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Theorem 3.1 (Identity theorem for analytic functions) Let G ⊂ C be open and connected
(and nonempty). Letf : G→ C be analytic. Then the following are equivalent forf :

(i) f ≡ 0

(ii) there is an infinite sequence(zn)∞n=1 of distinct points ofG with limn→∞ zn = a ∈ G and
f(zn) = 0∀n

(iii) there is a pointa ∈ G with f (n)(a) = 0 for n = 0, 1, 2, . . ..

Proof. We show (i)⇒ (ii )⇒ (iii )⇒ (i).
(i)⇒ (ii ): is really obvious. Iff ≡ 0, take anya ∈ G (here we needG 6= ∅), chooseδ > 0

with D(a, δ) ⊂ G and putzn = a+ δ/(n+ 1).
(ii )⇒ (iii ): Assuminglimn→∞ zn = a ∈ G, zn distinct andf(zn) = 0∀n, consider the power

series forf centered ata. That is

f(z) =
∞∑
n=0

an(z − a)n for |z − a| < δ

(for someδ > 0 with D(a, δ) ⊂ G). Herean = f (n)(a)/n! and so our aim of showingf (n)(a) =
0 for all n ≥ 0 is equivalent to showingan = 0 for all n. If that is not the case, there must be a
smallestm ≥ 0 with am 6= 0.

Now, for |z − a| < δ we can write

f(z) =
∞∑
n=m

an(z − a)n

= (z − a)m
∞∑
n=m

an(z − a)n−m

= (z − a)mg(z)

1
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andg(z) =
∑∞

n=m an(z − a)n−m is analytic for|z − a| < δ. Moreoverg(a) = am 6= 0, g(z) is
continuous atz = a and so we can findδ0 > 0, δ0 ≤ δ, with

|g(z)− g(a)| ≤ 1

2
|g(a)| for |z − a| < δ0

⇒ |g(z)| ≥ 1

2
|g(a)| for |z − a| < δ0

⇒ g(z) 6= 0 for |z − a| < δ0.

But 0 = f(zn) and forn large enough (sayn > N ) we have|zn − a| < δ0 so thatf(zn) =
(zn − a)mg(zn) = 0. Thus (forn > N ) zn = 0 or g(zn) = 0. However, we knowg(zn) 6= 0 and
thezn are distinct so that at most onen can havezn = a. Hence we are faced with a contradiction.

The contradiction arose from assuming that there was anyan 6= 0. We must therefore have
an = 0∀n.

(iii )⇒ (i): Assume now that there isa ∈ G with f (n)(a) = 0 for all n ≥ 0. Then the power
series expansion forf abouta (which is valid in a discD(a, δ) ⊂ G with δ > 0) is

f(z) =
∞∑
n=0

f (n)(a)

n!
(z − a)n = 0 for |z − a| < δ.

Thusf(z) ≡ 0 for |z − a| < δ and differentiating we getf (n)(z) = 0 for n = 0, 1, 2, . . ..
This shows thatU = {a ∈ G : f (n)(a) = 0 for all n = 0, 1, 2, . . .} is open (and nonempty).

U is also closed relative toG. To see that takeb ∈ G \U . Then there is somen with f (n)(b) 6= 0.
Now that f (n) is continuous atb and so there is aδ > 0 so thatf (n)(z) 6= 0 for all z with
|z − b| < δ. This means none of thesez can be inU or in other wordsD(b, δ) ⊂ G \ U . This
meansG \ U is open.

AsG is connected,U ⊂ G nonempty and both open and closed relative toG impliesU = G.
This meansf (n)(z) = 0 for all n ≥ 0 and allz ∈ G. Specifically withn = 0 we havef ≡ 0.

Corollary 3.2 (version with two functions) LetG ⊂ C be open and connected (and nonempty).
Letf, g : G→ C be two analytic functions. Then the following are equivalent forf andg:

(i) f ≡ g

(ii) there is an infinite sequence(zn)∞n=1 of distinct points ofG with limn→∞ zn = a ∈ G and
f(zn) = g(zn)∀n

(iii) there is a pointa ∈ G with f (n)(a) = g(n)(a) for n = 0, 1, 2, . . ..

Proof. apply the Identity Theorem3.1to the differencef − g.

Remark 3.3 The significance of the Identity Theorem is that an analytic function on a connected
openG ⊂ C is determined on all ofG by its behaviour near a single point.

Thus if an analytic function is given on one part ofG by a formula likef(z) = 1
z−1

and that
formula makes sense and gives an analytic function on a larger connected subset ofG then it has
to be thatf(z) = 1

z−1
also holds in the larger set.
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This is quite different from what happens with continuous functions likef : C → C defined
by

f(z) =

{
z |z| < 1
z
|z| |z| ≥ 1.

Even forC∞ functions we can have different formulae holding in different places. Consider
g : C→ C where

f(z) =

 0 |z| ≤ 1

exp

(
−
(

1
|z|−1

)2
)
|z| > 1.

The original meaning of the word ‘analytic’ related to this property of analytic functions (one
formula).

Corollary 3.4 If G ⊂ C is a connected open set andf : G → C is analytic and not identically
constant, then thezero set off

Zf = {z ∈ G : f(z) = 0}

has no accumulation points inG.

Proof. First we should defineaccumulation pointin case you forget it. IfS ⊂ C is any set and
a ∈ C, thena is called an accumulation point ofS if for eachδ > 0

(S \ {a}) ∩D(a, δ) 6= ∅.

If we a is an accumulation point ofS we can choose

z1 ∈ (S \ {a}) ∩D(a, 1)

z2 ∈ (S \ {a}) ∩D
(
a,min

(
1

2
, |z1 − a|

))
z3 ∈ (S \ {a}) ∩D

(
a,min

(
1

3
, |z2 − a|

))
and (inductively)zn+1 ∈ (S \{a})∩D

(
a,min

(
1
n
, |zn − a|

))
. This produces a sequence(zn)∞n=1

of distinct pointszn ∈ S with limn→∞ zn = a. (It is not hard to see that the existence of such a
sequence is equivalent toa being an accumulation point ofS.)

Applying this toS = Zf and using Theorem3.1we getf ≡ 0.

Corollary 3.5 LetG ⊂ C be open and connected and letK ⊂ G be compact. Letf, g : G→ C

be analytic. If the equationf(z) = g(z) has infinitely many solutionsz ∈ K, thenf ≡ g.

Proof. Choose an infinite sequence(zn)∞n=1 of distinct pointszn ∈ K wheref(zn) = g(zn).
SinceK is compact, the sequence has a convergent subsequence(znj)

∞
j=1 with a limit a =

limj→∞ znj ∈ K ⊂ G.
By Corollary3.2, f ≡ g.
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Theorem 3.6 (Maximum modulus theorem, basic version)LetG ⊂ C be a connected open
set andf : G → C analytic. If there is anya ∈ G with |f(a)| ≥ |f(z)| for all z ∈ G, thenf is
constant.

Proof. (Another way to state this is that|f(z)| cannot have a maximum inG, unlessf is con-
stant.)

Chooseδ > 0 so thatD(a, δ) ⊂ G. Fix 0 < r < δ and then we have (by the Cauchy integral
formula)

f(a) =
1

2πi

∫
|z−a|=r

f(z)

z − a
dz.

Write this out in terms of a parametrisationz = a+ reiθ with 0 ≤ θ ≤ 2π, dz = ireiθ dθ.

f(a) =
1

2πi

∫ 2π

0

f(a+ reiθ)

ireiθ
dθ

1

2π

∫ 2π

0

f(a+ reiθ) dθ.

Hence

|f(a)| ≤ 1

2π

∫ 2π

0

|f(a+ reiθ)| dθ ≤ 1

2π

∫ 2π

0

|f(a)| dθ = |f(a)|,

using|f(a+ reiθ)| ≤ |f(a)|∀θ.
We must therefore have equality in the inequalities. Since the integrand|f(a + reiθ)| is a

continuous function ofθ, this implies|f(a+ reiθ)| = |f(a)| for all θ.
Putα = Arg(f(a)). Now

|f(a)| = e−iαf(a)

=
e−iα

2π

∫ 2π

0

f(a+ reiθ) dθ

=
1

2π

∫ 2π

0

e−iαf(a+ reiθ) dθ

<|f(a)| = |f(a)| =
1

2π
<
∫ 2π

0

e−iαf(a+ reiθ) dθ

=
1

2π

∫ 2π

0

<(e−iαf(a+ reiθ)) dθ

≤ 1

2π

∫ 2π

0

|e−iαf(a+ reiθ)| dθ

using<w ≤ |w| for w ∈ C

≤ 1

2π

∫ 2π

0

|f(a+ reiθ)| dθ

≤ 1

2π

∫ 2π

0

|f(a)| dθ = |f(a)|

Thus we must again have equality in all the inequalities and so

<(e−iαf(a+ reiθ)) = |e−iαf(a+ reiθ)| = |f(a)|
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for all θ. Thus=(e−iαf(a+ reiθ)) = 0 ande−iαf(a+ reiθ) = |f(a)| or f(a+ reiθ) = eiα|f(a)|.
Thus f(z) is constant forz in the infinite compact subset{z : |z − a| = r} of G. By

Corollary3.5, it follows thatf(z) is constant (onG).

Theorem 3.7 (Maximum modulus theorem, usual version)The absolute value of a noncon-
stant analytic function on a connected open setG ⊂ C cannot have a local maximum point in
G.

Proof. Let f : G → C be analytic. By alocal maximum pointfor |f | we mean a pointa ∈ G
where|f(a)| ≥ |f(z)| holds for allz ∈ D(a, δ) ∩ G, someδ > 0. As G is open, by making
δ > 0 smaller if necessary we can assumeD(a, δ) ⊂ G.

By Theorem3.6, |f(a)| ≥ |f(z)|∀z ∈ D(a, δ) impliesf constant onD(a, δ) (sincef must
be analytic onD(a, δ) ⊂ G andD(a, δ) is connected open). Then, by the Identity Theorem
(Corollary3.2), f must be constant.

Corollary 3.8 (Maximum modulus theorem, another usual version)LetG ⊂ C be a bounded
and connected open set. Letf : Ḡ→ C be continuous on the closurēG ofG and analytic onG.
Then

sup
z∈Ḡ
|f(z)| = sup

z∈∂G
|f(z)|.

(That is the maximum modulus of the analytic functionf(z) is attained on the boundary∂G.)

Proof. SinceG is bounded, its closurēG is closed and bounded, hence compact.|f(z)| is a
continuous real-valued function on the compact set and sosupz∈Ḡ |f(z)| <∞ and the supremum
is attained at some pointb ∈ Ḡ. That is|f(b)| ≥ |f(z)|∀z ∈ Ḡ. If b is on the boundary∂G then
we have

|f(b)| = sup
z∈∂G
|f(z)| = sup

z∈Ḡ
|f(z)|

but if b ∈ G, thenf must be constant by the Identity Theorem3.1. So in that casesupz∈∂G |f(z)| =
supz∈Ḡ |f(z)| is also true.

Theorem 3.9 (Fundamental theorem of algebra)Letp(z) be a nonconstant polynomial (p(z) =∑n
k=0 akz

k with an 6= 0 andn ≥ 1). Then the equationp(z) = 0 has a solutionz ∈ C.

Proof. Dividing the equation by the coefficient of the highest power ofz with a nonzero coeffi-
cient (an in the notation above) we can assume without loss of generality that the polynomial is
monic(meaning that the coefficient of the highest power ofz is 1) and that the polynomial is

p(z) = zn +
n−1∑
k=0

akz
k (n ≥ 1).
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Now for |z| = R ≥ R0 = max
(
1, 2

∑n−1
k=0 |ak|

)
, we have

|p(z)| ≥ |z|n −
n−1∑
k=0

|ak||z|k

= Rn −
n−1∑
k=0

|ak|Rk

≥ Rn −
n−1∑
k=0

|ak|Rn−1

usingR ≥ 1

= Rn −Rn−1

n−1∑
k=0

|ak|

≥ Rn −Rn−1(R0/2)

≥ Rn−1(R−R0/2) ≥ Rn−1R/2 = Rn/2 = |z|n/2

Now if p(z) is never zero forz ∈ C, thenf(z) = 1/p(z) is an entire function. For|z| ≥ R0

we have

|f(z)| = 1

|p(z)|
≤ 1

|z|n/2
=

2

|z|n
≤ 2

Rn
0

By the maximum modulus theorem (Corollary3.8)

sup
|z|≤R0

|f(z)| = sup
|z|=R0

|f(z)| ≤ 2

Rn
0

and so we have|f(z)| ≤ 2/Rn
0 for all z ∈ C. By Liouville’s theorem (1.26)f must be constant.

But thenp(z) = 1/f(z) is also constant, contradicting our hypotheses.
The contradiction arose by assumingp(z) was never 0. Sop(z) = 0 for somez ∈ C.

Remark 3.10 There are many ways to prove the fundamental theorem, but all (or at least most)
rely on the same first step as above — for|z| large,p(z) behaves like its term of highest degree
anz

n. To make things a little simpler, we tookan = 1 but that is not really essential. The idea is
that, when|z| is large the highest term outweighs the combination of the lower degree terms.

Also, although we used the maximum modulus theorem to get the same bound forf(z) for
|z| ≤ R0 as for|z| ≥ R0, we could have just used compactness to getsup|z|≤R0

|f(z)| <∞. (We
used an argument like that once before in the proof of the winding number version of Cauchy’s
theorem (1.30 claim 2 in the proof).

Corollary 3.11 If p(z) =
∑n

k=0 akz
k is a polynomial of degreen (meaningan 6= 0) thenp(z)

can be factored

p(z) = an

n∏
j=1

(z − αj)

for someα1, α2, . . . , αn ∈ C.
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Proof. Forn = 0 the result is true (provided we interpret the empty product as 1).
By the Fundamental Theorem of algebra3.9, there is someα1 ∈ C with p(α1) = 0. Then it

follows from the remainder theorem thatz−α1 dividesp(z). In other wordsp(z) = (z−α1)q(z)
whereq(z) has degreen− 1 and leading coefficientan (same as forp(z)).

If we arrange the proof more formally as induction on the degree, we have the startingn = 0
and the induction step. Applying the result from degreen− 1 to q(z) = an

∏n
j=2(z−αj) we are

done.

Richard M. Timoney December 3, 2003


