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Definition 2.1 Let G C C be connected. The' is called simply connected if every closed
curve~y in GG is null homotopic inG.

Example 2.2 Every convex set; (for exampleG = C or G = a disc) is simply connected.
Notice that the definition of simple connectivity is a purely topological definition — there is
no analytic function theory or evefi! curves involved.

Theorem 2.3 Let f: G — C be analytic on a simply connected op@rnc C. Then

/Vf(z) dz = 0

for every (piecewis€) closed curvey in G.

Proof. Since~ is null-homotopic inG, this follows by the homotopy version of Cauchy’s theo-
rem (Corollary 1.43).

Theorem 2.4 Let f: G — C be analytic on a connected open getC C. Thenf has the
property thath f(z) dz = 0 holds for each (piecewis€') closed curvey in G <= f has an
antiderivative inG.

Antiderivative is a functiont’: G — C with F’ = f.

Proof. <: If v: [a,b] — G is a (piecewis&>") closed curve inG and F is an antiderivative of
f, then

/ f(2)dz = F(4(b)) — F(x(a)) = 0.

= If v, and~, are two piecewis€' curves inG with the same starting point and the same

ending point, then
/f(z)dz:/f(z)dz

becausey; followed by~; reversed makes a closed curvedrand so the integral of around
this closed curve is 0 by our hypothesis.



2 414 2003—-04 R. Timoney

7

V2

Now fix a € G.

Define F: G — C by F(z) = [ f(¢)d¢. Here we use the fact th& connected open
implies G path connected and so there exists a piece@iseurve inG from a to z. Moreover
the integral from to =z does not depend on what path is chosen by the remark above.

Now we can show’(z) = f(z)Vz € G in the same way as in the proof of Cauchy’s theorem
for a convex set (1.16).

Corollary 2.5 If G C C is a simply connected open set, then every analytic; — C has an
antiderivative inG.

Proof. Combine last two results.

Remark 2.6 Much later we will show that the converse is trueGifC C is a connected open
set with the property that each analyfic G — C has an antiderivative, the# must be simply
connected.

Our proof will rely on the Riemann mapping theorem.

Note 2.7 Recall now the exponential functianpz = >~ z"/n!. Alsoe = exp(l), e* =
exp(z), eTWee?, e = 1, e7% = 1/¢?, d%ez =e*,e* =1 < 2z = 2nmi for somen € Z,
le’| = 1Vz € R.

Definition 2.8 Let f: G — C be an analytic function on an open getC C. Then an analytic
functiong: G — C is abranch of the logarithm of on G if /) = f(2).

Proposition 2.9 Let f: G — C be analytic onz C C open. Then

(i) if there is a branch of the logarithm of on G, then f(z) is never 0 onG (that isVz €
G, f(z) #0);

(i) if g is a branch of the logarithm of on G, thenRg(z) = log | f(2)| (Vz € G);

(i) if g; and g, are two branches of the logarithm g¢fon G, and if G is connected, then
91(2) — g2(z) = 2nmi for somen € Z (constant forz € G);

(iv) if G is connected then an analytic G — C is a branch of the logarithm of on G if and
only if g has the following two properties:
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(@)

(that isg is an antiderivative off’/ f)
(b) there exists one, € G with exp(g(20)) = f(z0)-

(To be 100% precise we need to assuris not empty here.)

Proof.
() is true because

eI = 0 =1 = f(Z)e_g(z) =1= f(2) #0.

(i)
e9(2) — f(z) =  N9(2)i89(2) — f(z)
= |€§R9(Z)| }e’%g(z)} — |f(z)|
= M) = |f(2)

and hencéty(z) is the ordinary real logarithriog | f(2)].

(i) We have
e91(2)=92(2) — — _fz) 1

@~ f(z)

Hence, for each € G g1(z) — ¢2(2) = 2nmi for somen = n(z) € Z. Butz — n(z) =
(91(2) — g2(2))/(2mi) is a continuous integer-valued function on a connectedience it
must be constant.

(iv) = Differentiatinge?®) = f(z) results ine?*)¢/'(z) = f'(z) and sof (z)g'(z) = f'(z) or
g'(2) = ['(2)/ f(2).
< Suppose/'(z) = f'(z)/f(z). Differentiatec=9) f(z) to get

ie—g(z)f(z) _ 6—g(z)(_g/<z>>f(z) + e—g(z)fl(z) _ _e—g(z)f/(z> + e—g(z)f/(z) —0.

dz
Hence (sinceG connectedy9) f(z) = C = constant inG. Hencef(z) = Ced®),
Plugging inz = z, showsC = 1 and sof(z) = e*). Thisg is a branch of the logarithm
of fonG.

We often write  is a branch oflog f (onG)” for this even though it is not always the case
that there is a branch dbg f.
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Example 2.10 There is no branch dbg z in C \ 0.
Proof. Such a branch would be an antiderivative of

Q| =

onC\ 0. If there were such an antiderivative then we would have

1
/ —dz=0
|z|=1

and this isnot so. Hence there can b branch of log z onC \ 0.

Proposition 2.11 If G C Cis open anf: G — C is analytic andg: G — C is a continuous
function withe?*) = f(z), theng is a branch of the logarithm of onG.

(The point here is that we do not need to assumedliwfnalytic. Ifg is continuous (ang
is analytic) thery is automatically analytic.)

Proof. For the proof it is sufficient to deal with the case whéfe- D(a, ) is a a disc, because
analyticity of g is a local property about. [If we showg is analytic in a disc about eaehe G,
then we knowy'(a) exists for eacls € G.]

If e9) = f(2) then certainlyf(z) is never zero and we can find an antiderivative) for
f'(2)/f(z)onD(a,r) (by Corollary2.5). If we takeh,(z) = h(z)—h(a)+g(a) we have another
antiderivative [, (z) = 2'(z) = f'(z)/f(z)) and this one hag"(®) = ¢9(?) = f(a). Thush, is a
branch oflog f on D(a, r) by Propositior2.Xiv). Hence

9()—hi() _ e9() _ [ 1

e f(z)

and sog(z) — hi(z) = 2n(z)mi for somen(z) € Z. But thenn(z) = (g(z) — hi(2))/(1mi) is
an integer-valued continuous function on the conneéiéd r). Hencen(z) = n(a) = constant
andg(z) = hi(z) + 2n(a)mi is analytic.

Theorem 2.12 LetG C C be a connected open set. Then the following are equivalent properties
for GG to have:

(i) If f: G — Cis analytic andy is a piecewis&’! closed curve irG, thenf7 f(z)dz =0.
(i) Every analytic functiorf: G — C has an antiderivative.

(i) If f: G — Cis analytic and never zero i@, then there is a branch of the logarithm 6f
onG.

(iv) Foreveryw € C\ G and every piecewis€' closed curvey in G, Ind, (w) = 0.

h

(v) Every nowhere-vanishing analytic functign G — C has an analyticmt root for each

m = 2,3,... (thatis an analytigy,,,: G — C with (g,,(2))" = f(2)).
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(vi) Every nowhere-vanishing analytic functign G — C has an analytic square root.

Proof. We will show () = (ii) = (iii) = (iv) = (i) and so establish that if any one of these four
properties holds foz, then each of the others must hold. So all four will be shown equivalent.

Then we will show {[i ) = (v) = (vi) = (iv), showing that each of the last two are equivalent
to the first four.

(i) = (ii): by Theoren®.4

(i) = (iir): Assume {i) holds and we have a nowhere-vanishing analyticz — C, then
we know there is an antiderivative G — C for f/(z)/f(z). Differentiatinge=9%) f(z) we get

(e IO () + I f(z) = —%e‘g@ﬂz) £ fi(z) = 0

and hence 9% f(z) = cis a constant. The constant 0 and so there is & € C with ¢ = 2.
If we fix zp € G and takeg,(z) = g(z) — g(20) + w, then we havey,(z) = f'(z)/f(z) and
exp(g1(z0)) = f(z0). By Propositiorn2.Xiv), ¢, is a branch ofog f onG.

(iii) = (iv): Assume nowi(i) holds andv € C\G. Takef(z) = z—w (analytic and nowhere
zero onGG) andg to be a branch ofog f(z) = log(z — w) on G. Then by Propositio2.9, we
havey'(z) = f'(2)/f(2) = 1/(= — w). S0

Ind, (w) L/ ! dz =0
2

271 Z—w

for any piecewis€’'* closed curvey in G (by 1.12).

(iv) = (i): holds by the winding number version of Cauchy’s theorem (1.30).

(i) = (v): If e9%) = f(2) with g analytic, takey,,(z) = exp(g(z)/m). Theng,, is analytic
and(g,.(2))™ = (exp(g(z)/m))™ = exp(g(2)) = [(2).

(V) = (vi): is immediate by takingn = 2.

(vi) = (iv): Assume now that\() holds. Fixw € C \ G and a piecewis€" closed curve
v: la,b] — G.

Let fo: G — Cbefy(z) = z—w, which is analytic and nowhere-vanishing@n Thus there
exists an analytic square rofit: G — C ((f1(2))? = fo(z) = z —w). Sincef;(z) is never zero,
it has a square rogh analytic onG (with (f»(2))* = f1(2)Vz € G). We can continue to extract
square roots and (by induction ai show there is a sequence of analytic functighsG — C
(n=1,2,..)with (f,11(2))? = fu(2)V2 € G,n=10,1,2,....

Consider the curves, : [a,b] — C given by, = f,, oy (forn =0,1,2,...). Then we have

nd,(0) = — [ La

211 o

T/, ,
=3 e COIELOL
I |

= "(t) dt
27i J, 'y(t)—uﬂ( )
- L ind(w)

21 y 2w
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Also f2., = f, implies2f,1(2)f.1(z) = f.(=) (by differentiation) and so we can say

1 1

Ind’Yn<O) = % —dz
~ o), L0 t) Y)Y (¢) dt
" 1 | |
- 2m/ me"“( () fra (v (8)Y (2) dt
B 27r7,/ fn—i—l ~(t n+1( (t))Wl(t) dt
- 2_ —dz
2 Tn+1 z
= 2Ind, ., (0)

is divisible by 2 (because the indices are integers). This shows that
Ind, (w) = Ind,,(0) = 2Ind,, (0) = 2"Ind,, (0)
is an integer divisible by" for everyn = 1,2,.... This can only happen if Indw) = 0.

Remark 2.13 We know (Theoren?.3) that if G is simply connected and open @, then it
satisfies2.12(i) and hence all the other equivalent conditions.

Intuitively 2.12(iv) says thati has “no holes” (around which one can place a simple closed
curve in(G) and it is tempting to believe that all the properties of Theokeh?are equivalent to
G being simply connected. This is in fact true, but we cannot prove it now.

Here is another condition which will also turn out to be equivalert ®imply connected.

Proposition 2.14 If G C C is a connected open set with the property that each connected com-
ponent ofC \ G is unbounded, the@' satisfies the equivalent conditionsi.2

Proof. We show thati must satisfy2.12 (iv). If v is a piecewiseC? closed curve in, then
C\G c C\~. Hence each connected componentqf~ is contained in a connected component
of C\. All connected components @R G are unbounded, where@4y has just one unbounded
component by compactnessof Hence ifw € C\ v, then Ind(w) = 0 becausev is in the
unbounded component @f\ ~.

Example 2.15 Returning to the example bfg z, letG = C\ (—o0, 0] be the complement i@ of
the negative real axis (or to be more precise the complement of the non-positive real axis). Then
G i clearly connected and its complement has just one connected component, the real interval
(—o0, 0] (which is of course unbounded).

By Proposition2.14 sincef(z) = z is analytic and never zero ad we can say that there
isag: G — C analytic which is a branch dbg f(z) = logz onG. That isexp(g(z)) = z.
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Sinceexp(g(1)) = 1, we haveg(1) = 2nmi for somen € Z and if we replacey(z) by h(z) =
g(z) — 2nmi we get a branch dbg z in G with A(1) = 0.

There can only be one such branch. (See Proposttigf(iii ).)

This branch ofog z is called theprincipal branchand sometimes denotéag z. It has the
properties

e8? = 2inC\ (—o0,0]
Logl = 0
Log z analytic inC \ (—oo, 0]

We also know(d/dz) Log z = 1/zin C\ (—o0,0].
Now R (Log z) = log |z| and if we write (just for a moment) = I(Log z), then we have

plog zl+ie .

Joglelio —

|z|e® = 2

|z|(cos ¢ + isin @) z

so thatg is a value for the argument af (more usually denoted). We see that a choice of a
branch oflog = is a choice ofarg z so thatlog z = log|z| 4 i arg z is analytic. (From Proposi-
tion 2.11we know that choosing the argument continuously is the key thing — analyticity will
automatically follow).

The principal branch.og = chooses the argumefiin the range-7 < 6 < « (which is also
known as theprincipal branchof the argument of).

If G C C)\ {0} is any open connected set where each compone@t\of+ is unbounded,
then we know from PropositioB.14 that there has to be a branchlog = on G. However the
principal branch.og z will not work on GG unlessG does not meet the negative real axis.

If G'is connected open and the complemenda$ an injective continuous curve: [0,1) —

C whereos(0) = 0 andlim, ;- |o(t)| = oo, then the complement & is the unbounded con-
nected setr([0,1)). So we can find a branch &fg z in G. By takingo to be a spiral we can find
examples where the imaginary partlog > will be unbounded oid (for all branches ofog z on
G).

Here are some of the elementary propertiek@f =.

Proposition 2.16 LetG = C \ [0, —oc0).
(i) For z,w € G such thatw € G, Log(zw) = Log z 4+ Log w + 2nmi for somen € Z.

(i) If z € Gandk € Z, then

Zk: — ek Log z

(i) If z€ G,k € Zandz* € G, thenLog(2*) = k Log z + 2nmi (for somen € Z).
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Proof. These are all quite easy to check. For example,
exp(Log(zw)) = zw = exp(Log z) exp(Logw) = exp(Log z + Log w)
implies thatLog(zw) andLog z 4+ Log w differ by a multiple of2r.

Definition 2.17 If w € Cis arbitrary and: € C \ [0, —o0), then we define thprincipal branch
(or principal value) ot:* by
LW — (eLogz)w — ewLogz‘

[Notice that there could be a case for other vakigs°s *+2"m) with n € Z. If w is a rational
value (sayp/q), then there are only finitely many different possible values, but for irrational or
complexw we would have infinitely many different possible values we could plausibly attach to
z" vialogs.]

Proposition 2.18 (i) Forw € Cfixedandf: C\ [0, —oc) — C given byf(z) = z* (principal
value), thenf’(z) = wz""1.

(i) Fora € C\ [0,—o0) fixed andf: C — C given byf(z) = «* (again (principal value),
thenf'(z) = (Loga)a®.

Proof. Simple to show just using the definitions and the chain rule.
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