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Theorem 3.1 (Identity theorem for analytic functions) Let G C C be open and connected
(and nonempty). Let: G — C be analytic. Then the following are equivalent far

@B f=0
(i) there is an infinite sequende, )2, of distinct points of7 with lim,, .., 2z, = a € G and
f(zn) = 0Vn

(iii) there is a pointz € G with f™(a) =0forn =0,1,2,....

Proof. We show () = (ii) = (iii) = (i).

(i) = (ii): is really obvious. Iff = 0, take anyu € G (here we need: # (), choose > 0
with D(a,d) C G and putz, = a+d/(n + 1).

(it) = (iii): Assuminglim,, ., 2z, = a € G, z, distinct andf(z,,) = 0¥n, consider the power
series forf centered at. That is

flz) = Zan(z— a)"for|z—a| <§

n=0

(for somes > 0 with D(a,d) C G). Herea,, = ™ (a)/n! and so our aim of showing™ (a) =
0 for all » > 0 is equivalent to showing,, = 0 for all n. If that is not the case, there must be a
smallestn > 0 with a,, # 0.

Now, for |z — a| < § we can write

f) = Yauz—ar
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andg(z) = >.°° a,(z —a)" ™ is analytic for|z — a| < §. Moreoverg(a) = a,, # 0, g(z) is

n=m

continuous at = a and so we can find, > 0, §y < ¢, with
1
9(2) = g(a)] < glg(a)lfor|z —al <

1
= o) > Llgla)|for |z —a] < b
= g(z) # 0forl|z —al < dp.

But0 = f(z,) and forn large enough (say > N) we have|z, — a| < J, so thatf(z,) =
(zn, — a)™g(z,) = 0. Thus (forn > N) z, = 0 or g(z,) = 0. However, we knowj(z,) # 0 and
thez,, are distinct so that at most onean have;,, = a. Hence we are faced with a contradiction.
The contradiction arose from assuming that there waszgny 0. We must therefore have
a, = 0Vn.
(iii) = (i): Assume now that there isc G with ™ (a) = 0 for all n > 0. Then the power
series expansion fof abouta (which is valid in a disd)(a, §) C G with § > 0) is

f(z) = Z; f(y;(“)(z —a)" =0for |z —a| < 4.
Thusf(z) = 0 for |z — a| < ¢ and differentiating we gef™(z) = 0forn =0,1,2,.. ..

This shows that/ = {a € G : f™(a) = 0foralln = 0,1,2,...} is open (and nonempty).
U is also closed relative t6. To see that take € G\ U. Then there is some with £ (b) # 0.
Now that f(™ is continuous ab and so there is & > 0 so thatf(™(z) # 0 for all z with
|z — b] < 6. This means none of thesecan be inU or in other wordsD(b,6) C G \ U. This
meangs \ U is open.

As (G is connected/ C G nonempty and both open and closed relative'tonpliesU = G.
This means’™(z) = 0 for alln» > 0 and allz € G. Specifically withn = 0 we havef = 0.

Corollary 3.2 (version with two functions) LetG C C be open and connected (and nonempty).
Letf,g: G — C be two analytic functions. Then the following are equivalentffand g:

i) f=y9

(i) there is an infinite sequende, )2, of distinct points of7 with lim,, ..., z, = a € G and
f(2n> = g(zn)vn

(iii) there is a point € G with ™ (a) = ¢™(a) forn =0,1,2,.. ..
Proof. apply the Identity Theorerf.1to the differencef — g.

Remark 3.3 The significance of the Identity Theorem is that an analytic function on a connected
openG C Cis determined on all of by its behaviour near a single point.

Thus if an analytic function is given on one part@ty a formula likef(z) = 2%1 and that
formula makes sense and gives an analytic function on a larger connected subsle¢nfit has
to be thatf(z) = 15 also holds in the larger set.
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This is quite different from what happens with continuous functions fik&€ — C defined

by
z |zl <1
f(z>:{ e =1

Even for C* functions we can have different formulae holding in different places. Consider

g: C — C where
0 2| <1
— 2
1) exp (— (M%J ) |z] > 1.

The original meaning of the word ‘analytic’ related to this property of analytic functions (one
formula).

Corollary 3.4 If G C Cis a connected open set arid G — C is analytic and not identically
constant, then theero set off

Zy={ze€G: f(z) =0}
has no accumulation points (@.

Proof. First we should defineccumulation pointn case you forget it. IS C C is any set and
a € C, thena is called an accumulation point 6fif for eachd > 0

(S\{a}) N D(a,d) # 0.
If we a is an accumulation point &f we can choose
z1 € (S\{a})ND(a,1)
2z € (S\{a})ND (a,min (%, |21 — a|>)

5 o€ (S\{a)NnD (a,min (% |22 —a|>)

and (inductively), 1 € (S\{a})ND (a, min (%, |z, — a|)). This produces a sequencs )32,
of distinct pointsz,, € S with lim,,_,. z, = a. (Itis not hard to see that the existence of such a
sequence is equivalent &dbeing an accumulation point 6f.)

Applying this to.S = Z; and using Theorer.1we getf = 0.

Corollary 3.5 LetG C C be open and connected and I§tC G be compact. Lef,g: G — C
be analytic. If the equatiofi(z) = g(z) has infinitely many solutionse€ K, thenf = g.

Proof. Choose an infinite sequence, )32, of distinct pointsz, € K wheref(z,) = g(z,).
Since K is compact, the sequence has a convergent subsequengg, with a limit « =
By Corollary3.2, f = g.
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Theorem 3.6 (Maximum modulus theorem, basic version)et G C C be a connected open
setandf: G — C analytic. If there is any: € G with |f(a)| > |f(z)| forall z € G, thenf is
constant.

Proof. (Another way to state this is thaf(z)| cannot have a maximum i@, unlessf is con-
stant.)
Choose > 0 so thatD(a,d) C G. Fix0 < r < § and then we have (by the Cauchy integral

formula)
1
S ) o
271 Z—a

fla) =

Write this out in terms of a parametrisation= a + re? with 0 < 0 < 27, dz = ire' do.

f(a):i %f(a—l—rew / fa—i—re

omi J,  drei®

|z—al|=r

Hence L
@< o [ 1t reas < o [Tl =17

using| f(a +re)| < | f(a)|ve.

We must therefore have equality in the inequalities. Since the intedfdnd+ r¢?)| is a
continuous function of, this implies|f(a + re®)| = | f(a)| for all 6.

Puta = Arg(f(a)). Now

[fa)] = e f(a)

efia 2

= f(a+re?)do
0

27
1 27
= — e fla+re?)do
RIf(@)] = |f@)] = 5% / i f(a + rei®) do
= 27 i R(e™ f(a+7"e ))d@
1 2 ) )
< o [ e flatre?) o
27 Jo
usingRw < |w| forw € C
2
< 2 [T fa s e do
27 Jo
1 27
< —_ p—
< 5 | Hf@ldo=f ()

Thus we must again have equality in all the inequalities and so

R(e™fla+re?)) =l fla+re”)| = |f(a)l
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for all 6. ThusS (e~ f(a+re?)) = 0 ande= f(a +re®?) = | f(a)| or f(a+re?) = | f(a).
Thus f(z) is constant forz in the infinite compact subsdt: : |z — a| = r} of G. By
Corollary 3.5, it follows that f(z) is constant (ort).

Theorem 3.7 (Maximum modulus theorem, usual version)The absolute value of a noncon-
stant analytic function on a connected open&et. C cannot have a local maximum point in
G.

Proof. Let f: G — C be analytic. By docal maximum poinfor |f| we mean a point € G
where|f(a)|] > |f(z)| holds for allz € D(a,d) N G, somes > 0. As G is open, by making
d > 0 smaller if necessary we can assumg:, d) C G.

By Theorem3.6, |f(a)| > |f(2)|Vz € D(a,d) implies f constant onD(a, d) (Since f must
be analytic onD(a,d) C G and D(a,d) is connected open). Then, by the Identity Theorem
(Corollary3.2), f must be constant.

Corollary 3.8 (Maximum modulus theorem, another usual version)LetG C C be a bounded
and connected open set. Lt G — C be continuous on the closuée of G and analytic onG.
Then

supf(2)] = sup |f(2)].

zeG z€0G

(That is the maximum modulus of the analytic functfdn) is attained on the bounda@G'.)

Proof. SinceG is bounded, its closuré is closed and bounded, hence compdagtz)| is a
continuous real-valued function on the compact set andisg.; | f(2)| < oo and the supremum
is attained at some poiate G. Thatis|f(b)| > |f(2)|Vz € G. If bis on the boundaryG then
we have

[f(b)] = sup [f(2)| = sup [f(z)]

z€0G zeG

butifb € G, thenf must be constant by the Identity Theor8r. So in that caseup,.,¢ |f(2)] =
sup,cq | f(2)] is also true.

Theorem 3.9 (Fundamental theorem of algebra)Letp(z) be a nonconstant polynomial(z) =
S oo axz® with a,, # 0 andn > 1). Then the equatiop(z) = 0 has a solutiort € C.

Proof. Dividing the equation by the coefficient of the highest powet @fith a nonzero coeffi-
cient (@, in the notation above) we can assume without loss of generality that the polynomial is
monic(meaning that the coefficient of the highest power o 1) and that the polynomial is

n—1
p(z) =z2"+ Z a2’ (n>1).
k=0
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Now for |2| = R > Ry = max (1,2 31— |ax|), we have

n—1

P = o =) laxll2l*

k=0

n—1
= R"=> |ayR"
k=0

n—1
> Rn_Z‘ak‘Rnfl
k=0
usingR > 1
n—1
— Rn_Rn—IZ|ak|
k=0
> R"— R"(Ry/2)
> R"YR-Ry/2) > R"'R/2=R"/2=|2]"/2

Now if p(z) is never zero for € C, thenf(z) = 1/p(z) is an entire function. Foz| > R,

we have
1 1 2 2

f A = S = S —n
IO = b = Fr " S R
By the maximum modulus theorem (Coroll&ty8)

2
sup |f(2)] = sup |f()| < 7
|z|<Ro |z=Ro 0
and so we haveéf(z)| < 2/R{ for all z € C. By Liouville’s theorem (1.26)f must be constant.
But thenp(z) = 1/f(z) is also constant, contradicting our hypotheses.
The contradiction arose by assumimng) was never 0. Sp(z) = 0 for somez € C.

Remark 3.10 There are many ways to prove the fundamental theorem, but all (or at least most)

rely on the same first step as above —[fgrlarge,p(z) behaves like its term of highest degree

a,z". To make things a little simpler, we toak = 1 but that is not really essential. The idea is

that, whenz| is large the highest term outweighs the combination of the lower degree terms.
Also, although we used the maximum modulus theorem to get the same bouf(d fdor

2| < Ry asfor|z| > Ry, we could have just used compactness tesggt, <z, | f(2)| < oo. (We

used an argument like that once before in the proof of the winding number version of Cauchy’s

theorem (1.30 claim 2 in the proof).

Corollary 3.11 If p(z) = Y_,_, ax2" is a polynomial of degree (meaninga,, # 0) thenp(z)
can be factored

p(2) = ay H(Z — ;)

for somexy, ao, ..., «, € C.
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Proof. Forn = 0 the result is true (provided we interpret the empty product as 1).

By the Fundamental Theorem of algel¥8, there is somey; € C with p(«;) = 0. Then it
follows from the remainder theorem that «; dividesp(z). In other word9(z) = (z —aq)q(z)
whereq(z) has degree — 1 and leading coefficient,, (same as fop(z)).

If we arrange the proof more formally as induction on the degree, we have the siattirlg
and the induction step. Applying the result from degteel to ¢(z) = a, H;?ZQ(Z — ;) we are
done.

Richard M. Timoney December 3, 2003



