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Theorem 4.1 (Laurent expansion)Letf : G → C be analytic on an openG ⊂ C be open that
contains a nonempty annulus{z ∈ C : R1 < |z − a| < R2} (some0 ≤ R1 < R2 ≤ ∞, some
centera ∈ C). Thenf(z) can be represented by a Laurent series

f(z) =
∞∑

n=−∞

an(z − a)n (R1 < |z − a| < R2)

where, for any choice ofr withR1 < r < R2 andγr : [0, 1] → C given byγr(t) = a+r exp(2πit)

an =
1

2πi

∫
γr

f(z)

(z − a)n+1
dz

Proof. Recall from 1.9 that a Laurent series has an annulus of convergence. In this case the
annulus of convergence must includeR1 < |z − a| < R2.

Turning to the proof, notice that from Cauchy’s theorem we can conclude that the formula
given foran is independent ofr in the rangeR1 < r < R2. Fix anyz with R1 < |z − a| < R2

and chooser1, r2 with R1 < r1 < |z − a| < r2 < R2. From the winding number version of
Cauchy’s integral formula (1.30 withΓ = γr2 − γr1) we can deduce

f(z) =
1

2πi

∫
γr2

f(ζ)

ζ − z
dζ − 1

2πi

∫
γr1

f(ζ)

ζ − z
dζ.

The remainder of the proof is quite like the theorem that analytic function in a disk are repre-
sented by power series (Theorem 1.23).

For |ζ − a| = r2, we do exactly as in the power series case

1

ζ − z
=

1

(ζ − a)− (z − a)
=

1

ζ − a

1

1− z−a
ζ−a

=
1

ζ − a

1

1− w

wherew = z−a
ζ−a

has|w| < |z−a|
r2

= ρ2 < 1. Hence

1

ζ − z
=

1

ζ − a

∞∑
n=0

wn =
1

ζ − a

∞∑
n=0

(
z − a

ζ − a

)n

=
∞∑

n=0

(z − a)n

(ζ − a)n+1
.

1
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For |ζ − a| = r1, we do something similar

1

ζ − z
=

1

(ζ − a)− (z − a)
=

−1

z − a

1

1− ζ−a
z−a

=
−1

z − a

1

1− w

and this timew = ζ−a
z−a

is also less than one in modulus (for allζ on |ζ − a| = r1). In fact
|w| = r1/|z − a| = ρ1 < 1. Thus we get another series

1

ζ − z
=

−1

z − a

∞∑
n=0

wn =
−1

z − a

∞∑
n=0

(
ζ − a

z − a

)n

= −
∞∑

n=0

(ζ − a)n

(z − a)n+1
. = −

∞∑
m=1

(ζ − a)m−1

(z − a)m
.

Plugging these two series into the the two integrals in the integral formula forf(z) and
exchanging the order of integral and sum (using uniform convergence to justify the exchange)
we get

f(z) =
∞∑

n=0

(∫
γr2

f(ζ)

(ζ − a)n+1
dζ

)
(z − a)n +

∞∑
m=1

(∫
γr1

f(ζ)(ζ − a)m−1 dζ

)
1

(z − a)m

and this comes down to the desired result.

Definition 4.2 If an analytic functionf is analytic on an open setG ⊂ C that includes a punc-
tured diskD(a, r) \ {a} of positive radiusr > 0 about somea ∈ C, thena is called an(isolated)
singularityif a is not itself inG.

The residueof f at an isolated singularitya of f is defined as the coefficienta−1 in the
Laurent series forf in a punctured disk abouta:

res(f, a) = a−1 =
1

2πi

∫
|z−a|=δ

f(z) dz

if 0 < δ < the radius of a punctured disk abouta wheref is analytic.

Theorem 4.3 (Residue theorem)LetG ⊂ C be open and supposef is analytic in
G \ {α1, α2, . . . , αn} for some finite number of (distinct) pointsα1, α2, . . . , αn ⊂ G. Suppose
Γ is a (piecewiseC1) chain inG \ {α1, α2, . . . , αn} with the property that IndΓ(w) = 0 for all
w ∈ C \G.

Then ∫
Γ

f(z) dz = 2πi
n∑

j=1

res(f, αj)IndΓ(αj).

Proof. We apply the winding number version of Cauchy’s theorem 1.30 to a new chainΓ1

constructed as follows. Chooseδ > 0 so small that (i)D̄(αj, δ) ⊂ G and (ii) δ < |αj − αk| for
j 6= k and1 ≤ j, k ≤ n. Letγj be the circle|z−a| = δ traversed−IndΓ(αj) times anticlockwise
and let

Γ1 = Γ + γ1 + γ2 + · · ·+ γn.
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Now Γ1 is a new chain inH = G \ {α1, α2, . . . , αn}. H is open,f is analytic inH and
IndΓ1(w) = 0 for all w ∈ C \ H. To check the last assertion notice that Indγj

(w) = 0 for all
w ∈ C \ G and so IndΓ1(w) = IndΓ(w) +

∑n
j=1 Indγj

(w) = 0 for thesew. The remaining
w ∈ C \H arew = αj (1 ≤ j ≤ n). Notice that

Indγj
(αk) =

{
−IndΓ(αj) if j = k
0 if j 6= k

sinceαk /∈ D̄(αj, δ) for k 6= j, and so

IndΓ1(αj) = IndΓ(αj) +
n∑

k=1

Indγj
(αk) = IndΓ(αj)− IndΓ(αj) = 0.

By 1.30, ∫
Γ1

f(z) dz = 0

and this means

0 =

∫
Γ

f(z) dz +
n∑

j=1

∫
γj

f(z) dz =

∫
Γ

f(z) dz +
n∑

j=1

2πi(−IndΓ(αj))res(f, αj)

and the result follows.

Corollary 4.4 (Residue theorem, homotopy version)Let G ⊂ C be open andf(z) a function
analytic onG except perhaps for a finite number of (distinct) pointsα1, α2, . . . , αn ∈ G. (More
formally, f is analytic onG \ {α1, α2, . . . , αn}.) Let γ be a (piecewiseC1) closed curve in
G \ {α1, α2, . . . , αn} which is null-homotopic inG. Then∫

γ

f(z) dz = 2πi
n∑

j=1

res(f, αj)Indγ(αj).

Proof. We can apply Theorem4.3since Indγ(w) = 0 for w ∈ C \G by 1.43.

Corollary 4.5 (Residue theorem, simple closed curve version)Let G ⊂ C be open andf(z)
a function analytic onG except perhaps for a finite number of (distinct) pointsα1, α2, . . . , αn ∈
G. Suppose thatγ is a (piecewiseC1) simple closed curve inG \ {α1, α2, . . . , αn}, oriented
anticlockwise and with its interior contained inG. Then∫

γ

f(z) dz = 2πi
∑

{j:1≤j≤n,αj insideγ}

res(f, αj)

Proof. By definition, the outside ofγ is the unbounded component ofC\γ. Also Indγ(w) = 0 for
w outsideγ. Sinceγ and its inside is contained inG, w ∈ C\G ⇒ w outsideγ ⇒ Indγ(w) = 0.
So we can apply the theorem (4.3) to γ.

By definition of anticlockwise, Indγ(αj) = 1 if αj is insideγ and Indγ(αj) = 0 if αj outside.
Thus the formula of Theorem4.3for

∫
γ
f(z) dz reduces to the one above in this situation.
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Remark 4.6 The residue theorem can be used to work out many integrals of analytic functions
along closed curves inC. It is only necessary to be able to work out residues (and winding
numbers, but in many examples winding numbers are easy to find).

To find, for example, the residue of

f(z) =
ez

(z − 1)2(z − 2)

at z = 1, we can write it as

f(z) =
1

(z − 1)2

ez

z − 2
=

1

(z − 1)2
g(z)

whereg(z) is analytic nearz = 1. It follows thatg(z) has a power series representation in some
disk about 1 (in fact inD(1, 1), the largest disk that excludesz = 2)

g(z) =
∞∑

n=0

g(n)(1)

n!
(z − 1)n

Hence

f(z) =
g(1)

(z − 1)2
+

g′(1)

1!(z − a)
+

g(2)(1)

2!
+ · · ·

and the coefficient of(z − 1)−1 is the residue. So it isg′(1) = e(1−2)−e
(1−2)2

= −2e.

The residue theorem is also an effective technique for working out certain real integrals. We
will not go into this in any detail, but here are some examples that give the flavour of the methods
used.

Consider
∫∞
−∞

x2

x4+1
dx. One can verify that the integral converges by comparison with

∫∞
1

1
x2 dx

or
∫∞
−∞

2
x2+1

dx. Consider the complex analytic functionf(z) = z2

z4+1
and the closed curve made

up of the real axis from−R to R followed by the semicircle of radiusR in the upper half plane
(say) fromR back to−R. We takeR large (at leastR > 1). By the residue theorem, we can work
out this complex integral and get2πi times the sum of the residues atz = eiπ/4 andz = e3πi/4.



Chapter 4 — open mapping theorem, removable singularities 5

iR

−R R

These residues are in facti
4
exp(−3πi/4) and−i

4
exp(−πi/4). 2πi times their sum isπ/

√
2.

So if σR denotes the semicircle of radiusR, then∫ R

−R

x2

x4 + 1
dx +

∫
σR

z2

z4 + 1
dz =

π√
2

For largeR, the integral over the semicircular part of the contour is at most the length of the
contour (πR) times the maximum value of the integrand, or∣∣∣∣∫

σR

z2

z4 + 1
dz

∣∣∣∣ ≤ πR
R2

R4 − 1
→ 0 asR →∞

Using this we find that

lim
R→∞

∫ R

−R

x2

x4 + 1
dx =

π√
2

and so
∫∞
−∞

x2

x4+1
dx = π/

√
2.

Another fairly standard example which can be worked out is
∫∞

0
sin x

x
dx. The contour to use

is the line segment−R to −δ (R big, δ small, both positive), the semicircle of radiusδ around
the origin from−δ to δ (say the one above the real axis and denote it byσδ), the line segmentδ
to R and the same semicircleσR as above. If this closed curve isγ, then∫

γ

eiz

z
dz = 0

by Cauchy’s theorem.
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δ−R R

iR

−δ

Thus ∫ −δ

−R

eix

x
dx + ‘

∫
σδ

eiz

z
dz +

∫ R

δ

eiz

z
dz +

∫
σR

eix

x
dx = 0

One can show (but it is a bit trickier this time) that the integral around the big semicircleσR tends
to zero asR →∞, while (takingz = δ exp(i(π − t)), 0 ≤ t ≤ π as a parametrisation ofσδ)

lim
δ→0

∫
σδ

eiz

z
dz = lim

δ→0

∫ π

0

exp(iδ exp(i(π − t)))

δ exp(i(π − t))
δ(−i) exp(i(π − t)) dt = −iπ

and ∫ −δ

−R

eix

x
dx +

∫ R

δ

eix

x
dx = 2i

∫ R

δ

sin x

x
dx.

Taking limits, one finally ends up with∫ ∞

0

sin x

x
dx =

π

2
.

Definition 4.7 Let f(z) be analytic on some open setG ⊂ C. A pointa ∈ G is called azero of
f if f(a) = 0. The pointa is called azero off of multiplicity m (for m > 0 a positive integer)
if f(a) = 0 andf (j)(a) = 0 for 1 ≤ j < m butf (m)(a) 6= 0.

Equivalently, if we look at a power series representation off is a disk abouta, the first term
with a nonzero coefficient is the(z − a)m term.

f(z) = am(z − a)m + am+1(z − a)m+1 + · · · =
∞∑

n=m

an(z − a)n

with am = f (m)(a)/m! 6= 0.
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When we look at the case of a polynomialp(z) = b0 + b1z + · · · + bnz
n of degreen (so

bn 6= 0 then we know from the Fundamental theorem of algebra (3.11) that we can factor

p(z) = bn(z − α1)(z − α2) · · · (z − αn)

Thusp(z) has the rootsαj for 1 ≤ j ≤ n and we can sayp(z) has at mostn roots. We cannot
say it has exactlyn because there may be repetitions among theαj. If we group the like terms

p(z) = bn(z − β1)
m1(z − β2)

m2 · · · (z − βk)
mk

with β1, β2, . . . , βk the distinct roots andm1 + m2 + · · ·+ mk = n. Thenmj is the multiplicity
of the zeroβj. What we see is that is if we count each zeroβj as many times as its multiplicity
mj, then we can say that every polynomialp(z) of degreen has exactlyn roots.

Theorem 4.8 (Argument principle, simple version) LetG ⊂ C be simply connected and
f : G → C analytic and not identically zero inG. Letγ be an anticlockwise simple closed curve
in G and assume thatf(z) is never zero onγ. Letα1, α2, . . . , αn be the zeros off that are inside
γ and letαj have multiplicitymj (1 ≤ j ≤ n).

Then
1

2πi

∫
γ

f ′(z)

f(z)
dz = m1 + m2 + · · ·+ mn = N

(= the total number of zeros off insideγ counting multiplicities, something we will often denote
byN or Nγ or Nγ,f ).

Proof. There are some aspects of the statement that may require some elaboration. SinceG is
simply connected, we can say that ifw ∈ C \G, then∫

γ

1

z − w
dz = 0

by Cauchy’s theorem (in the form 2.3 for a simply connectedG — using1/(z − w) analytic in
G). Hence Indγ(w) = 0 for all w ∈ C \ G and so the inside ofγ (where the index is+1) must
be inG as well asγ itself.

Now γ together with its inside is a compact subset ofC, contained inG. So, by the identity
theorem (Corollary 3.5), there can only be a finite number of zeros off inside or onγ. We have
assumed there are non onγ itself.

Finally, each zero off has a finite multiplicity (again by the identity theorem 3.1) sinceG is
connected andf is not identically zero.

These are all points that are implicit in the statement of the theorem (or without which we
would need further assumptions in order for the statement to make sense). The proof of the
theorem is essentially to apply the residue theorem and to show that the residue off ′/f at a zero
αj is the multiplicitymj.

There is a small catch as the statement of the residue theorem we would like to rely upon
(4.5) is stated with a finite total number of singularities. In our casef ′/f has singularities where
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f(z) = 0 and there could be infinitely many such points in all ofG. What we can do is shrink
G to a smaller open setH that still containsγ and its interior but wheref has only finitely many
zeros.

One way to do that is to constructH so that its closure is compact and contained inG. Let
K denote the union ofγ with its inside (already noted to be a compact subset ofG). For each
z ∈ K we can find aδz > 0 so that the closed disk̄D(z, δz) ⊂ G. ThenK ⊂

⋃
z∈K D(z, δz)

is an open cover ofK and so has a finite subcover (K compact)K ⊂
⋃k

j=1 D
(
zj, δzj

)
. Take

H =
⋃k

j=1 D
(
zj, δzj

)
and thenH is open,H̄ ⊂

⋃k
j=1 D̄

(
zj, δzj

)
⊂ G is a compact subset of

G. By the identity theorem,f has only finitely many zeros in̄H, hence only finitely many inH.
Thus we can apply the residue theorem (4.5) to get∫

γ

f ′(z)

f(z)
dz = 2πi

n∑
j=1

res

(
f ′

f
, αj

)
To complete the proof we show that iff(z) has a zeroz = α of multiplicity m then

res(f, α) = m. To do this, start with a power series forf in a disk aboutα

f(z) =
∞∑

k=m

f (k)(α)

k!
(z − α)k =

∞∑
k=m

ak(z − α)k

with am = f (k)(α)/k! 6= 0 (and this expansion is valid in some disk|z − α| < δ). We also have

f ′(z)
∞∑

k=m

kak(z − α)k−1

(in the same disk|z − α| < δ). Hence

f ′(z)

f(z)
=

(z − α)m−1
∑∞

k=m kak(z − α)k−m

(z − a)m
∑∞

k=m ak(z − α)k−m
=

1

z − α
g(z)

whereg(z) is analytic in some small disk aboutα (a small enough disk where the denominator
is never 0, exists because the denominator ofg(z) is am 6= 0 at z = α and so it remains nonzero
in some disk aboutα by continuity).

Now g(z) has a power series aroundα

g(z) =
∞∑

k=0

g(k)(α)

k!
(z − α)k

with g(α) = mam

am
= m and sof ′(z)/f(z) has a Laurent series

f ′(z)

f(z)
=

g(z)

z − α
=

∞∑
k=0

g(k)(α)

k!
(z − α)k−1

where the coefficient of(z−a)−1 is g(0) = m. So the residue off ′/f atz = α is m, as claimed.
This completes the proof.
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Remark 4.9 One might ask why this theorem is called the argument principle. If we consider
the composition off with the curveγ we get a new curvef ◦ γ in C \ {0} (becausef(z) is never
zero onγ). If we compute the index of this curve around the origin, we get

Indf◦γ(0) =
1

2πi

∫
f◦γ

1

w
dw =

1

2πi

∫
γ

f ′(z)

f(z)
dz

(as can be seen by writing the integrals in terms of a parameterw = f(z) = f(γ(t))).
Thus the integral in the theorem is the number of timesf(z) goes anticlockwise around the

origin asz goes aroundγ.

Theorem 4.10 (Open mapping theorem)Let G ⊂ C be a connected open set andf : G → C
analytic but not constant. Then for each open subsetU ⊂ G the imagef(U) is open inC.

(That means that forward images of open sets are open, while inverse images of open sets are
open by continuity.)

Proof. Fix U ⊂ G open andw0 ∈ f(U). Thusw0 = f(z0) for somez0 ∈ U . (Thisz0 may not
be unique, but fix one.) Now the functionf(z)−w0 has a zero atz = z0. As G is connected and
f is not constant (f(z)− w0 is not identically zero onG) the identity theorem (3.1) tells us that
this zero has a finite multiplicitym ≥ 1.

There must be someδ > 0 with f(z)−w0 never zero for0 < |z−z0| < δ (andD(z0, δ) ⊂ G)
by the identity theorem again. Chooser < δ, r > 0 with D̄(z0, r) ⊂ U . Then, by the argument
principle (4.8) we must have

1

2πi

∫
|z−z0|=r

f ′(z)

f(z)− w0

dz = m

(= the total number of zeros off(z)− w0 inside|z − z0| = r counting multiplicities).
Next |f(z) − w0| is a real-valued function which is continuous and always strictly positive

on the compact circle|z − z0| = r. Hence it has a minimum valueε > 0 and

inf
|z−z0|=r

|f(z)− w0| = ε > 0.

Now if |w − w0| < ε, then |f(z) − w| ≥ |f(z) − w0| − |w − w0| ≥ ε − |w − w0| > 0 on
|z − z0| = r and so

1

2πi

∫
|z−z0|=r

f ′(z)

f(z)− w
dz = N(w)

gives the total number of solutions off(z)− w = 0 inside the circle|z − z0| = r.
As a function ofw, N(w) is a continuous function ofw for |w − w0| < ε. It is an integer-

valued continuous function on the connected diskD(w0, ε). It is therefore constantN(w) =
N(w0) = m.

As m > 1, this means that if we take anyw ∈ D(w0, ε) then there is at least onez ∈ D(z0, r)
with f(z) = w. In other wordsD(w0, ε) ⊂ f(D(z0, r)) ⊂ f(U). Hencew0 is an interior point
of f(U). True for allw0 ∈ f(U) and sof(U) is open.
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Corollary 4.11 (Inverse function theorem) If G ⊂ C is open andf : G → C is an injective
analytic function, then

(i) f(G) is open

(ii) f ′(z) is never zero inG

(iii) the inverse functionf−1 : f(G) → G ⊂ C is analytic and its derivative is

(f−1)′(w) =
1

f ′(f−1(w))

In other words: ifw = f(z) then the inversez = f−1(w) has derivative

dz

dw
=

1
dw
dz

Proof.

(i) Note thatG is the union of its connected componentsG =
⋃

i∈I Gi. Now each restriction
of f to a connected componentGi is injective and analytic on the open setGi. Hence, by
Theorem4.10, f(Gi) is open. Hencef(G) =

⋃
i∈I f(Gi) is open.

(ii) If f ′(z0) = 0 for somez0 ∈ G, then we can use the arguments of the proof of Theorem4.10
with m > 1. we find out that there is someε > 0 so that for|w − f(z0)| < ε we have
N(w) = m > 0 solutions forf(z)− w = 0 counting multiplicities and only looking atz’s
inside a small diskD(z0, r). We can make this claim as long asr > 0 is small enough and
thenε > 0 is chosen to depend onr.

Now f ′(z) analytic but not identically zero in the connected component ofz0 in G (reason:
if f ′ was identically zero there, thenf(z) would have to be constant there and that would
mean it was not injective). So, by the identity theorem (3.1 applied tof ′ on the connected
component) we can chooser > 0 small enough thatf ′(z) is never zero for0 < |z−z0| < r.
This means that for this or smallerr there are no multiple zeros off(z)− w because there
are no points weref ′(z) = 0 exceptz = z0 andw = w0. Hence if we takew 6= w0 there
arem > 1 distinct solutions off(z) − w = 0. This contradicts injectivity off . Sof ′ is
never zero.

(iii) Certainly the inverse mapf−1 : f(G) → G makes sense. To show it is analytic, we work
on each connected componentGi of G separately and consider the restrictionfi of f to Gi

and the corresponding inversef−1
i : f(Gi) → Gi (which is the restriction off−1 to f(Gi)).

In other words, we can deduce the result if we prove it for the case whereG is connected
open.

So we assume from now on thatG is connected. By the Open Mapping Theorem4.10,
forward imagesf(U) of open subsets ofG are open. But this means thatf−1 is continuous
because the inverse image under the inverse function

(f−1)−1(U) = f(U)
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and is therefore open forU ⊂ G open.

Now we can directly compute the derivative off−1 at a pointw0 ∈ f(G) as follows. Let
z0 = f−1(w0) and then

(f−1)′(w0)
def
= lim

k→0

f−1(w0 + k)− f−1(w0)

k

= lim
k→0

h

f(z0 + h)− f(z0)

where we defineh = h(k) = f−1(w0 + k)− f−1(w0) = f−1(w0 + k)− z0. By continuity
of f−1 we can say thatlimk→0 h(k) = 0 and because of bijectivity off−1 we can say that
for k 6= 0 small enoughh = h(k) 6= 0.

As k → 0 we have
f(z0 + h)− f(z0)

h
→ f ′(z0) 6= 0

and so the reciprocal
h

f(z0 + h)− f(z0)
→ 1

f ′(z0)

Hence(f−1)′(w0) exists and is1/f ′(f−1(w0)).

Example 4.12 Since the exponential mapexp: C → C is analytic, ifG ⊂ C is any open set
whereexp is injective (equivalently where it is not possible to havez1, z2 ∈ G, z1 6= z2 and
z1 = z2 + 2nπ, n ∈ Z) then the restrictionexp |G of the map toG has an inverse

(exp |G)−1 : exp(G) → G ⊂ C

which is analytic. This will be a branch oflog w for w ∈ exp(G) sinceexp
(
(exp |G)−1 (w)

)
=

w∀w ∈ exp(G).
If we takeG to be the stripG = {z ∈ C : −π < =(z) < π} we have

exp(G) =
{
ex+iy : −π < y < π

}
= {w ∈ C : w not a negative real number} = C \ (−∞, 0]

and so the inverse function in this case is the principal branchLog w.

Theorem 4.13 If an analytic functionf(z) has an isolated singularityz = a and

sup
0<|z−a|<δ

|f(z)| < ∞

for someδ > 0 (that is if f is bounded in some punctured disc abouta), then there exists an
analytic extension off(z) to includez = a.

That is, iff : G → C is analytic onG ⊂ C open anda ∈ C \G satisfies the hypotheses, then
there existsg : G ∪ {a} → C analytic withg(z) = f(z)∀z ∈ G (andg(a) = limz→a f(z)).
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Proof. Consider the Laurent series forf is a punctured disc abouta,

f(z) =
∞∑

n=−∞

an(z − a)n (0 < |z − a| < δ)

where

an =
1

2πi

∫
|z−a|=r

f(z)

(z − a)n+1
dz

(any0 < r < δ). Let M = sup0<|z−a|<δ |f(z)| and estimate

|an| ≤
1

2π
(2πr) sup

|z−a|=r

|f(z)|
|z − a|n+1

≤ r
M

rn+1
= Mr−n

We have this estimate for all smallr > 0. If n < 0 (and so−n > 0), let r → 0+ to get|an| = 0
for all n < 0. Thus the Laurent series forf is in fact a power series

f(z) =
∞∑

n=−∞

an(z − a)n =
∑

n = 0∞an(z − a)n (0 < |z − a| < δ)

If we defineg(a) = a0 andg(z) = f(z) for all otherz wheref(z) is analytic, then we getg
analytic everywhere wheref was and alsog(z) =

∑∞
n=0 an(z − a)n for |z − a| < δ shows that

g is analytic atz = a also.

Corollary 4.14 If f(z) is analytic with an isolated singularity atz = a, thenz = a is a re-
movable singularity (meaning thatf can be extended toz = a so as to make it analytic there)
⇐⇒

lim
z→a

(z − a)f(z) = 0

Proof. ⇒: If there is an extension, thenlimz→a f(z) exists inC and solimz→a(z − a)f(z) = 0
(limit of a product).

⇐: If limz→a(z − a)f(z) = 0, we can repeat the estimate in the proof of the above Theo-
rem4.13, with small changes. First fixε > 0 and chooser > 0 small enough that|z− a| ≤ r ⇒
|(z − a)f(z)| < ε. Then we get,

|an| ≤
1

2π
(2πr) sup

|z−a|=r

|f(z)|
|z − a|n+1

= r sup
|z−a|=r

|(z − a)f(z)|
|z − a|n+2

≤ r
ε

rn+2
=

ε

rn+1

for all sufficiently smallr > 0. Now if n < −1, thenn + 1 > 0 and so lettingr → 0+ we get
an = 0 (n ≤ −2). Forn = −1 we get|a−1| ≤ ε. Sinceε > 0 is arbitrary, this means we must
havea−1 = 0 also. Thus the Laurent series is a power series as before.

Definition 4.15 An isolated singularityz = a of an analytic functionf(z) is called apole off
of orderp if the Laurent series forf in a punctured disc abouta has the form

f(z) =
a−p

(z − a)p
+

a−p+1

(z − a)p−1
+ · · · =

∞∑
n=−p

an(z − a)n
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with p > 0 anda−p 6= 0. (This last condition is to ensure that the term with(z − a)−p is really
there.)

An isolated singularityz = a of f is called apole off if it is a pole of some orderp > 0.
An isolated singularityz = a of f is called anessential singularity off if it is neither a pole,

nor removable.
Thus the Laurent series forf in a punctured disc about an essential singularityz = a has the

form

f(z) =
∞∑

n=−∞

an(z − a)n (0 < |z − a| < δ)

where there are infinitely manyn < 0 with an 6= 0. By contrast, for a removable singularity
z = a all the negative coefficients vanish (an = 0∀n < 0) and for a pole there is a nonzero finite
number ofn < 0 with an = 0.

Proposition 4.16 If an analytic functionf has an isolated singularityz = a, then it is a pole
⇐⇒

lim
z→a

|f(z)| = ∞

Proof. ⇒: If z = a is a pole, then the Laurent series forf in a punctured disk0 < |z − a| < δ
gives

f(z) =
∞∑

n=−p

an(z − a)n = (z − a)−p

∞∑
n=−p

an(z − a)n+p =
1

(z − a)p
g(z)

whereg(z) =
∑∞

n=−p an(z − a)n+p is analytic for|z − a| < δ, p is the order of the pole and
g(a) = a−p 6= 0. It follows that

lim
z→a

|f(z)| = lim
z→a

|g(z)|
|z − a|p

= ∞

⇐: If limz→a |f(z)| = ∞, then there existsδ > 0 with |f(z)| > 1 for 0 < |z − a| < δ.
Thusg(z) = 1/f(z) is analytic in the punctured discD(a, δ) \ {0} and also bounded by 1 there
(|g(z)| ≤ 1 for 0 < |z − a| < δ). Thus by Theorem4.13, g(z) can be defined atz = a to make
it analytic. In factg(a) = limz→a g(z) = limz→a 1/f(z) = 0. The analytic functiong must have
a zero of some finite multiplicitym > 0 atz = a (by the identity theorem 3.1 applied tog(z) on
D(a, δ). Hence the power series forg abouta is of the form

g(z) =
∞∑

n=m

bn(z − a)n = (z − a)m

∞∑
n=m

bn(z − a)n−m = (z − a)mh(z)

with h(0) = bm 6= 0 andh analytic in a disc abouta. Thus there is ar > 0 so thath(z) 6= 0
for all z ∈ D(a, r) and1/h(z) is analytic inD(a, r). In D(a, r) we must have a power series
expansion

1

h(z)
=

∞∑
n=0

cn(z − a)n
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and so

f(z) =
1

g(z)
=

1

(z − a)mh(z)
=

1

(z − a)m

∞∑
n=0

cn(z − a)n =
∞∑

n=0

cn(z − a)n−m

is a Laurent series forf in 0 < |z − a| < r. Thusf has a pole (of orderm) at z = a.

Theorem 4.17 (Casorati-Weierstrass)If an analytic functionf(z) has an essential singularity
z = a, then for all sufficiently smallδ > 0 (small enough thatf(z) is analytic in the punctured
discD(a, δ) \ {a}), then

f(D(a, δ) \ {a})

is dense inC.

Proof. Fix δ > 0 small and putS = f(D(a, δ) \ {a}). If the closure ofS is not all ofC, choose
w0 ∈ C \ S̄. As C \ S̄ is open there is a discD(w0, ε) ⊂ C \ S̄ with radiusε > 0. Hence,
for z ∈ D(a, δ) \ {a} we have|f(z) − w0| > ε. Thusg(z) = 1/(f(z) − w0) is analytic in the
punctured discD(a, δ) \ {a} and bounded by1/ε there. Therefore it has a removable singularity
at z = a and

lim
z→a

g(z) ∈ C

exists. We can call the limitg(a).
If g(a) = 0 thenlimz→a |1/g(z)| = limz→a |f(z) − w0| = ∞. Hence, as|f(z| > |f(z) −

w0|−|w0|, limz→a |f(z)| = ∞. By Proposition4.16, f must then have a pole ata, a contradiction
to the hypotheses.

On the other hand ifg(a) 6= 0, then

lim
z→a

f(z)− w0 =
1

g(a)

and solimz→a f(z) = w0 + g(a) ∈ C exists. Thusf has a removable singularity atz = a, again
a contradiction to the hypotheses.

ThisS must be dense inC.

Remark 4.18 In an exercise (Exercises 2, question 5) we had

f : C → C entire non-constant⇒ f(C) dense inC

and this was also called the Casorati-Weierstrass theorem. There is a way we can relate the two
versions of the theorem.

We say that a functionf(z) has an isolated singularity at infinity ifg(ζ) = f(1/ζ) has an
isolated singularity atζ = 0. That means there is someR ≥ 0 so thatf(z) is analytic for|z| > R
andg(ζ) is analytic for0 < |ζ| < 1/R.

We say that a functionf(z) with an isolated singularity at∞ has a removable singularity at
∞ if g(ζ) = f(1/ζ) has a removable singularity atζ = 0. Similarly, we say thatf has a pole
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at infinity if g has a pole atζ = 0 and we sayf has an essential singularity at∞ if g has an
essential singularity atζ = 0.

We can apply this terminology to entire functionsf(z). Such functions have a power series
representation

f(z) =
∞∑

n=0

anz
n (z ∈ C)

and then

g(ζ) = f(1/ζ) =
∞∑

n=0

anζ
−n

is a Laurent series forg valid for 0 < |ζ|.
We can see then thatg has a removable singularity at 0 if and only ifan = 0 for n =

1, 2, 3, . . .. In other words if and only iff(z) = a0 is constant.
We can see also thatg has a pole atζ = 0 if and only if there are only finitely manyn with

an 6= 0, which means thatf(z) =
∑N

n=0 anz
n is a polynomial.

Thus the essential singularity case is the case wheref(z) is a non-polynomial entire function.
If we apply Theorem4.17to g(ζ) = f(1/ζ) we conclude that, iff is a non-polynomial entire
function andδ > 0 then

g(D(0, δ) \ {0}) is dense inC

Hence we have

f : C → C entire and not a polynomial⇒ f({z ∈ C : |z| > R}) dense inC

for eachR > 0. (Takeδ = 1/R.)
This is a better result than in the exercise, but it does not apply to polynomials. For polyno-

mials we know from the fundamental theorem of algebra that

f(z) a nonconstant polynomial⇒ f(C) = C

(because ifw0 ∈ C is arbitrary, then the polynomial equationf(z) = w0 has a solution).
In fact all these versions are less than the best result known. Picard’s theorem (which we will

not prove in this course) states that iff is entire and non-constant, then there is at most one point
of C not in the rangef(C). The possibility of an exceptional point is shown byf(z) = ez which
has rangef(C) = C \ {0}.

There is also a ‘Great Picard Theorem’ which says that iff(z) is entire and not a polynomial
then each equationf(z) = w0 (w0 ∈ C) has infinitely many solutionsz ∈ C, except for at
most onew0 ∈ C. This is often stated:non-polynomial entire functions take every value inC
infinitely often, except for at most one value. As there can only be finitely many solutions of
f(z) = w0 in |z| ≤ R (by the identity theorem) it follows thatf({z ∈ C : |z| > R}) contains
all C except at most one point (iff is entire and not a polynomial). This clearly implies the set
f({z ∈ C : |z| > R}) is dense inC. We won’t get to the Great Picard theorem either, however.
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Definition 4.19 If G ⊂ C is open, then a functionf(z) is called meromorphic onG if there
existsH ⊂ G open so thatf : H → C is analytic and each pointa ∈ G \H is a pole off .

Often this is expressed in the following way:f is meromorphic onG if it is analytic at all
points ofG except for isolated singularities which are poles.

Lemma 4.20 If f is meromorphic onG ⊂ C open andK ⊂ G is compact, then there can be at
most finitely many poles off in K.

Proof. Let H ⊂ G be the open set wheref is actually analytic (with the remaining points ofG,
those inG \H being all poles).

If there were infinitely many poles off in K, it would be possible to select an infinite se-
quenceα1, α2, . . . of distinct poles off insideK. Now, being a sequence in a compact subset of
C, (αn)∞n=1 must have a convergent subsequence

(
αnj

)∞
j=1

and its limit

lim
j→∞

αnj
= α ∈ K ⊂ G.

Thenα ∈ H or α ∈ G \H.
The caseα ∈ H is not possible sinceH open would then implyD(α, r) ⊂ H for some

r > 0. Thusf analytic onD(α, r) and this implies there are no poles off in D(α, r) ⇒ αnj
/∈

D(α, r)∀j. This contradictsα being the limit.
On the other hand the caseα ∈ G \H is also impossible. Ifα ∈ G \H, thenα is an isolated

singularity off and there must be a punctured discD(α, r)\{α} ⊂ H. Now limj→∞ αnj
= α ⇒

∃j0 such thatj ≥ j0 impliesαnj
∈ D(α, r). As αnj

is a pole off , this forcesαnj
= α∀j ≥ j0

and contradicts the choice of theαn as distinct.

Corollary 4.21 If f is meromorphic onG ⊂ C open then we can list all the poles off in a finite
or infinite sequenceζ1, ζ2, . . ..

Proof. If G = C, let Kn = D(0, n) and ifG 6= C let

Kn = {z ∈ G : dist(z, C \G) ≥ 1

n
and|z| ≤ n}.

Here dist(z, C \G) = infw∈C\G |z − w|. Clearly dist(z, C \G) ≥ 0 (if G 6= C and whenG = C
we could perhaps interpret it as∞).

Now Kn is clearly bounded (Kn ⊆ D(0, n)) andKn is closed because its complement is

C \Kn = {w ∈ C : |w| > n} ∪
⋃

w∈C\G

D

(
w,

1

n

)
and that is open. HenceKn is compact for eachn.

For z ∈ G there is some discD(z, δ) ⊂ G and then ifn ∈ N is large enough that1/n < δ
andn ≥ |z| we havez ∈ Kn. HenceG ⊂

⋃∞
n=1 Kn. But Kn ⊂ G for all n and so we also have⋃∞

n=1 Kn ⊂ G. Hence
∞⋃

n=1

Kn = G
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Now by Lemma4.20, there can only be a finite number of poles off in K1 (or possibly
none). We can list the poles inK1 as a finite listζ1, ζ2, . . . ζn1 . (Taken1 = 0 if there are no
poles inK1.) Now there are also a finite number of poles inK2. Let ζn1+1, ζn1+2, . . . , ζn2 be
those poles inK2 but not inK1. In general letζnj+1, ζnj+2, . . . , ζnj+1

be those poles inKj+1 not
already inK1 ∪K2 ∪ · · · ∪Kj.

In this way, we have constructed a complete listζ1, ζ2, . . . of the poles off in G.

Remark 4.22 We will have further use for theseKn and they have additional useful properties.
It is clear from the way they are defined thatKn ⊆ Kn+1 for eachn. In factKn is contained in
the interior ofKn+1 becausez ∈ Kn implies

D

(
z,

1

n
− 1

n + 1

)
⊆ Kn+1

It follows then thatG =
⋃∞

n=1 Kn ⊂
⋃∞

n=1 K◦
n+1 ⊂ G and so

G =
∞⋃

n=1

K◦
n.

This can be used to show that ifK ⊂ G is compact, thenK ⊂ K◦
n ⊂ Kn for somen.

Any sequenceKn of compact subsets ofG with the propertiesKn ⊂ K◦
n+1 andG =

⋃∞
n=1 Kn

is called anexhaustive sequenceof compact subsets ofG. For any exhaustive sequence, we have
K ⊂ G compact⇒ K ⊂ Kn for somen.

Theorem 4.23 (Identity Theorem for meromorphic functions) Let G ⊂ C be a connected
open set andf a meromorphic function onG. If there existsa ∈ G with f (n)(a) = 0 for all
n = 0, 1, 2, . . ., thenf is identically 0 onG.

Proof. Let H ⊂ G be the subset wheref is analytic. We cannot immediately apply the identity
theorem for analytic functions (3.1) tof onH as we have not assumedH connected.

Now if z1, z2 ∈ H, then there is a continuous path [made up of finitely many straight line
segments] inG and joiningz1 to z2 (connected open sets are path connected). The path is a
compact subset ofG and so passes through at most a finite number of points ofG \ H (by
Lemma4.20). Around any such pointa, there is a punctured diskD(a, r) \ {a} ⊂ H and this
allows us to divert the path arounda. After a finite number of such diversions, we end up with a
path inH from z1 to z2.

ThusH is path connected and so connected.
Now we can apply the identity theorem tof onH and conclude thatf(z) = 0∀z ∈ H. This

rules out any polesa ∈ G \H (wherelimz→a |f(z)| = ∞). SoH = G andf ≡ 0 onG.

Remark 4.24 We can define sums and products of meromorphic functions onG ⊂ C open but
the definition requires a small bit of care. Iff, g are two meromorphic functions onG, then they
are analytic on two different open subsetsHf ⊂ G andHg ⊂ G.
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We define the sumf + g and the productfg on Hf ∩ Hg in the ‘obvious’ way(fg)(z) =
f(z)g(z) and(f + g)(z) = f(z) + g(z) onHf ∩Hg. It is not always the case that every point of
G \ (Hf ∩Hg) = (G \Hf ) ∪ (G \Hg) is a pole offg or f + g.

For example, iff(z) = 1/z andg(z) = z, G = C, Hf = C \ {0} andHg = ∅. However
f(z)g(z) = 1 onHf ∩Hg and has no singularity (r a removable singularity) atz = 0.

If we took f(z) = 1/(z − 1) + 1/(z − 2) andg(z) = 1/z − 1/(z − 1), then we find that
Hf = C \ {1, 2}, Hg = C \ {0, 1}, (f + g)(z) = 1/z and this has pole atz = 0 andz = 2, but
none atz = 1.

In general though all points ofG \ (Hf ∩Hg) are either poles or removable singularities of
fg. So the product makes sense as a meromorphic function. (Similarly forf + g.) [Exercise:
verify.]

Corollary 4.25 If G ⊂ C is connected andf(z) is meromorphic onG but not identically 0, then
1/f is meromorphic onG with poles wheref(z) = 0 if we define1/f to be 0 at poles off .

Proof. Let H ⊂ G be the open subset wheref is analytic andZf = {z ∈ H : f(z) = 0}. Let
Pf = G \Hf be the set of poles off .

Zf is clearly closed inH and soH \Hf is open.1/f(z) is analytic at all points ofH \Hf .
If a ∈ Zf then there is a disk of positive radiusD(a, r) ⊂ H wheref has a power series

representationf(z) =
∑∞

n=0 an(z − a)n (|z − a| < r). By Theorem4.23, not all the coefficients
an can be zero thoughf(a) = a0 = 0. Thusf(z) =

∑∞
n=m an(z − a)n with m ≥ 1 andam 6= 0.

We can then writef(z) = (z − a)mg(z) with g(z) =
∑∞

n=m an(z − a)n−m analytic in
D(a, r) andg(a) 6= 0. So there is someδ with 0 < δ ≤ r andg(z) never 0 inD(a, δ). Hence
Zf ∩ D(a, δ) = {a}. Also 1/f(z) = (z − a)−m(1/g(z)) is analytic in the punctured disc
D(a, δ) \ {a} and has an isolated singularityz = a which is a pole of orderm.

At pointsb ∈ Pf , limz→b |f(z)| = ∞ (by Proposition4.16) and solimz→b 1/f(z) = 0. Thus
1/f has a removable singularity atz = b (where it should be assigned the value 0).

Also H ∪ Pf is open becauseH is open andb ∈ Pf ⇒ D(b, ε) \ {b} ⊂ H for someε > 0,
which impliesD(b, ε) ⊂ H ∪ Pf .

So1/f is now analytic on the open setH ∪ Pf = G \ Zf and has isolated singularities at
points ofZf that are all poles.

Remark 4.26 If G ⊂ C is open, letM(G) denote all the meromorphic functions onG. We have
operations of addition and multiplication onM(G) and since constant functions are inM(G),
we can multiply elements ofM(G) by complex scalars (same as multiplying by a constant).

These operations makeM(G) a commutative algebraover C. That means a vector space
over C (addition and multiplication by complex scalars) where multiplication is possible (and
certain natural rules are satisfied such as associativity and distributivity). Also the algebraM(G)
has a unit element (the constant function 1 has the property that mutliplying it by anyf ∈ M(G)
givesf ). Commutativity meansfg = gf .

WhenG is connected we also have the possibility of dividing by nonzero elements. This
makesM(G) a commutative division algebra overC. In particular it is a commutative division
ring (forget the vector space structure) and these are calledfields. As M(G) contains (a copy of)
the fieldC (in the form of the constant functions), it is an extension field ofC.
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Theorem 4.27 (Argument principle, simple meromorphic version)LetG ⊂ C be simply con-
nected andf a meromorphic function onG with finitely many zerosα1, α2, . . . , αk and finitely
many polesβ1, β2, . . . , β`. (We allowk = 0 or ` = 0 when there are no zeros or no poles.)
Saymj is the multiplicity ofαj as a zero off (1 ≤ j ≤ k) and pj is the order of the poleβj

(1 ≤ j ≤ `).
Letγ be an anticlockwise simple closed curve inG \ {α1, α2, . . . , αk, β1, β2, . . . , β`} (that is

in G but not passing through any zeros or poles off ).
Then

1

2πi

∫
γ

f ′(z)

f(z)
dz =

k∑
j=1

mjIndγ(αj)−
∑̀
j=1

pjIndγ(βj)

We will often write the right hand side asN − P (or Nf − Pf or Nfγ − Pf,γ). The first sum
counts the number of zeros off according to multiplicity and the winding number ofγ around
them and the second sum does a similar thing for poles and their orders.

Proof. The idea is similar to the proof of Theorem4.8 for the case of analytic functions. We
use the residue theorem and show that the residue off ′/f at z = αj is mj (the same as before)
and the residue off ′/f at z = βj is −pj. Note thatf ′/f is analytic onG except for isolated
singularities at the zerosαj and polesβj.

In a punctured disc about a polez = βj, f has a Laurent series

f(z) =
∑

n=−pj

an(z − βj)
n (0 < |z − βj| < r)

= (z − βj)
−pj

∑
n=−pj

an(z − βj)
n+pj

= (z − βj)
−pjg(z)

Hereg(z) is analytic in|z − βj| < r andg(βj) = a−pj
6= 0 and so there exists a positiveδ ≤ r

so thatg(z) is never zero in the discD(βj, δ). In the punctured disc0 < |z − βj| < δ we have

f ′(z) = −pj(z − βj)
−pj−1g(z) + (z − βj)

−pjg′(z)

f ′(z)

f(z)
=

−pj(z − βj)
−pj−1g(z) + (z − βj)

−pjg′(z)

(z − βj)−pjg(z)

=
1

z − βj

−pjg(z) + (z − βj)g
′(z)

g(z)

=
1

z − βj

h(z)

whereh(z) is analytic inD(βj, δ) andh(βj) = −pj. It follows thath(z) has a power series
h(z) =

∑∞
n=0 bn(z − βj)

n in D(βj, δ) with b0 = h(βj) = −pj. Thusf ′/f has a Laurent series
in the punctured disc

f ′(z)

f(z)
=

∞∑
n=0

bn(z − βj)
n−1 (0 < |z − βj| < δ)
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with the coefficient of(z − βj)
−1 beingb0 = −pj. This the residue off ′/f at z = βj is−pj as

claimed.

Remark 4.28 Instead of assuming thatG is simply connected in the theorem above (4.27) we
could assume thatG is connected and thatγ satisfies one of the following restrictions:

(a) γ null homotopic inG

(b) Indγ(w) = 0 for all w ∈ C \G

(c) γ a simple closed anticlockwise curve inG with its inside also contained inG. In this case
the expression forN − P in the theorem can be simplified because we are in the situation
where Indγ(z) = 1 for z insideγ (and zero forz outsideγ). So we get

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
1≤j≤k,αj insideγ

mj −
∑

1≤j≤`,βj insideγ

pj

To remove the necessity to assume thatf has only finitely many zeros and poles we need an
improved version of the Residue Theorem.

Theorem 4.29 (Residue theorem, final version)LetG ⊂ C be open and supposef is analytic
in G except for isolated singularities. (That is assume there isH ⊂ G open so thatf : H → C
is analytic andf has an isolated singularity at each point ofG \H.) Supposeγ is a (piecewise
C1) curve inG that does not pass through any singularity off (so it is in fact a curve inH) with
the property that Indγ(w) = 0 for all w ∈ C \G.

Then ∫
γ

f(z) dz = 2πi
∑

a a singularity off

res(f, a)Indγ(a)

Though the sum appears potentially infinite we will show that there can be at most finitely
many nonzero terms in the sum. Excluding the zero terms we are left with a finite sum and we
mean the finite sum.

Proof. To establish first the point about the finiteness of the number of nonzero terms in the sum,
let K = γ ∪ {z ∈ C : Indγ(z) 6= 0}. Now K ⊂ G sinceγ ⊂ G andw ∈ C \ G ⇒ Indγ(w) =
0 ⇒ w /∈ K. (ThusC \G ⊂ C \K or K ⊂ G.)

Also K is compact since it is closed and bounded.K is bounded because Indγ is zero on
the unbounded component ofC \ γ (which includes{z ∈ C : |z| > R} if R is big enough that
γ ⊂ D(0, R)). K is also closed because Indγ is constant on connected components ofC \ γ
which implies thatC \K = {z ∈ C : Indγ(z) = 0} is a union of connected components ofC \ γ
(and these components are all open). Being closed and bounded inC, K is compact.

Now there can only be a finite number of singularities off in K by an argument similar to the
proof in Lemma4.20(which was for meromorphicf ). [Here is the idea: If there were infinitely
many singularities inK we could find an infinite sequence(an)∞n=1 of distinct singularities inK.
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Then we could find a subsequence(anj
)∞j=1 converging to a limita ∈ K. The functionf can

neither be analytic ata nor have an isolated singularity there.]
We now letH be the open subset ofG wheref is analytic anda1, a2, . . . , an the singularities

of f insideK. Let G1 = H ∪ {a1, a2, . . . , an}. ThenG1 is open,K ⊂ G1 andf is analytic on
G1 except for a finite number of singularities.γ is a curve inH ⊂ G1 with Indγ(w) = 0 for all
w ∈ C\G1 (since suchw are not inK). The earlier version of the residue theorem (Theorem4.3)
applies tof onG1 and implies the result.

Remark 4.30 The argument principle can now be extended to meromorphic functions with po-
tentially infinite numbers of zeros and poles. We need to avoid non-isolated zeros — which
would meanf identically zero on some connected component ofG by the identity theorem and
then the curveγ could not be in such a component because we insist thatf is never zero onγ.
(We also require thatf has no poles onγ).

Sinceγ has to be in one connected component ofG in any case, we can just assume that
G is connected,f meromorphic onG and no poles or zeros off on γ. Then we must make
suitable assumptions aboutγ (such asγ piecewiseC1 closed curve inG with Indγ(w) = 0 for
all w ∈ C \G).

The argument principle will then state

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
a∈G,f(a)=0

multf (a)Indγ(a)−
∑

b∈G,b pole off

orderf (b)Indγ(b) = Nf − Pf

where multf (a) means the multiplicity ofa as a zero off and orderf (b) means the order of the
poleb of f .

Theorem 4.31 (Rouch́e’s theorem) Supposef and g are meromorphic functions on a con-
nected openG ⊂ C andγ is a piecewiseC1 closed curve inG with

(a) Indγ(w) = 0 for all w ∈ C \G

(b) no zeros or poles off or g onγ

(c) |f(z)− g(z)| < |f(z)| for all z onγ
[that is, the difference is strictly smaller than one of the functions|f | onγ]

Then
Nf − Pf = Ng − Pg

where
Nf =

∑
a∈G,f(a)=0

multf (a)Indγ(a), Pf =
∑

b∈G,a pole off

orderf (b)Indγ(b)

and similarly forNg andPg.
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Proof. We could note that the hypotheses (c) actually implies (b) because if there were any poles
of eitherf or g on γ then the inequality (c) would not make sense and if there were zeros of
eitherf or g onγ then the strict inequality could not hold.

Dividing across by|f(z)| we can rewrite (c) as∣∣∣∣1− g(z)

f(z)

∣∣∣∣ < 1 ⇐⇒ g(z)

f(z)
∈ D(1, 1)

The essence of the proof is that this means Log(g(z)/f(z)) (the principal branch of thelog)
makes sense forz ∈ γ and gives an antiderivative forg′(z)/g(z) − f ′(z)/f(z). To make this
antiderivative argument work we need thelog on some open set that containsγ.

Sayf is analytic onHf ⊂ G open (with poles onG \Hf ) andg is analytic onHg \G open
(with poles onG \ Hg). Let Zf = {z ∈ Hf : f(z) = 0} = the zeros off . Theng(z)/f(z) is
certainly analytic on(Hf \ Zf ) ∩Hg, an open set that containsγ. By continuity ofg/f , the set

{z ∈ (Hf \ Zf ) ∩Hg : g(z)/f(z) ∈ D(1, 1)}

is open and containsγ. On this open set

d

dz
Log

g(z)

f(z)
=

1(
g(z)
f(z)

) d

dz

(
g(z)

f(z)

)
=

f(z)

g(z)

g′(z)f(z)− g(z)f ′(z)

f(z)2
=

g′(z)

g(z)
− f ′(z)

f(z)

It follows then that the integral of this is zero around the closed curveγ, that is

0 =

∫
γ

g′(z)

g(z)
− f ′(z)

f(z)
dz =

∫
γ

g′(z)

g(z)
dz −

∫
γ

f ′(z)

f(z)
dz

Thus ∫
γ

g′(z)

g(z)
dz =

∫
γ

f ′(z)

f(z)
dz

and so by the argument principle

2πi(Ng − Pg) = 2πi(Nf − Pf )

and so the result follows.

Example 4.32 (i) We can use Rouché’s theorem (4.31) to reprove the fundamental theorem
of algebra in yet another way. Ifp(z) = anz

n+an−1z
n−1+· · ·+a1z+a0 is a polynomial of

degreen ≥ 1 (so thatan 6= 0), then the earlier proof started by showing that for|z| = R > 0
large enough we have

|an−1z
n−1 + · · ·+ a1z + a0| <

1

2
|an||z|n

(We still need this part of the earlier proof and most proofs of the theorem need this part.)
If we takef(z) = anz

n, g(z) = p(z) andγ the circle|z| = R traversed once anticlockwise,
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then we can apply Rouché’s theorem (withG = C because both functions are entire) since
we have

|f(z)−g(z)| = |−(an−1z
n−1+· · ·+a1z+a0)| <

1

2
|an||z|n < |anz

n| = |f(z)| for |z| = R.

Thus we conclude
Nf − Pf = Ng − Pg

or Nf = Ng (since there are no poles in this case). NowNf = n sincef(z) = 0 has only
the solutionz = 0 and that has multiplicityn (and Indγ(0) = 1). Sog(z) hasNg = n zeros
(counting multiplicities) inside|z| = R (for all largeR). It follows that if n ≥ 1 thenp(z)
has a zero.

(ii) Show that ifλ > 1 then the equationλ− z − e−z = 0 has exactly one solution in the right
half plane<z > 0.

Solution. This is meant to illustrate the difficulty of applying Rouché’s theorem as we have
only one function here (need another) and no curveγ. We takeg(z) = λ − z − e−z the
function we want the information about andf(z) = λ− z a simpler function to analyse.

We select as our curveγ any closed semicircle of radiusR > λ + 1 in the right half plane,
oriented anticlockwise. That isγ is the semicircle|z| = R in <z ≥ 0 plus the segment of
the imaginary axis fromiR to−iR. We takeG = C as our functionf andg are entire.

For z ∈ γ we have
|f(z)− g(z)| = |e−z| = e−<z ≤ e0 = 1.

For z on the semicircular part ofγ we have

|f(z)| = |λ− z| ≥ |z| − λ > R− λ > 1 ≥ |f(z)− g(z)|.

For z on the imaginary axis we have

|f(z)| = |λ− z| = |λ− iy| =
√

λ2 + y2 ≥ λ > 1 ≥ |f(z)− g(z)|.

Thus Rouch́e’s theorem tells us

Nf − Pf = Ng − Pg

or Nf = Ng since there are no poles. ButNf = 1 becausef(z) = 0 has the solutionz = λ
(which is insideγ and has Indγ(λ) = 1 asγ is simple closed and oriented anticlockwise).
HenceNg = 1. Thusg(z) = λ− z− e−z = 0 has just one solution inside the semicircle as
long asR > λ + 1.

This means there is one in the right half plane (and inside|z| ≤ λ + 1) and there cannot be
any other because if there was another solution ofg(z) = 0 in <z > 0 we could chooseR
big enough so that the semicircle would include the second solution (and so would mean
Ng ≥ 2).

Richard M. Timoney February 9, 2004


