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Theorem 4.1 (Laurent expansion)Let f: G — C be analytic on an ope& C C be open that
contains a nonempty annulds € C : R; < |z —a| < Ry} (some0) < R; < Ry < oo, Some
centera € C). Thenf(z) can be represented by a Laurent series

)= ) alz—a)" (R <|z—a| <R

n=—oo

where, for any choice ofwith R; < r < Ry and~,: [0,1] — C given byy,(t) = a+r exp(2mit)
1 f(z)

" 2mi o (2 —a)n

an, dz
Proof. Recall from 1.9 that a Laurent series has an annulus of convergence. In this case the
annulus of convergence mustinclufle < |z — a| < Rs.

Turning to the proof, notice that from Cauchy’s theorem we can conclude that the formula
given fora, is independent of in the rangeR; < r < Ry. Fixanyz with Ry < |z — a| < Ry
and choose,r, with Ry < r < |z — a|] < 79 < Ry. From the winding number version of
Cauchy’s integral formula (1.30 with = ~,, — v,,) we can deduce

1 f(¢ 1 f(¢
1) =5 —g(_)zd<‘z—m —<<—)de'
Yro Yry

The remainder of the proof is quite like the theorem that analytic function in a disk are repre-
sented by power series (Theorem 1.23).

For|¢ — a| = ry, we do exactly as in the power series case
1 1 1 1 1 1

(—z_(C—a)—(z—a)_C—al—Z:Z_C—al—w

wherew = =2 has|w| < =% = p, < 1. Hence
a T2
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For | — a| = r1, we do something similar

1 1 -1 1 -1 1

(-2 (C—a)—(2—a) z—-al-%¢ 2z—-al-w

zZ—a

and this timew = % is also less than one in modulus (for allon | — a| = 7). In fact
|lw| =1 /|z — a|] = p1 < 1. Thus we get another series

C Zo z—azo(z—a) __Zm Z (z —a)m

n=0 =1

Plugging these two series into the the two integrals in the integral formulg (for and
exchanging the order of integral and sum (using uniform convergence to justify the exchange)
we get

f(z):Z(L (Cf(c))nﬂdg) z—a) +Z</ fO¢ - mldC)ﬁ

n=0 T2

and this comes down to the desired result.

Definition 4.2 If an analytic functionf is analytic on an open sét C C that includes a punc-
tured diskD(a, r) \ {a} of positive radius- > 0 about some € C, thena is called an(isolated)
singularityif a is not itself inG.

Theresidueof f at an isolated singularity: of f is defined as the coefficient ; in the
Laurent series forf in a punctured disk about:

res(f,a) =a_y b f(z)dz

2mi |z—al=68
if 0 < ¢ < the radius of a punctured disk aboutvheref is analytic.

Theorem 4.3 (Residue theorem)Let G C C be open and suppoggéis analytic in

G\ {ay,as,...,«a,} for some finite number of (distinct) points, as, ..., a, C G. Suppose
I is a (piecewise’!) chain inG \ {ay, as, ..., a, } with the property that Ing(w) = 0 for all
weC\QG.

Then

/Ff(z) dz = zmz res(f, a;)Indr(a;).

Proof. We apply the winding number version of Cauchy’s theorem 1.30 to a new ¢hain
constructed as follows. Chooge> 0 so small that (i)D(«;,d) € G and (i) 6 < |a; — oy for
Jj # kandl < j, k <n. Letv, be the circlgz —a| = ¢ traversed-Indr(«;) times anticlockwise
and let

=T+ttt m



Chapter 4 — open mapping theorem, removable singularities 3

Now I'; is a new chain inH = G\ {ay,a9,...,a,}. H is open,f is analytic inH and
Indp, (w) = 0 forallw € C\ H. To check the last assertion notice that lrid) = 0 for all
w € C\ G and so Ing, (w) = Indr(w) + > 7, Ind,,(w) = 0 for thesew. The remaining
we C\ H arew = «a; (1 < j <n). Notice that

_Indr(ay) if j =k
|nd7j(ak):{0 r(ay) it

sinceay, ¢ D(a;,0) for k # j, and so

|ndl"1 (Oéj) = |ndp(aj) + i |ndfyj (Oék) = |ndp(aj) — |nd1"<Oéj) =0.
k=1

By 1.30,
f(z)dz=0
I'1
and this means

O:/Ff(z)dz—i-z f(z)dz:/Ff(z)dz—l—ZQm(—Indp(aj))reif,aj)

j=1"7%
and the result follows.

Corollary 4.4 (Residue theorem, homotopy version)Let G C C be open andf(z) a function

analytic onGG except perhaps for a finite number of (distinct) poimisas, . .., a, € G. (More

formally, f is analytic onG \ {ay,as,...,a,}.) Lety be a (piecewis&!) closed curve in
G\ {1, aq,...,a,} which is null-homotopic irz. Then

/f(z) 4= = 2mi 3 res(, a;)ind, (o).

Proof. We can apply Theorer.3since Ind (w) = 0 for w € C\ G by 1.43.

Corollary 4.5 (Residue theorem, simple closed curve version)et G C C be open andf(z)
a function analytic orG except perhaps for a finite number of (distinct) poimisas, . .., a, €
G. Suppose that is a (piecewise”!) simple closed curve it \ {ay, s, ..., a,}, oriented
anticlockwise and with its interior contained @?. Then

/f(z) dz = 2mi Z res f, a;)

{7:1<j<n,q; inSide*y}

Proof. By definition, the outside of is the unbounded component©f~. Also Ind,(w) = 0 for
w outsidey. Sincey and its inside is contained i, w € C\ G = w outsidey = Ind, (w) = 0.
So we can apply the theorem.§) to .

By definition of anticlockwise, Ing(«;) = 1if a; is insidey and Ind,(¢;) = 0 if «; outside.
Thus the formula of Theorer 3for fV f(z) dz reduces to the one above in this situation.



4 414 2003—-04 R. Timoney

Remark 4.6 The residue theorem can be used to work out many integrals of analytic functions
along closed curves ift. It is only necessary to be able to work out residues (and winding
numbers, but in many examples winding numbers are easy to find).

To find, for example, the residue of

atz = 1, we can write it as

1 e* 1

f(z):(z—l)Qz—QZ (z—1

)29(2)

whereg(z) is analytic near = 1. It follows thatg(z) has a power series representation in some
disk about 1 (in fact inD(1, 1), the largest disk that excludes= 2)

2 g
o)=Y Wiy

n=0

Hence

e(1-2)—e
(1-2)2
The residue theorem is also an effective technique for working out certain real integrals. We
will not go into this in any detail, but here are some examples that give the flavour of the methods
used.
2

Considerffo<>C> i1 dz. One can verify that the integral converges by comparisonﬁﬁ@% dx

or ff‘; x22+1 dx. Consider the complex analytic functigifz) = Zfil and the closed curve made
up of the real axis from- R to R followed by the semicircle of radiug in the upper half plane
(say) fromR back to— R. We takeR large (at leask? > 1). By the residue theorem, we can work

out this complex integral and geti times the sum of the residues:at ¢™/* andz = 3™/,

and the coefficient ofz — 1)~! is the residue. So itig'(1) = = —2e.
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These residues are in fagtxp(—3mi/4) and = exp(—mi/4). 27i times their sum isr/v/2.
So if o denotes the semicircle of radids then

/R v d +/ & d T
x ———dz = —

For largeR, the integral over the semicircular part of the contour is at most the length of the
contour @ R) times the maximum value of the integrand, or

2
z
/ 1 dz
op 20+ 1
R 2

li de = =
im ——dr = —
R—o0 R $4+1 \/5

2

<7R

< 7 1—>OaSR—>oo

Using this we find that

and sof* £ dz =m/V2.

Another fairly standard example which can be worked oyfTs®2£ dz. The contour to use
is the line segment R to —¢ (R big, 6 small, both positive), the semicircle of radiiround
the origin from—¢ to ¢ (say the one above the real axis and denote itfythe line segment
to R and the same semicircte; as above. If this closed curveqsthen

eiz

—dz=0

v %

by Cauchy’s theorem.
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Thus
é elix R ez
/ —dx—i—/—dz—i— —dz+/ —dx—O

One can show (but it is a bit trickier this time) that the integral around the big semiejtknds
to zero ask — oo, While (takingz = dexp(i(m —t)), 0 < t < 7 as a parametrisation of;)

" PO exp(im =) 5y i — ) dt = —in

Ii —dz =1
520 o5 2 S 0 dexp(i(m —1))
and s n N
/ ¢ dr+ e—dmzZi/ ST
_R X 5 X 5 x

Taking limits, one finally ends up with

*sinx ™
de = —.
/0 x v 2
Definition 4.7 Let f(z) be analytic on some open g6tC C. A pointa € G is called azero of

. . B
fif f(a) = 0. The pointu is called azero of f of multiplicity m (for m > 0 a positive integer)

if f(a)=0.
if f(a) =0andfY(a) =0for1 <j < mbutf™(a) 0.
Equivalently, if we look at a power series representatiori &f a disk about:, the first term

with a nonzero coefficient is the — a)™ term.

o

f(2)=an(z—a)" + apm(z —a)" T+ = Z an(z —a)"

n=m

with a,,, = f™(a)/m! # 0.
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When we look at the case of a polynomjdk) = by + b1z + - - - + b,z" of degreen (so
b, # 0 then we know from the Fundamental theorem of algebra (3.11) that we can factor

P(2) = ba(z — ) (z = @z) -+ (2 = )

Thusp(z) has the roots; for 1 < j < n and we can say(z) has at most roots. We cannot
say it has exactly. because there may be repetitions amongnthef we group the like terms

p(2) =bp(z — B1)™ (2 — o)™ -+ - (2 — B)™*

with 3y, B, . . ., Bk the distinct roots andh, + my + - - - + my, = n. Thenm; is the multiplicity
of the zero3;. What we see is that is if we count each zgfas many times as its multiplicity
m;, then we can say that every polynomjét) of degreen has exactly: roots.

Theorem 4.8 (Argument principle, simple version) LetG C C be simply connected and

f: G — C analytic and not identically zero i&'. Lety be an anticlockwise simple closed curve
in G and assume that(z) is never zero ony. Letay, ay, .. ., a,, be the zeros of that are inside

v and leta; have multiplicitym; (1 < j < n).

Then
1 [P
2mi ), f(2)

(= the total number of zeros gfinside~y counting multiplicities, something we will often denote
by N or N, or N, ;).

dz=mi+mg+---+m, =N

Proof. There are some aspects of the statement that may require some elaboratiorG Bince
simply connected, we can say thatife C \ G, then

1
/ dz=0
L Z =W

by Cauchy’s theorem (in the form 2.3 for a simply connected- using1/(z — w) analytic in
(). Hence Ind(w) = 0 for all w € C\ G and so the inside of (where the index is-1) must
be inG as well asy itself.

Now ~ together with its inside is a compact subseCofcontained inG. So, by the identity
theorem (Corollary 3.5), there can only be a finite number of zergsim$ide or orry. We have
assumed there are non gritself.

Finally, each zero of has a finite multiplicity (again by the identity theorem 3.1) siGtes
connected and is not identically zero.

These are all points that are implicit in the statement of the theorem (or without which we
would need further assumptions in order for the statement to make sense). The proof of the
theorem is essentially to apply the residue theorem and to show that the resjdy¢ af a zero
«; is the multiplicity m;.

There is a small catch as the statement of the residue theorem we would like to rely upon
(4.5) is stated with a finite total number of singularities. In our cg¢ has singularities where
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f(z) = 0 and there could be infinitely many such points in allcaf What we can do is shrink
G to a smaller open séf that still containsy and its interior but wherg has only finitely many
zeros.

One way to do that is to construét so that its closure is compact and containedrinLet
K denote the union of with its inside (already noted to be a compact subsét)fFor each
z € K we can find &, > 0 so that the closed disk(z,0.) C G. ThenK C |J,., D(2,0.)
is an open cover of{ and so has a finite subcovek (compact)K' C U?:l D (zj, (52].). Take
H =}, D (,4.,) and thenH is open,H C |J;_, D (2j,0:;) C G is a compact subset of
G. By the identity theoremf has only finitely many zeros i, hence only finitely many it
Thus we can apply the residue theorehrb) to get

/y ];”/((j)) dz = 27m‘jz:;res(f7/7%)

To complete the proof we show that ff(z) has a zeroz = « of multiplicity m then
req f,«) = m. To do this, start with a power series fftin a disk abouty

f@p:Eji%%&z—@k:EZ%u—af

with a,, = £ (a)/k! # 0 (and this expansion is valid in some digk— a| < §). We also have
F1(2) Y kar(z — )t
k=m

(in the same diskz — | < §). Hence

f’(Z) . (Z — a)m—l Zzozm ]mk(z _ &)k_m - 1 i
) E—a)m i an(z — ) =-—o9()

whereg(z) is analytic in some small disk aboat(a small enough disk where the denominator
is never 0, exists because the denominatay(ej is a,, # 0 atz = a and so it remains nonzero
in some disk about by continuity).

Now ¢(z) has a power series around

with g(a) = %= = m and sof’(z)/ f(z) has a Laurent series

where the coefficient of: — a) ! is g(0) = m. So the residue of'/ f atz = a ism, as claimed.
This completes the proof.
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Remark 4.9 One might ask why this theorem is called the argument principle. If we consider
the composition off with the curvey we get a new curvé o~ in C\ {0} (becausé (z) is never
zero o). If we compute the index of this curve around the origin, we get

1 1 1 [ f(2)
I d o —_ - d —_ d
ndye, (0) 27 /foww Y o 5 f(2) :

(as can be seen by writing the integrals in terms of a parameterf(z) = f(v(t))).
Thus the integral in the theorem is the number of tirfies) goes anticlockwise around the
origin asz goes around.

Theorem 4.10 (Open mapping theorem)Let G C C be a connected open set afidG — C
analytic but not constant. Then for each open subset G the imagef(U) is open inC.

(That means that forward images of open sets are open, while inverse images of open sets are
open by continuity.)

Proof. Fix U C G open anduy € f(U). Thuswy = f(z) for somez, € U. (This z, may not
be unique, but fix one.) Now the functigiiz) — w, has a zero at = z,. As G is connected and
f is not constantf(z) — wy is not identically zero o) the identity theorem (3.1) tells us that
this zero has a finite multiplicityn > 1.

There must be some> 0 with f(z) —w never zero fof) < |z—zy| < ¢ (@ndD(zp,d) C G)
by the identity theorem again. Choose: 6, > 0 with D(zy, ) C U. Then, by the argument
principle @.8) we must have

1 f'(2) _
% /zzo|:r f(Z) — Wo dz=m

(= the total number of zeros ¢f(z) — wy inside|z — z,| = r counting multiplicities).
Next |f(z) — wo| is a real-valued function which is continuous and always strictly positive
on the compact circlez — z| = r. Hence it has a minimum value> 0 and

| inf‘ |f(2) —wo| =¢ > 0.
z—zg|=r
Now if |w — wy| < ¢, then|f(z) — w| > |f(z) — wo| — |w — wy| > € — |w — wp| > 0 0N
|z — 29| = rand so
1 f'(2)

% |z—z0|=r f(Z) —w

gives the total number of solutions 6tz) — w = 0 inside the circldz — zy| = 7.

As a function ofw, N(w) is a continuous function ab for |w — wy| < . Itis an integer-
valued continuous function on the connected disky, ). It is therefore constan¥(w) =
N(wp) = m.

Asm > 1, this means that if we take amy € D(wy, ) then there is at least onec D(z, )
with f(z) = w. In other wordsD(wy, ) C f(D(zo,7)) C f(U). Hencewy is an interior point
of f(U). True for allwy € f(U) and sof (U) is open.

dz = N(w)



10 414 2003—-04 R. Timoney

Corollary 4.11 (Inverse function theorem) If G C C is open andf: G — C is an injective
analytic function, then

() f(G)is open
(i) f'(z) is never zero irG

(iii) the inverse functioff~': f(G) — G c Cis analytic and its derivative is

, 1
(f ) (w) = )
In other words: ifw = f(z) then the inverse = f~!(w) has derivative
[
dw g

Proof.

() Note thatG is the union of its connected componetits= | J,.; G;. Now each restriction
of f to a connected compone@ is injective and analytic on the open €&t Hence, by
Theoremd.1Q f(G;) is open. Hence (G) = |, f(G;) is open.

(i) If f'(z0) = 0 for somez, € G, then we can use the arguments of the proof of Theardii
with m > 1. we find out that there is some> 0 so that forjw — f(z)| < € we have
N(w) =m > 0 solutions forf(z) — w = 0 counting multiplicities and only looking ats
inside a small diskD(z, 7). We can make this claim as longas- 0 is small enough and
thene > 0 is chosen to depend on

Now f’(z) analytic but not identically zero in the connected component of G (reason:
if ' was identically zero there, thef{z) would have to be constant there and that would
mean it was not injective). So, by the identity theorem (3.1 appliefl tm the connected
component) we can choose> 0 small enough thaf’(z) is never zero fo < |z—zy| < r.
This means that for this or smallethere are no multiple zeros ¢fz) — w because there
are no points werg’(z) = 0 exceptz = z, andw = wy. Hence if we takev # w, there
arem > 1 distinct solutions off (z) — w = 0. This contradicts injectivity off. So f’ is
never zero.

(iii) Certainly the inverse mag—': f(G) — G makes sense. To show it is analytic, we work
on each connected componéntof GG separately and consider the restrictigrof f to G;
and the corresponding inverge': f(G;) — G, (which is the restriction of ~* to f(G})).
In other words, we can deduce the result if we prove it for the case whéeonnected
open.

So we assume from now on th&tis connected. By the Open Mapping TheorérQ
forward images (U) of open subsets d@F are open. But this means thét! is continuous
because the inverse image under the inverse function

(f) 7 U) = V)
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and is therefore open fér C G open.

Now we can directly compute the derivative pf! at a pointw, € f(G) as follows. Let
20 = f_l(wo) and then

1y def .. fHwo + k) — f~1 (w)
(f7) (wo) < lim :
= lim f
k=0 f(20 + h) — f(20)
where we definé = h(k) = f~(wy + k) — f~H(wo) = f~ (wo + k) — 2. By continuity
of f~! we can say thafim;_., h(k) = 0 and because of bijectivity of ! we can say that
for k& # 0 small enought = h(k) # 0.

As k — 0 we have

f(z0 + 1) = f(20)
h

— f'(20) #0

and so the reciprocal
h 1

Fo+h) —f(z0)  f'(z0)

Hence(f~1)(wy) exists and id / f'(f~*(wy)).

Example 4.12 Since the exponential magxp: C — C is analytic, if G C C is any open set
whereexp is injective (equivalently where it is not possible to hayez, € G, z; # z, and
21 = z9 + 2nm, n € Z) then the restrictiomxp | of the map to& has an inverse

(exp |¢) " : exp(G) — G c C

which is analytic. This will be a branch dg w for w € exp(G) sinceexp ((exp |¢) ' (w)) =
wYw € exp(G).
If we takeG to be the strig7 = {z € C: —7 < J(z) < 7} we have

exp(@) = {"™ : -1 <y <7} = {w € C: wnot a negative real numbet= C \ (—oo, 0]
and so the inverse function in this case is the principal bragho.
Theorem 4.13 If an analytic functionf(z) has an isolated singularity = « and

sup | f(2)] < o0
0<|z—al|<d

for somed > 0 (that is if f is bounded in some punctured disc abaytthen there exists an
analytic extension of (z) to includez = a.

Thatis, iff: G — Cis analyticonG C C open and: € C\ G satisfies the hypotheses, then
there existg: G U {a} — C analytic withg(z) = f(2)Vz € G (andg(a) = lim,_, f(2)).
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Proof. Consider the Laurent series ffiis a punctured disc about

(e 9]

f)= Y alz—a)" (0<|z—a|<?)

n=—oo

_ 1 f(2)
n = 5 /Za|:r (z—qyi dz

(any0 < r < 0). Let M = supy.|,_,<s | f(2)| and estimate

where

1 1f(2)] M n
la,| < %(27"”) \zs_l;p:r 2 — a[ntt < Trn+1 = Mr

We have this estimate for all small> 0. If n < 0 (and so—n > 0), letr — 0% to get|a,| = 0
for all n < 0. Thus the Laurent series fgris in fact a power series

[e.9]

f(z) = Z an(z—a)":anoooan(z—a)" (0<|z—a|] <9)

n=—oo

If we defineg(a) = ag andg(z) = f(z) for all otherz where f(z) is analytic, then we gej
analytic everywhere whergwas and als@(z) = >, a,(z — a)" for |z — a| < § shows that
g is analytic at: = a also.

Corollary 4.14 If f(z) is analytic with an isolated singularity at = a, thenz = a is a re-
movable singularity (meaning thdtcan be extended to = a so as to make it analytic there)
=
lim(z — a)f(2) =0

Proof. =: If there is an extension, théim, ., f(z) exists inC and salim,_.,(z — a)f(z) =0
(limit of a product).

< If lim,_,(z — a)f(2) = 0, we can repeat the estimate in the proof of the above Theo-
rem4.13 with small changes. First fix > 0 and choose > 0 small enough thadt —a| < r =
|(z — a)f(2)] < e. Then we get,
/(=) (G—a)f)l o e _ ¢

1
< (2 N UL S S =
|Cln| - 271'( ﬂ-r) \zs—lclz\p:r |Z - a|n+1 ' \zs—li\p:r |Z - a|n+2 o2 rtl

for all sufficiently small- > 0. Now if n < —1, thenn + 1 > 0 and so letting- — 0™ we get
a, =0 (n < —=2). Forn = —1 we get|a_;| < e. Sinces > 0 is arbitrary, this means we must
havea_; = 0 also. Thus the Laurent series is a power series as before.

Definition 4.15 An isolated singularity: = a of an analytic functiorf(z) is called apole of f
of orderp if the Laurent series fof in a punctured disc about has the form

o0

flo)= 22 g T N gz —a)”

(z—a)p (z—a)!

n=—p
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with p > 0 anda_, # 0. (This last condition is to ensure that the term with— a)~? is really
there.)

An isolated singularity = a of f is called apole of f if it is a pole of some ordep > 0.

An isolated singularity = a of f is called anessential singularity of if it is neither a pole,
nor removable.

Thus the Laurent series fgrin a punctured disc about an essential singularity a has the
form

f) =Y alz—a)" (0<|z—a]<?)
where there are infinitely many < 0 with a,, # 0. By contrast, for a removable singularity
z = a all the negative coefficients vanist,(= 0Vn < 0) and for a pole there is a nonzero finite
number ofn < 0 with a,, = 0.

Proposition 4.16 If an analytic functionf has an isolated singularity = a, then it is a pole
=

lim |f(2)| = o0
Proof. =: If z = ais a pole, then the Laurent series fboin a punctured disk < |z — a| < 0
gives

o0 o0 1

JE)= 30 =)t = =) Y anle )™ = o)

n=-—p n=—p

whereg(z) = 377 an(z — a)"*? is analytic for|z — a| < 4, p is the order of the pole and
gla) =a_, #0. It follows that

: . lg(2)]
ll_r)r}l‘f(z)‘ - ll_rg |Z - CL|p
< If lim,_,|f(2)] = oo, then there exist8 > 0 with |f(z)| > 1 for 0 < |z —a| < 6.

Thusg(z) = 1/ f(z) is analytic in the punctured dige(a, §) \ {0} and also bounded by 1 there
(lg(2)] < 1for0 < |z —a| < ). Thus by Theorerd.13 ¢(z) can be defined at = a to make
it analytic. In factg(a) = lim,_, g(2) = lim,_, 1/f(z) = 0. The analytic functiory must have
a zero of some finite multiplicityn > 0 atz = a (by the identity theorem 3.1 applied §0z) on
D(a,0). Hence the power series fgrabouta is of the form

= bu(z—a)"=(z—a)" D bu(z—a)" " = (2 — a)"h(z)

with ~(0) = b,, # 0 andh analytic in a disc about. Thus there is & > 0 so thath(z) # 0
forall z € D(a,r) and1/h(z) is analytic inD(a,r). In D(a,r) we must have a power series

expansion
1 [e.e]
o et
n=0
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1 1 " - e
1= G " emam@ ~ Goar T = L ek

is a Laurent series fof in 0 < |z — a| < r. Thusf has a pole (of orden) atz = a.

Theorem 4.17 (Casorati-Weierstrass)If an analytic functionf(z) has an essential singularity
z = a, then for all sufficiently smali > 0 (small enough thaf(z) is analytic in the punctured

discD(a,d) \ {a}), then
f(D(a,0) \{a})

is dense irC.

Proof. Fix § > 0 small and putS = f(D(a,0) \ {a}). If the closure ofS is not all of C, choose
wo € C\ S. AsC \ S is open there is a disD(wy,e) C C\ S with radiuse > 0. Hence,
for z € D(a,d) \ {a} we have|f(z) —wo| > . Thusg(z) = 1/(f(z) — wy) is analytic in the
punctured dis®(a,d) \ {a} and bounded by /e there. Therefore it has a removable singularity
atz =aand

limg(z) € C

z—a

exists. We can call the limij(a).

If g(a) = 0thenlim,_, |1/g(2)| = lim,_.,|f(2) — wo| = oo. Hence, asf(z| > |f(z) —
wo| — |wol, lim, ., | f(2)| = oo. By Propositiord.16 f must then have a pole ata contradiction
to the hypotheses.

On the other hand if(a) # 0, then

liféf(z)—wo:ﬁ

and sdim, ., f(z) = wo + g(a) € C exists. Thusf has a removable singularity at= a, again
a contradiction to the hypotheses.
This .S must be dense ift.

Remark 4.18 In an exercise (Exercises 2, question 5) we had
f: C — C entire non-constant- f(C) dense inC

and this was also called the Casorati-Weierstrass theorem. There is a way we can relate the two
versions of the theorem.

We say that a functiorf(z) has an isolated singularity at infinity if(() = f(1/¢) has an
isolated singularity af = 0. That means there is soni&> 0 so thatf(z) is analytic for|z| > R
andg(¢) is analytic for0 < |¢| < 1/R.

We say that a functiorf(z) with an isolated singularity ato has a removable singularity at
oo if g(¢) = f(1/¢) has a removable singularity at= 0. Similarly, we say thayf has a pole
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at infinity if ¢ has a pole at = 0 and we sayf has an essential singularity & if ¢ has an
essential singularity at = 0.
We can apply this terminology to entire functiofi&:). Such functions have a power series

representation
= Z a,z" (2 €C)
n=0

and then

o) = F(1/C) = zanc :

is a Laurent series fay valid for 0 < [(].

We can see then that has a removable singularity at O if and onlydf = 0 for n =
1,2,3,.... In other words if and only iff (z) = a, is constant.

We can see also thagthas a pole af = 0 if and only if there are only finitely many with
a, # 0, which means thaf(z) = 3. a,,2" is a polynomial.

Thus the essential singularity case is the case whergis a non-polynomial entire function.
If we apply Theorem¥.17to ¢(¢) = f(1/¢) we conclude that, iff is a non-polynomial entire
function andj > 0 then

g(D(0,6) \ {0}) is dense inC

Hence we have
f: C — C entire and not a polynomiat>- f({z € C: |z| > R}) dense inC

for eachR > 0. (Taked = 1/R.)
This is a better result than in the exercise, but it does not apply to polynomials. For polyno-
mials we know from the fundamental theorem of algebra that

f (=) a nonconstant polynomiab f(C) = C

(because ifv, € C is arbitrary, then the polynomial equatigiiz) = w, has a solution).

In fact all these versions are less than the best result known. Picard’s theorem (which we will
not prove in this course) states thaf'ifs entire and non-constant, then there is at most one point
of C not in the range’(C). The possibility of an exceptional point is shown p¢) = e* which
has range(C) = C\ {0}.

There is also a ‘Great Picard Theorem’ which says th@tif) is entire and not a polynomial
then each equatiofi(z) = wy (wg € C) has infinitely many solutions € C, except for at
most onew, € C. This is often statednon-polynomial entire functions take every valuedn
infinitely often, except for at most one valuas there can only be finitely many solutions of
f(z) = wo in |z| < R (by the identity theorem) it follows that({z € C : |z| > R}) contains
all C except at most one point (jf is entire and not a polynomial). This clearly implies the set
f({z € C:|z| > R})is denseirC. We won't get to the Great Picard theorem either, however.
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Definition 4.19 If G C C is open, then a functioif(z) is called meromorphic on if there
existsH C G opensothaf: H — C is analytic and each point € G \ H is a pole off.

Often this is expressed in the following way:is meromorphic otz if it is analytic at all
points of G except for isolated singularities which are poles.

Lemma 4.20 If f is meromorphic oty C C open andK C G is compact, then there can be at
most finitely many poles gfin K.

Proof. Let H C G be the open set whergis actually analytic (with the remaining points Gf
those inG \ H being all poles).

If there were infinitely many poles of in K, it would be possible to select an infinite se-
guencexy, as, . .. Of distinct poles off inside K. Now, being a sequence in a compact subset of

e¢]
j:

C, ()52, must have a convergent subsequefieg ) , and its limit

jlilgooznj:ozeKCG.

Thena€e Hora € G\ H.

The casex € H is not possible sincé/ open would then implyD(«,r) C H for some
r > 0. Thus f analytic onD(«, ) and this implies there are no polespin D(a,7) = a,, ¢
D(a, r)Vj. This contradictsy being the limit.

On the other hand the casec G \ H is also impossible. Ife € G'\ H, thena is an isolated
singularity of f and there must be a punctured disgy, )\ {a} C H. Nowlim; .o o, = o =
Jjo such thatj > j, impliesa,,, € D(a,7). As oy, is a pole off, this forcesx,,, = aVj > jo
and contradicts the choice of the as distinct.

Corollary 4.21 If fis meromorphic otz C C open then we can list all the poles pfn a finite
or infinite sequenceg,, (s, . . ..

Proof. If G = C, letK,, = D(0,n) and if G # C let
Ky ={z € G:distz,C\G) > = and|z| < n}.
n

Here distz, C \ G) = inf,,cc\¢ |2 — w|. Clearly distz, C\ G) > 0 (if G # C and whenZ = C
we could perhaps interpretitas).
Now K, is clearly boundedK,, C D(0,n)) andK, is closed because its complement is

C\K,={weC:|uw>n}u |J D<w,l)

n
weC\G

and that is open. Hendg,, is compact for each.
For z € G there is some dis®(z, ) C G and then ifn € N is large enough that/n < §
andn > |z| we haver € K,,. HenceG C |J -, K,,.. ButK,, C G for all n and so we also have

U,~, K, C G. Hence
UK.=¢
n=1
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Now by Lemma4.2( there can only be a finite number of poles fofn K; (or possibly
none). We can list the poles iff; as a finite list(;, (s, ... (,,. (Taken,; = 0 if there are no
poles inK;.) Now there are also a finite number of polesin. Let (11, Cayt2, - - -, Coy, DE
those poles irf, but notinkK;. In general let,,, 11, (n, 42, - - -, C,,, D€ those poles ii;; not
already ink; U K, U - - - U K.

In this way, we have constructed a completedists, . . . of the poles off in G.

Remark 4.22 We will have further use for thesk,, and they have additional useful properties.
It is clear from the way they are defined th&} C K, for eachn. In fact K, is contained in
the interior of K, because < K,, implies

1 1
D - — C K,
(Z’n n—i—l)_ +

It follows then thatG = | J;-, K,, C U,—, K5,, C G and so

G = G Ke.
n=1

This can be used to show thatAf C G is compact, thedl’ C K; C K,, for somen.

Any sequencés,, of compact subsets ¢f with the propertieds,, ¢ K7, andG = J -, K,
is called arexhaustive sequenoécompact subsets @f. For any exhaustive sequence, we have
K C G compacte K C K, for somen.

Theorem 4.23 (Identity Theorem for meromorphic functions) Let G c C be a connected
open set angf a meromorphic function ot If there exists: € G with (" (a) = 0 for all
n=20,1,2,...,thenf is identically O onG.

Proof. Let H C G be the subset whergis analytic. We cannot immediately apply the identity
theorem for analytic functions (3.1) foon H as we have not assuméticonnected.

Now if z1, 25 € H, then there is a continuous path [made up of finitely many straight line
segments] inG and joining z; to z; (connected open sets are path connected). The path is a
compact subset off and so passes through at most a finite number of points ®fH (by
Lemma4.20. Around any such poini, there is a punctured disk(a,r) \ {a} C H and this
allows us to divert the path aroumd After a finite number of such diversions, we end up with a
path in 4 from z; tO z,.

ThusH is path connected and so connected.

Now we can apply the identity theorem foon A and conclude thaf(z) = 0Vz € H. This
rules out any poles € G'\ H (wherelim,_., |f(z)| = o). SOH = G andf =0onG.

Remark 4.24 We can define sums and products of meromorphic functions anC open but
the definition requires a small bit of care.flfg are two meromorphic functions d@r, then they
are analytic on two different open subséts C G andH, C G.
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We define the sunf + ¢ and the producfg on H; N H, in the ‘obvious’ way(fg)(z) =
f(2)g(z)and(f +g)(z) = f(2)+g(z) on H; N H,. Itis not always the case that every point of
G\ (HfNH,)=(G\Hy)U(G\ H,)isapoleoffgor f+g.

For example, iff(z) = 1/z andg(z) = 2, G = C, Hf = C\ {0} andH, = (). However
f(#2)g(z) = 1on Hy N H, and has no singularity (r a removable singularity} at 0.

If we took f(z) = 1/(z — 1) +1/(z —2) andg(z) = 1/ — 1/(z — 1), then we find that
Hy=C\{1,2}, H, = C\{0,1}, (f + 9)(2) = 1/z and this has pole at= 0 andz = 2, but
none at: = 1.

In general though all points @F \ (H; N H,) are either poles or removable singularities of
fg. So the product makes sense as a meromorphic function. (Similarlyfoy.) [Exercise

verify.]

Corollary 4.25 If G  Cis connected and(z) is meromorphic ori but not identically O, then
1/ f is meromorphic ortz with poles wheref(z) = 0 if we definel / f to be 0 at poles of.

Proof. Let H C G be the open subset whefds analytic andZy = {z € H : f(z) = 0}. Let
Py = G\ Hy be the set of poles of.

Z; is clearly closed in{ and soH \ Hy is open.1/ f(z) is analytic at all points off \ H.

If a € Z; then there is a disk of positive radid$(a,r) C H where f has a power series
representatiorf(z) = >~ ja,(z — a)" (|z — a| < r). By Theorem¥.23 not all the coefficients
a, can be zero thougfi(a) = ap = 0. Thusf(z) =>_°7 a,(z — a)™ withm > 1 anda,, # 0.

We can then writef(z) = (z — a)™g(z) with g(z) = > 7 a,(z — a)"~™ analytic in
D(a,r)andg(a) # 0. So there is somé& with 0 < 6 < r andg(z) never 0 inD(a,d). Hence
Zy N D(a,é) = {a}. Also1/f(z) = (z —a)"™(1/g(z)) is analytic in the punctured disc
D(a,0) \ {a} and has an isolated singularity= a which is a pole of ordem.

At pointsb € Py, lim,_,;, | f(2)| = oo (by Propositio4.16) and sdim,_, 1/f(z) = 0. Thus
1/f has a removable singularity at= b (where it should be assigned the value 0).

Also H U Py is open becausf is open and € Py = D(b,¢) \ {b} C H for somes > 0,
which impliesD(b,e) C H U P.

So1/f is now analytic on the open sét U Py = G\ Z; and has isolated singularities at
points of Z; that are all poles.

Remark 4.26 If G C Cis open, letM (G) denote all the meromorphic functions 6h We have
operations of addition and multiplication df(G) and since constant functions areif(G),
we can multiply elements a¥/(G) by complex scalars (same as multiplying by a constant).

These operations mak¥e (G) a commutative algebraver C. That means a vector space
over C (addition and multiplication by complex scalars) where multiplication is possible (and
certain natural rules are satisfied such as associativity and distributivity). Also the algétna
has a unit element (the constant function 1 has the property that mutliplying it by any/ (G)
gives f). Commutativity meangg = gf.

When G is connected we also have the possibility of dividing by nonzero elements. This
makesM (G) a commutative division algebra ov€r In particular it is a commutative division
ring (forget the vector space structure) and these are dadled As M (G) contains (a copy of)
the fieldC (in the form of the constant functions), it is an extension fiel@ of
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Theorem 4.27 (Argument principle, simple meromorphic version)LetG C C be simply con-
nected andf a meromorphic function of¥ with finitely many zeros;, as, . . ., a; and finitely
many poless;, 5, ..., 5. (We allowk = 0 or / = 0 when there are no zeros or no poles.)
Saym; is the multiplicity ofc; as a zero off (1 < j < k) andp; is the order of the pole;
(1<j<0).

Let~y be an anticlockwise simple closed curvedn {ay, s, ..., ok, 1, o, ..., B¢} (thatis
in G but not passing through any zeros or poles pf

Then
57 ijlnd a;) ijlnd (5;)

We will often write the rlght hand S|de as — P (or Nf — Pyor Ny, — Py,). The first sum
counts the number of zeros ¢faccording to multiplicity and the winding number efaround
them and the second sum does a similar thing for poles and their orders.

Proof. The idea is similar to the proof of TheorefnS for the case of analytic functions. We
use the residue theorem and show that the residyé/gfat - = «; is m; (the same as before)
and the residue of’/f atz = (3, is —p,. Note thatf’/f is analytic onG except for isolated
singularities at the zeras; and poless3;.

In a punctured disc about a pale= j3;, f has a Laurent series

fz) = Y alz=5)" (0<lz=pl <)

n=-—p;

= (2= 8)7" ) an(z—B)"P

n=-—pj
= (z=0))"9(2)

Hereg(z) is analytic in|z — 3;| < r andg(3;) = a_,, # 0 and so there exists a positiye< r
so thatg(z) is never zero in the disP(;, ). In the punctured dis¢ < |z — ;| < 6 we have
filz) = =pi(z=B) ™ g(2) + (2 = B;) g ()

f'(z) _ —pi=B)"g(x) + (2 = B) ™™g (2)

O (2 = B5)7P1g(2)
L —pig(z) + (2 = Bi)g'(2)
z— B 9()
1
= - @h(Z)
whereh(z) is analytic inD(53;,0) andh(B;) = —p;. It follows thath(z) has a power series

h(z) = >° o bu(z — ;)™ in D(f;,9) with by = h(3;) = —p;. Thusf’/f has a Laurent series
in the punctured disc

) S bz gt (0< J5— Bl <)
n=0
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with the coefficient of = — ;) ! beingby = —p;. This the residue of’/f atz = 3, is —p; as
claimed.

Remark 4.28 Instead of assuming that is simply connected in the theorem abovie2() we
could assume thdt is connected and thatsatisfies one of the following restrictions:

(@) v null homotopic inG
(b) Ind,(w) =0forallw e C\ G

(c) ~ a simple closed anticlockwise curve@hwith its inside also contained i@. In this case
the expression foiV — P in the theorem can be simplified because we are in the situation
where Ind(z) = 1 for z inside (and zero for: outsidey). So we get

L[
el AR D DR ED DI

1<j<k,a; INSide~ 1<5<e,8; insidey

To remove the necessity to assume tfidtas only finitely many zeros and poles we need an
improved version of the Residue Theorem.

Theorem 4.29 (Residue theorem, final version).et G C C be open and suppoggéis analytic
in G except for isolated singularities. (That is assume thet® is G open so thaff: H — C
is analytic andf has an isolated singularity at each point@f\ H.) Suppose is a (piecewise
C') curve inG that does not pass through any singularityfofso it is in fact a curve inff) with
the property that Ind(w) = 0 forall w € C \ G.

Then

/f(z) dz = 2mi Z req f,a)Ind,(a)

o @ singularity ofy

Though the sum appears potentially infinite we will show that there can be at most finitely
many nonzero terms in the sum. Excluding the zero terms we are left with a finite sum and we
mean the finite sum.

Proof. To establish first the point about the finiteness of the number of nonzero terms in the sum,
let K =~yU{z € C:lInd,(z) #0}. Now K C G sincey C Gandw € C\ G = Ind,(w) =
0=w¢ K. (ThusC\GCC\KorK CG.)

Also K is compact since it is closed and boundéd.is bounded because Inds zero on
the unbounded component Gf\ ~ (which includes{z € C : |z| > R} if R is big enough that
v C D(0,R)). K is also closed because Ing constant on connected componentsCof v
which implies thatC \ K = {z € C : Ind,(z) = 0} is a union of connected components® v
(and these components are all open). Being closed and boun@gdsins compact.

Now there can only be a finite number of singularitieg @i K by an argument similar to the
proof in Lemma4.20(which was for meromorphi¢). [Here is the idea: If there were infinitely
many singularities i<’ we could find an infinite sequence, )2, of distinct singularities irk’.
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Then we could find a subsequenge, )52, converging to a limitz= € K. The functionf can
neither be analytic at nor have an isolated singularity there.]

We now letH be the open subset 6f wheref is analytic and:, as, . . . , a,, the singularities
of finsideK. LetG, = H U{ay,as,...,a,}. ThenG, is open, K C G andf is analytic on
G except for a finite number of singularities.is a curve in C G4 with Ind, (w) = 0 for all
w € C\ G (since suchw are not inkK). The earlier version of the residue theorem (Theodesp

applies tof on G, and implies the result.

Remark 4.30 The argument principle can now be extended to meromorphic functions with po-
tentially infinite numbers of zeros and poles. We need to avoid non-isolated zeros — which
would meanf identically zero on some connected componend dfy the identity theorem and
then the curvey could not be in such a component because we insistftignever zero on.
(We also require that has no poles on).

Since~ has to be in one connected component;oin any case, we can just assume that
G is connected,f meromorphic onZ and no poles or zeros gf on~. Then we must make
suitable assumptions about(such asy piecewiseC" closed curve inG with Ind,(w) = 0 for
allw e C\ G).

The argument principle will then state

1[G
2mi )., f(2)

dz= Y multg(a)ind,(a)— Y order(b)ind,(b) = Ny — P
a€G, f(a)=0 beG,b pole of

where muli(a) means the multiplicity of: as a zero off and ordef(b) means the order of the
poleb of f.

Theorem 4.31 (Rouclé’s theorem) Supposef and g are meromorphic functions on a con-
nected opeid’ C C and~ is a piecewis&! closed curve irG with

(@ Ind,(w) =0forallwe C\ G

(b) no zeros or poles of or g on~y

(©) [f(z) —g(z)| <|f(z)| forall zony
[that is, the difference is strictly smaller than one of the functigii®n ]

Then
Ny—Pr=N,— P,

where

Ny= Y mult(a)ind,(a), P;= >~ order(b)ind, (b)
a€G, f(a)=0 beG,a pole of ¢

and similarly for N, and P,.
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Proof. We could note that the hypothese}dctually implies ) because if there were any poles
of either f or g on ~ then the inequalityd) would not make sense and if there were zeros of
either f or g on~ then the strict inequality could not hold.

Dividing across by f(z)| we can rewrite €) as

9(2) 9(2)
f(z) f(2)

The essence of the proof is that this means(kég)/f(z)) (the principal branch of thég)
makes sense for € v and gives an antiderivative fat(z)/g(z) — f'(2)/f(z). To make this
antiderivative argument work we need flog on some open set that contains

Say f is analytic onH; C G open (with poles oid+ \ Hy) andg is analytic onH, \ G open
(with poles onG \ H,). LetZ; = {z € Hy : f(z) = 0} = the zeros off. Theng(z)/f(z) is
certainly analytic ofH; \ Z;) N H,, an open set that contains By continuity ofg/ f, the set

{ze (Hp\Zf) N H,y: g(2)/f(2) € D(1,1)}

is open and containg. On this open set

<1 <=

-

€ D(1,1)

dypgo) 1 d <9(2)):f(Z)g’(z)f(Z)—g(z)f’(Z):g’(Z)_f’(Z)
&6 T (12) & ) T ) fp? =) 1)

It follows then that the integral of this is zero around the closed ctirteat is
/ ! / /
:/g(Z)_f(Z)dZ:/g(Z)dZ_/f(Z)dz
v 9(2)  f(z) - 9(2) + f(2)

/W%dz:/v%dz

and so by the argument principle

Thus

21i(N, — P,) = 2mi(N; — Py)
and so the result follows.

Example 4.32 (i) We can use Rouds theorem (.31) to reprove the fundamental theorem
of algebra in yet another way. #fz) = a,,2" +a,_12" "' +- - - +a,2+aq is a polynomial of
degreen > 1 (sothats,, # 0), then the earlier proof started by showing that/for= R > 0
large enough we have

1
\an,lzn_l + - a1z +agl < é\anHz]”

(We still need this part of the earlier proof and most proofs of the theorem need this part.)
If we takef(z) = a,2", g(z) = p(z) and~y the circle|z| = R traversed once anticlockwise,
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then we can apply Rouéfs theorem (withG = C because both functions are entire) since
we have

1
[f(2)=9(2) = [=(anaz"" - Farztao)| < Slan|2]" < |anz"| = [f(2)] for |2 = R.
Thus we conclude
Ny — Py =Ny — I,
or Ny = N, (since there are no poles in this case). Ndw= n sincef(z) = 0 has only
the solutionz = 0 and that has multiplicity. (and Ind,(0) = 1). Sog(z) hasN, = n zeros

(counting multiplicities) insidez| = R (for all large R). It follows that if n > 1 thenp(z)
has a zero.

(i) Show that ifA > 1 then the equation — z — e=* = 0 has exactly one solution in the right
half planelRz > 0.

Solution. This is meant to illustrate the difficulty of applying Rowhtheorem as we have
only one function here (need another) and no curvéVe takeg(z) = A — z — e~ * the
function we want the information about afigz) = A — z a simpler function to analyse.

We select as our curveany closed semicircle of radiug > \ + 1 in the right half plane,
oriented anticlockwise. That igis the semicircléz| = R in &z > 0 plus the segment of
the imaginary axis fromR to —i R. We takeGG = C as our functionf andg are entire.

Forz € v we have
[f(z) —g(2) =le*|=e™ <’ =1.

For z on the semicircular part of we have
fI ==z = [z =A>R=A>1=]|f(z) —g(2)].
For z on the imaginary axis we have
fR)=[A—zl=A—iyl = VN +y2 = A >12>|f(2) —g(z)|.
Thus Rouck’s theorem tells us
Ny —Py=N,—PF,

or Ny = N, since there are no poles. Biit = 1 becausegf(z) = 0 has the solution = A
(which is insidey and has Ind(\) = 1 as~ is simple closed and oriented anticlockwise).
HenceN, = 1. Thusg(z) = A — z — e~ * = 0 has just one solution inside the semicircle as
long ask > A\ + 1.

This means there is one in the right half plane (and ingiflec A + 1) and there cannot be

any other because if there was another solution(ef = 0 in #z > 0 we could choosé&?

big enough so that the semicircle would include the second solution (and so would mean
N, > 2).

Richard M. Timoney February 9, 2004



