
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Theorem 5.20 (Arzela-Ascoli Theorem)Let G C C be open andF C C(G) a family of con-
tinuous functions ol-. ThenF is relatively compact ifC(G), p) if and only if it satisfies both
of the following conditions:

(i) Fis pointwise bounded off (that is, for each point, € G, we havesup ;. - | f(z0)| < o0)

(i) F is equicontinuous at each point 6f

Proof. (of Theorem5.17using Theoren®.20) One direction is already covered by Lemma6
(). If F C H(G) is relatively compact then it must be bounded.

For the other direction, we use Theorém@Q AssumeF C H(G) is bounded.

Then F is certainly pointwise bounded since points € G make singleton compact sets
K = {2} (andF is uniformly bounded ork).

Next we claimF is equicontinuous at each € G. Fix zy € G ande > 0.

We can findr > 0 with D(z,7) C G. If 0 < & < r/2, then the closed disk
D(29,200) C D(z0,7) C G is a compact subset 6f. So

M =sup ||f||x < 0.
feF

By the Cauchy integral formula, far€ D(z, 69) we have

1 f(©)

2mE iz s, (€ 2)?

f'(2)

d¢

and so we can estimate

7)) € g (ar(2h) g = = = My (sa)

(USing’C — Z’ = ‘(C — ZQ) — (Z — Zo)‘ 2 |C— Zo| — |Z — Zo‘ = 2(50 — ’Z — Zo| 2 250 — (50 = (50)
Thus for|z — zy| < & we have

£ (2) = f(20)| =

/Z 0 dc' < |z — 2l M,

Thus if we taked = min(dy, £/M;) (which is independent of € F), we have
|z — 2| <6, feF=|[f(z)— fzo)l <e

Thus, by the Ascoli theorers.20, we know thatF is relatively compact if we view it as a
family of continuous functionsX C H(G) C C(G)). In other words its closure i6'(G) is
compact. But, sincé/ (G) is closed inC'(G), the closure ofF in C(G) is actually contained in
H(G) and so is the same as its closurdd(G). HenceF is relatively compact irff (G).
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Theorem 5.21 Supposez C C is open andF C H(G) a bounded subset. If a sequence
(fn)52, in Fis pointwise convergent to a functign G — C, then the sequence is automatically
uniformly convergent on compact subsets (and the lfra@t H (G)).

(In other words, foboundedsequences of analytic functions, pointwise convergence is after
all the same as uniform convergence on bounded sets. It follows that if a sequence of analytic
functionsf,,: G — C converges pointwise to a limjt: G — C and if f fails to be differentiable
or continuous at a poini, € G, then the sequence cannot be bounded (uniformly on compact
subsets of). In fact we can replacé& be a small disd(z, §) C G and say that the sequence
could not be bounded on any such disc. So

sup(sup{|fn(2)] : [z = 2| < d}) = o0

for eachy > 0 (small enough thab(z,, §) C G). This makes it quite hard to find such sequences
fn. As stated before, we can use Runges theorem to show there are such sequences, once we find
out about Runges theorem.)

Proof. By Montels Theoren®.17, the sequence has a convergent subsequgices,. So the
subsequence converges(iH(G), p) (or equivalently, uniformly on compact subsets@f to
some limitg € H(G). As singleton subset&8 = {z} C G are compact it follows that the
subsequence converges pointwisg.tdhat is

g(z) = lim f, (2) = lim f.(2) = f(z) (eachz € G)
J—00 n—oo
and sof =g € H(G).
To show that the sequen¢é, ), converges, uniformly on compact subsetsfto f we
need to know that for eaci C G compact

i 1 = Tl = 0.

If that fails to be so, it fails for somé&’ C G compact. Failing forKk means we can find
e > 0 sothat||f,, — f||x > ¢ for infinitely manyn. That means a subsequerig¢g, )32, where
| for — fllx > e forall k.

Using Montels theorem, we can find a subsequéqﬁgg);‘;l of the subsequence which con-

verges in(H(G), p). We can rename this sub-subsequencgfas)2,. Repeating the argument
at the beginning of the proof we can see that this subsequence must convgi@also

T || fm, = fllc =0

contradicting
[frm; = flle = IS, = fllik Z2€>0 (¥)).

Thus we must havé, — fin (H(G), p).
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Theorem 5.22 (Osgoods theorem)et G C C be open and f,,)22, a sequence of analytic
functionsf,, € H(G) that converges pointwise to a limit functigh G — C.

Then there is a dense open subSgtC G so that the restriction of to G, is analytic and
the restriction of the sequen¢é,)s° , converges uniformly on compact subseté&pto f |¢,.

The proof of this relies on the previous theoren?(l) and the Baire category theorem.
The idea is to take

Sm:{zeG:sgp\fn(z)]gm}:ﬂ{zeG:|fn(z)|gm}

Gy, = (Si)° the interior ofS,,, andGy = |,._, G-

Clearly GGy is open. The Baire Category theorem can be used to show:thas not empty
for m big enough, and in fact that, is dense inG. This is the main part of the proof.

Once these facts are established, we can see that every compactSubset = | J_, G,
and so the7,,, form an open cover ak'. HenceK is contained in a finite uniop)””” | G,,, = G,
and so the sequenge is uniformly bounded o1k (by my).

From Theoren®.21, the rest of the result follows.

We will leave the rest of the details to an appendix.

A Proof of Arzela-Ascoli Theorem

First, the ‘easy’ direction of the theorem.

Proposition A.1 Let G C C be open andF C C(G) a family of continuous functions da.
Suppose thafF is a relatively compact ifC(G), p). Then it satisfies both of the following
conditions:

(i) F is pointwise bounded off
(i) F is equicontinuous at each point 6f

Proof. We know from Lemma.16(i) thatF is bounded (uniformly on compact subsets) and so
it is pointwise bounded (because singleton subgets {z,} C G are compact).

To show it must be equicontinuous at each poin&ofix zy € GG and supposé fails to be
equicontinuous aty. Then there is some > 0 for which noé > 0 works. Fix such am > 0
andr > 0 with D(zy,7) C G. Consider the fact that = r/n does not work. This means there
existsz,, with |z, — 29| < r/n (hencez, € G) andf, € F so that|f,,(z,) — f.(z0)| > €.

As F is relatively compact inC(G), there is a subsequenc¢g,, )52, which converges in
(C(G), p) (equivalently on compact subsets@} to somef € C(G). As f is continuous at
we know there exist§, > 0 so that

2= 20l < 8o = £(2) = f(0)| < 3
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We can assume thag < r so that the closed disB(zo, d) C G is a compact subset 6f. Thus
fn; — funiformly on K = D(z, é) and if j is large enough

sup ’fnj(z) _f(z)| <5/3

ZGD(zo,(so)
Thus if j is large enough for this to hold and fofn; < J, we have
e £ €
€ < | fn; (zny) = fny (20)| < [ fony (2ny) = f (2 )|+ (2 )= S (20) [+ f (20) = fy (20)| < +2+5 =€
This contradiction shows thaf must be equicontinuous &j.

Definition A.2 LetG C C be open andF C C(G) a family of continuous function ofd. For
E C G asubset, we say thaf on F if it satisfies:

Givene > 0 there exist® > 0 so that

feF.znneE zeG|z—2| <d=|f(z)— f(z)| <€

(One might describe this better as ‘equicontinuous uniformly at all poinks.pf

Lemma A.3 LetG C C be open andr C C(G) a family of continuous function o@. If F is
equicontinuous at each point 6fand if X' C G is compact, thetF is equicontinuous ot .
(So equicontinuity at each point implies equicontinuity on compact subsets.)

Proof. Fix K. For each{ € K, by equicontinuity at we know there exist§, > 0 so that
g
fEF|e= (<8 = 1f(2) - FOl <5

Now {D (g, %) (€ K} is an open cover oK and so it has a finite subcover

0, 02, 0z,

Now puté = min(d,, /2,0,,/2,...,6.,/2).
Take nowz, € K andz with |z — zg| < d. Thenz, € D (zi,
then

6,

7) forsomei (1 < < n)and

i

d.,
|z —2zi| < |z — 20|+ |20 — 2] <0+ 21 <9, = z € D(z,0,,) CG.

So, for arbitraryf € F we havelf(z) — f(z)| <e/2and|f(z) — f(z:)| < /2. Hence

feF =11 = fla) <If(2) = f(z)] + [f(20) = fz)] < 5 +

: =€
5 =E£.

As the same works for allz, € K, we have the result.
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Proof. (of Theorem5.20) One direction is already done in Propositiarl and so what remains
is to show that ifF C C(G) is both pointwise bounded and equicontinuous at each poif of
thenF is relatively compact.

Take F satisfying the two conditions and,,)°, a sequence itF. To find the appropriate
subsequence of functions we use what is known as a diagonal argument.

First we pick a countable dense subset of point&/ofFor exampleS = {z € G : Rz €
Q andz € Q} is countable and dense (. To say thatS is countable means we can arrange
all its points in a sequence = {s1, s, ...} (and dense itz means that its closure relative ¢
is all of GG, or that each point aoff is a limit of some sequence of points 9.

Now for the diagonal argument. It involves choosing subsequencgs 3t ,, then further
subsequences of the subsequence, and so on forever. To avoid more and more subscripts, we use
(f14)32, rather thar(f,,;)%2, for the first subsequence, thefy ;)22 for the second subsequence
and so on. To get off on the right track, we |gt, = f..

SinceF is pointwise bounded,

sup |f(s1)] < oo = {f(s1) : f € F} C Cis relatively compact
feF

Thus{fo.(s1) : n = 1,2,...} is a relatively compact (or bounded) subsetf Hence the
sequencefy.(s1)),=, has a subsequencgé ;(s1))52, that converges to some limit i@d. So

3 hm ij(Sl) e C
j—o0

Next{fi.(s2) : n = 1,2,...} is relatively compact irC and so the sequencé, ,,(s2))5>,
has a subsequen¢g; ;(s2))32, that converges to some limit idl. So

3 hm f2,j(52) € C
Jj—o0
Continuing in this way, once we hay¢, ;)52,, we choose a subsequengg, 1 );>, So that
= ]}L% fn+1,k($n+1) eC

The diagonal argument is now to chooge = f,... Then(g;)52, is a subsequence of

(fn,k:)zozl and so
}HEO 9i(sn) = kll_{rolo fri(sn) exists inC

We claim thatf(z) = lim;_., g,;(2) exists for allz € G, thatf € C(G) and thaty; — f in
(C(G),p) asj — oc.

Fix z € GG and we claim thatg;(z))32, is a Cauchy sequence @, hence convergent. Let
¢ > 0. Then, using the assumption thatis equicontinuous at, there exists) > 0 so that
feF,|C—z<d=|f({)— f(z)|] <e/3. Note that this applies witli = g, sinceg; = f; is
one of thef,, € F. By density, there exists, € S with |s,, — z| < ¢. Then, since

3 lim g;(s,) € C

J]—00
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the sequencgy;(s,))32, is Cauchy inC and so there ig, so that

Jrk = Jo = 19j(sn) — gk(sn)| <€/3
Thus

Jik = j0=
19i(2) = ge(2)] < 19;(2) — g5(sn) +195(sn) — gr(sn)| + [gr(sn) — gr(2)]
< ¢/3+¢/3+¢/3=¢

We now have(g;(z))32, a Cauchy sequence i@l for eachz € G and so we can define
f: G — Cby

f(z) = lim g;(z)

J—00

To showg; — f uniformly on compact subsets ¢f, fix X C G compact and > 0.
Then there is a compact subgét C G so thatK C (K;)°. (For example, using an exhaustive
sequence of compact subsetgbive can show this.)

Use equicontinuity ofF on K to findd > 0 so that

2€ Gz €Ki f € F, |z =zl < 6= |(2) = flz0)] < 5

Now, for eachz € K, sinceS is dense inG, there is some € S N (By(z,9) N (K;)°).
Turning this around € By(s, d) for somes € S N (K;)°. We can say then that

{Ba(s,0) : s € SN (K1)}

is an open cover ok . Thus there is a finite subcover

K C (Lj Bd<SIn,5)

n=1

for somes’, s, ..., s, €SN (Kp)°.

? " ng

Sincef(s),) = lim;_., g;(s,,) for eachs,, there is gj, so that

. . / / 8
j>Jo= max lg;(s,) — f(s,)] < 1
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If we now takez € K, there is some/, with z € B,(s/,,9) (1 < n < ng). We have, forj > j,

9() = gi(s)| < =
CAECAIIE
19(=) = £ < lgs(2) = 95 + Las (1) = F(s1)
() = Fs)] = lim Jg(=) = f(s))
2e
=7
9:(2) = F] < 19;(2) = £+ 1F(=) = £(s)]
2e 2
< Z ZZE

This is true for each € K and so

J>Jo= 8161113|9j(z) — f(2)| = dr(g;, f) <e

This meang;; — f uniformly on K, for each/.
Hencef € C(G) andlim;_., g; = fin (C(G), p).

B Baire Category Theorem and Proof of Osgoods Theorem

The Baire category theorem is usually stated for complete metric spaces. In our case, we can get
by with using it only for compact metric spaces (which are automatically complete).

Definition B.1 A metric spac€ X, d) is a setX together with a function (which is commonly
called a distance function): X x X — R satisfying

(i) d(z1,22) >0 (Vay,x9 € X)

(i) d(z1,20) = d(x2,21) (Va1 75 € X)
(iii) (triangle inequality)d(x, x3) < d(x1,x2) + d(z2,x3) (V1,290,753 € X)
(iV) 1,29 € X,d(x1,29) =0 = 27 = 29

Definition B.2 A sequencér,, ), is a metric spac€X, d) (sox, € XVn) is calledconvergent
toalimitz € X (and we writdim,, ... z,, = x) if

lim d(z,,z) =0

n—oo

Definition B.3 A sequencér,, )2, is a metric spacéX, d) is called aCauchy sequendé
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gien anys > 0 there existsV € N so that

n,m> N = d(x,,z,) <¢

(This means all the terms of the sequence are close to each other, except for some at the start.)

Lemma B.4 A convergent sequencge,,)° , in a metric space X, d) is always aCauchy se-
quence

Proof. Exercise

Definition B.5 A metric spacé X, d) is calledcompleteif every Cauchy sequence K is con-
vergent (to some limit itX).

Example B.6 R with the usual absolute value distance is complétés not.

Definition B.7 If (X, d) is a metric space, € X andr > 0 then the(open) ball of radius
aboutz is
Bi(zg,r) ={x € X : d(z,z9) <7}

If S C X is asubsetand € S, thens is called aninterior point of S if there is some ball
Dy(s,r) C S of positive radius- > 0 abouts contained inS.

Theinterior S° of a subset C X is the set of all its interior points.

A subseU C S'is calledopenif U° = U (all its points are interior points). A subsét C S
is calledclosedif its complemenf \ E' is open.

Proposition B.8 Let (X, d) be a metric space.

(i) arbitrary unionsl J._, U; of open subsetS; C X (i € I = any index set) are open.

el
(ii) the interior S° of any subsef C X is open

(i) the interior S° of any subset C X coincides with

U{U :U C S,U open inX}

(iv) the interior.S° of any subse$ C X is the largest open subset &f that is contained ir6

(v) arbitrary intersectiony),_; F; of closed subset8; ¢ X (: € I = any index set) are

closed.

el

(vi) the empty subs@tand X are both open and closed.
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(vii) For each subse$f C X, there is a smallest closed subsett X containings. It is called
theclosure ofS and can be given as

S = ﬂ{E : E C S, E closed inX}
or as the complement of the interior of the complement:

S=X\(X\9)
Proof. Exercise.

Definition B.9 Let (X, d) be a metric space anfi’ C X a subset. Aropen coveof K is any
familytd = {U; : i € I} of open subsetS; C X such thatk’ c |J,_, U; (thatis, K is contained
in their union).

A subcover of a covér of K is a smaller familyy c V sothat c |V = |J{U : U € V}.
A finite subcovers a subcoved’ that has only finitely many sets in it.

A subsetl’ C X is calledcompacif every open cover ok has a finite subcover.

el

Proposition B.10 For subsets of a metric spa¢&’, d) closure, closedness and compactness can
be characterised via limits of sequences:

(i) if S C X,thenz € S <= thereis asequendg, ), of pointss,, € S withlim,, ... s, =
x.

(i) if S C X, thenS is closed if and only if every sequengs, )2, of pointss, € S that
converges i X, d) has its limitin.S.

(iii) if K C S, thenK is compact if and only if every sequenesg,)> of pointsz,, € K has a
subsequencer,,; )32, which converges to a limit ir’.

Proof. Omitted.

Proposition B.11 Let (X, d) be a metric space. Thefi,d) is complete if and only if each
Cauchy sequence i has a convergent subsequence.

Proof. Exercise. It is not hard to show that for a Cauchy sequence with a convergent subse-
guence, the whole sequence must converge (to the same limit as the subsequence).

Corollary B.12 Compact metric spaces are complete.

Definition B.13 A subsetS C X of a metric spac¢X, d) is callednowhere densi the interior
of its closure is empty,S)° = .

A subsefy C X is called offirst categoryf it is a countable union of nowhere dense subsets,
or equivalently, the unioy = | J°~, S, of a sequence of nowhere dense sets)C = 0vn).

A subselt’” C X is called of second category it fails to be of first category.
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Example B.14 (a) If a singleton subset = {s} C X fails to be nowhere dense, then the
interior of its closure is not empty. The closufe= S = {s} and if that has any interior it
means it contains a ball of some positive radius 0. So

By(s,r) ={x € X :d(z,s) <r}={s}

and this means thatis an isolated point ok (no points closer to it than).

An example where this is possible would Be= Z with the usual distance (sB(n,1) =
{n}) and S any singleton subset. Another exampleXis= D(2,1) U {0} C C (with the
distance onX being the same as the usual distance between poifitsand S = {0}.

(b) In many cases, there are no isolated pointXirand then a one point set is nowhere dense.
So is a countable subset is then of first categdry= {si, sq, ...} where the elements can
be listed as a finite or infinite sequence).

For exampleS = Z is of first category as a subset®f though it of second category as a
subset of itselfS = Q is of first category both ifR and in itself (because it is countable and
points are not isolated).

The idea is that first countable means ‘small’ in some sense, while second category is ‘not
small’ in the same sense. While it is often not hard to see that a set is of first category, it
is harder to see that it fails to be of first category. One has to consider all possible ways of
writing the set as a union of a sequence of subsets.

Theorem B.15 (Baire Category)Let (X, d) be a complete metric space. Then the whole space
S = X is of second category in itself.

[e.o]

Proof. If not, then X is of first category and that mead§ = (J ~, S, where eachS,, is a

nowhere dense subsgt C X (with (.S,,)° = ().

The argument may be simplified if we assume e&ghs closed (which we can do if we

replaces,, by its closure) but we will just continue withi,.

SincesS,, has empty interior, its complement is a dense open set. That is

X\ S, =X\ (5,)° =X

Thus if we take any balB,(z, r) in X, there is a poiny € (X \ Sn) N By(z,r) and then because
X\ S, is open there is a (smallef)> 0 with B,(y,d) C (X \ S,,) N By(x,r).

Start withz, € X any point andry = 1. Then, by the above reasoning there is a ball

By(x1,7m1) C (X \ S1) N Ba(zo,70)- In fact, makingr; smaller if necessary, we can ensure that
the closed ball

By(xy,m) ={xr € X : d(z, ;) <r1} C (X \S1) N Bylxg, 7o)

andr; < 1. We can then find:, andr, < r/2 < 1/2 so that

By(z2,72) C (X \ So) N By(z1,71)
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and we can continue this process to selgct:,, ... andry, o, . .. with

1

on— o1’ Bd(xrw Tn) - (X \ gn) N Bd<xn—17 Tn—l) (TL - ]-7 27 .- )

0<r, <r,_ 1/2 < —
We claim the sequende,,)° , is a Cauchy sequence . This is because: > n = x,, €
Bi(zp, ) = d(xm,, x,) < 1 < 1/2™. S0, ifn, m are both large

1 1
d(zpm, T,) < min (—, —)

2n° 2m

is small.

By completenessy,, = lim, .., =, exXists in X. Since the closed balBy(z,,r,) is a
closgd set inX and cgntains allk,,, [or m > n, it follows thatx € By(x,,r,) for eachn.
But By(z,,m,) C X \ S, and sar ¢ S,. This is true for alln and so we have the contradiction

¢ U S, =
n=1
ThusX cannot be a union of a sequence of nowhere dense subsets.

Corollary B.16 Let(X, d) be a compact metric space. Then the whole spaceX is of second
category in itself.

Proof. Compact metric spaces are complete. So this follows from the theorem.
Proof. (of Osgoods Theorer.22)
As outlined previously, take

Sm={2 € G:sup|fu(2)] <m} = (=€ G lfulz)] <m)

n=1

G, = (Si)° the interior ofS,,, andGy = |,._, G-

Clearly Gy is open.

Note thatz € G = lim, ., fu(2) = f(z) € C and so the sequendé,,(z))s°, must be
bounded. Ifm is big enough: € S,, and so we havg)_ =G.

To show that, is dense ir, fix z € G and a dlscD(z r) aboutz of small enough radius
that its closureD(z,r) C G. ThenD(z,r) is a compact metric space and

D(z,7r) C G = US = D(z,7) US N D(z,r)

Applying the Baire category theorem to the compact metric speer) we find there isn
so thatS,, N D(z,r) is not nowhere dense iP(z, 7). As S,, N D(z,r) is closed, that means it
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has nonempty interics a subset ab(z, r). There is therefore a ball centerand radiugy > 0
in the metric spacé(z, r) that is contained it%,, N D(z, ). This ball is in fact the intersection

D(w,d) N D(z,r)

of an open and a closed disc. Thi¥w, ) N D(z,r) is hot empty, open and is contained in
SN D(z,7). SOD(w,8) N D(z,7) C (S)° = G, C Gy and we have

D(z,7r) NGy # 0

This shows that7, is dense in.
The rest of the proof of Osgoods theorem was given earlier.

Richard M. Timoney February 22, 2004
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