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Definition 2.1 Let G ⊆ C be connected. ThenG is called simply connected if every closed
curveγ in G is null homotopic inG.

Example 2.2 Every convex setG (for exampleG = C or G = a disc) is simply connected.
Notice that the definition of simple connectivity is a purely topological definition — there is

no analytic function theory or evenC1 curves involved.

Theorem 2.3 Letf : G → C be analytic on a simply connected openG ⊂ C. Then∫
γ

f(z) dz = 0

for every (piecewiseC1) closed curveγ in G.

Proof. Sinceγ is null-homotopic inG, this follows by the homotopy version of Cauchy’s theo-
rem (Corollary 1.43).

Theorem 2.4 Let f : G → C be analytic on a connected open setG ⊂ C. Thenf has the
property that

∫
γ
f(z) dz = 0 holds for each (piecewiseC1) closed curveγ in G ⇐⇒ f has an

antiderivative inG.
Antiderivative is a functionF : G → C with F ′ = f .

Proof. ⇐: If γ : [a, b] → G is a (piecewiseC1) closed curve inG andF is an antiderivative of
f , then ∫

γ

f(z) dz = F (γ(b))− F (γ(a)) = 0.

⇒: If γ1 andγ2 are two piecewiseC1 curves inG with the same starting point and the same
ending point, then ∫

γ1

f(z) dz =

∫
γ2

f(z) dz

becauseγ1 followed byγ2 reversed makes a closed curve inG and so the integral off around
this closed curve is 0 by our hypothesis.
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γ1

γ2

Now fix a ∈ G.
DefineF : G → C by F (z) =

∫ z

a
f(ζ) dζ. Here we use the fact thatG connected open

impliesG path connected and so there exists a piecewiseC1 curve inG from a to z. Moreover
the integral froma to z does not depend on what path is chosen by the remark above.

Now we can showF ′(z) = f(z)∀z ∈ G in the same way as in the proof of Cauchy’s theorem
for a convex set (1.16).

Corollary 2.5 If G ⊂ C is a simply connected open set, then every analyticf : G → C has an
antiderivative inG.

Proof. Combine last two results.

Remark 2.6 Much later we will show that the converse is true: ifG ⊂ C is a connected open
set with the property that each analyticf : G → C has an antiderivative, thenG must be simply
connected.

Our proof will rely on the Riemann mapping theorem.

Note 2.7 Recall now the exponential functionexp z =
∑∞

n=0 zn/n!. Also e = exp(1), ez =
exp(z), ez+wezew, e0 = 1, e−z = 1/ez, d

dz
ez = ez, ez = 1 ⇐⇒ z = 2nπi for somen ∈ Z,

|eix| = 1∀x ∈ R.

Definition 2.8 Let f : G → C be an analytic function on an open setG ⊂ C. Then an analytic
functiong : G → C is abranch of the logarithm off onG if eg(z) ≡ f(z).

Proposition 2.9 Letf : G → C be analytic onG ⊂ C open. Then

(i) if there is a branch of the logarithm off on G, thenf(z) is never 0 onG (that is∀z ∈
G, f(z) 6= 0);

(ii) if g is a branch of the logarithm off onG, then<g(z) = log |f(z)| (∀z ∈ G);

(iii) if g1 and g2 are two branches of the logarithm off on G, and if G is connected, then
g1(z)− g2(z) ≡ 2nπi for somen ∈ Z (constant forz ∈ G);

(iv) if G is connected then an analyticg : G → C is a branch of the logarithm off onG if and
only if g has the following two properties:
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(a)

g′(z) =
f ′(z)

f(z)

(that isg is an antiderivative off ′/f )

(b) there exists onez0 ∈ G with exp(g(z0)) = f(z0).

(To be 100% precise we need to assumeG is not empty here.)

Proof.

(i) is true because

eg(z)e−g(z) = e0 = 1 ⇒ f(z)e−g(z) = 1 ⇒ f(z) 6= 0.

(ii)

eg(z) = f(z) ⇒ e<g(z)ei=g(z) = f(z)

⇒
∣∣e<g(z)

∣∣ ∣∣ei=g(z)
∣∣ = |f(z)|

⇒ e<g(z) = |f(z)|

and hence<g(z) is the ordinary real logarithmlog |f(z)|.

(iii) We have

eg1(z)−g2(z) =
eg1(z)

eg2(z)
=

f(z)

f(z)
= 1.

Hence, for eachz ∈ G g1(z) − g2(z) = 2nπi for somen = n(z) ∈ Z. But z 7→ n(z) =
(g1(z) − g2(z))/(2πi) is a continuous integer-valued function on a connectedG. Hence it
must be constant.

(iv) ⇒: Differentiatingeg(z) = f(z) results ineg(z)g′(z) = f ′(z) and sof(z)g′(z) = f ′(z) or
g′(z) = f ′(z)/f(z).

⇐: Supposeg′(z) = f ′(z)/f(z). Differentiatee−g(z)f(z) to get

d

dz
e−g(z)f(z) = e−g(z)(−g′(z))f(z) + e−g(z)f ′(z) = −e−g(z)f ′(z) + e−g(z)f ′(z) = 0.

Hence (sinceG connected)e−g(z)f(z) = C = constant inG. Hencef(z) = Ceg(z).
Plugging inz = z0 showsC = 1 and sof(z) = eg(z). Thisg is a branch of the logarithm
of f onG.

We often write “g is a branch oflog f (onG)” for this even though it is not always the case
that there is a branch oflog f .
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Example 2.10 There is no branch oflog z in C \ 0.
Proof. Such a branch would be an antiderivative of

d
dz

z

z
=

1

z

onC \ 0. If there were such an antiderivative then we would have∫
|z|=1

1

z
dz = 0

and this isnot so. Hence there can beno branch of log z onC \ 0.

Proposition 2.11 If G ⊂ C is open anf : G → C is analytic andg : G → C is a continuous
function witheg(z) ≡ f(z), theng is a branch of the logarithm off onG.

(The point here is that we do not need to assume thatg is analytic. Ifg is continuous (andf
is analytic) theng is automatically analytic.)

Proof. For the proof it is sufficient to deal with the case whereG = D(a, r) is a a disc, because
analyticity ofg is a local property aboutg. [If we showg is analytic in a disc about eacha ∈ G,
then we knowg′(a) exists for eacha ∈ G.]

If eg(z) = f(z) then certainlyf(z) is never zero and we can find an antiderivativeh(z) for
f ′(z)/f(z) onD(a, r) (by Corollary2.5). If we takeh1(z) = h(z)−h(a)+g(a) we have another
antiderivative (h′1(z) = h′(z) = f ′(z)/f(z)) and this one haseh1(a) = eg(a) = f(a). Thush1 is a
branch oflog f onD(a, r) by Proposition2.9(iv). Hence

eg(z)−h1(z) =
eg(z)

eh1(z)
=

f(z)

f(z)
= 1

and sog(z) − h1(z) = 2n(z)πi for somen(z) ∈ Z. But thenn(z) = (g(z) − h1(z))/(1πi) is
an integer-valued continuous function on the connectedD(a, r). Hencen(z) = n(a) = constant
andg(z) = h1(z) + 2n(a)πi is analytic.

Theorem 2.12 LetG ⊂ C be a connected open set. Then the following are equivalent properties
for G to have:

(i) If f : G → C is analytic andγ is a piecewiseC1 closed curve inG, then
∫

γ
f(z) dz = 0.

(ii) Every analytic functionf : G → C has an antiderivative.

(iii) If f : G → C is analytic and never zero inG, then there is a branch of the logarithm off
onG.

(iv) For everyw ∈ C \G and every piecewiseC1 closed curveγ in G, Indγ(w) = 0.

(v) Every nowhere-vanishing analytic functionf : G → C has an analyticmth root for each
m = 2, 3, . . . (that is an analyticgm : G → C with (gm(z))m ≡ f(z)).
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(vi) Every nowhere-vanishing analytic functionf : G → C has an analytic square root.

Proof. We will show (i)⇒ (ii )⇒ (iii )⇒ (iv)⇒ (i) and so establish that if any one of these four
properties holds forG, then each of the others must hold. So all four will be shown equivalent.

Then we will show (iii )⇒ (v)⇒ (vi)⇒ (iv), showing that each of the last two are equivalent
to the first four.

(i) ⇒ (ii ): by Theorem2.4
(ii ) ⇒ (iii ): Assume (ii ) holds and we have a nowhere-vanishing analyticf : G → C, then

we know there is an antiderivativeg : G → C for f ′(z)/f(z). Differentiatinge−g(z)f(z) we get

−g′(z)e−g(z)f(z) + e−g(z)f ′(z) = −f ′(z)

f(z)
e−g(z)f(z) + e−g(z)f ′(z) = 0

and hencee−g(z)f(z) = c is a constant. The constantc 6= 0 and so there is aw ∈ C with ew = z.
If we fix z0 ∈ G and takeg1(z) = g(z) − g(z0) + w, then we haveg′1(z) = f ′(z)/f(z) and
exp(g1(z0)) = f(z0). By Proposition2.9(iv), g1 is a branch oflog f onG.

(iii )⇒ (iv): Assume now (iii ) holds andw ∈ C\G. Takef(z) = z−w (analytic and nowhere
zero onG) andg to be a branch oflog f(z) = log(z − w) on G. Then by Proposition2.9, we
haveg′(z) = f ′(z)/f(z) = 1/(z − w). So

Indγ(w) =
1

2πi

∫
γ

1

z − w
dz = 0

for any piecewiseC1 closed curveγ in G (by 1.12).
(iv) ⇒ (i): holds by the winding number version of Cauchy’s theorem (1.30).
(iii ) ⇒ (v): If eg(z) = f(z) with g analytic, takegm(z) = exp(g(z)/m). Thengm is analytic

and(gm(z))m = (exp(g(z)/m))m = exp(g(z)) = f(z).
(v) ⇒ (vi): is immediate by takingm = 2.
(vi) ⇒ (iv): Assume now that (vi) holds. Fixw ∈ C \ G and a piecewiseC1 closed curve

γ : [a, b] → G.
Let f0 : G → C bef0(z) = z−w, which is analytic and nowhere-vanishing onG. Thus there

exists an analytic square rootf1 : G → C ((f1(z))2 ≡ f0(z) = z−w). Sincef1(z) is never zero,
it has a square rootf2 analytic onG (with (f2(z))2 = f1(z)∀z ∈ G). We can continue to extract
square roots and (by induction onn) show there is a sequence of analytic functionsfn : G → C
(n = 1, 2, . . .) with (fn+1(z))2 = fn(z)∀z ∈ G, n = 0, 1, 2, . . . .

Consider the curvesγn : [a, b] → C given byγn = fn ◦ γ (for n = 0, 1, 2, . . .). Then we have

Indγ0(0) =
1

2πi

∫
γ0

1

z
dz

=
1

2πi

∫ b

a

1

f0(γ(t))
f ′0(γ(t))γ′(t) dt

=
1

2πi

∫ b

a

1

γ(t)− w
γ′(t) dt

=
1

2πi

∫
γ

1

z − w
dz = Indγ(w)
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Also f 2
n+1 = fn implies2fn+1(z)f ′n+1(z) = f ′n(z) (by differentiation) and so we can say

Indγn(0) =
1

2πi

∫
γn

1

z
dz

=
1

2πi

∫ b

a

1

fn(γ(t))
f ′n(γ(t))γ′(t) dt

=
1

2πi

∫ b

a

1

(fn+1(γ(t)))2
2fn+1(γ(t))f ′n+1(γ(t))γ′(t) dt

= 2
1

2πi

∫ b

a

1

fn+1(γ(t))
f ′n+1(γ(t))γ′(t) dt

= 2
1

2πi

∫
γn+1

1

z
dz

= 2Indγn+1(0)

is divisible by 2 (because the indices are integers). This shows that

Indγ(w) = Indγ0(0) = 2Indγ1(0) = 2nIndγn(0)

is an integer divisible by2n for everyn = 1, 2, . . . . This can only happen if Indγ(w) = 0.

Remark 2.13 We know (Theorem2.3) that if G is simply connected and open inC, then it
satisfies2.12(i) and hence all the other equivalent conditions.

Intuitively 2.12(iv) says thatG has “no holes” (around which one can place a simple closed
curve inG) and it is tempting to believe that all the properties of Theorem2.12are equivalent to
G being simply connected. This is in fact true, but we cannot prove it now.

Here is another condition which will also turn out to be equivalent toG simply connected.

Proposition 2.14 If G ⊆ C is a connected open set with the property that each connected com-
ponent ofC \G is unbounded, thenG satisfies the equivalent conditions of2.12.

Proof. We show thatG must satisfy2.12(iv). If γ is a piecewiseC1 closed curve inG, then
C\G ⊂ C\γ. Hence each connected component ofC\G is contained in a connected component
of C\γ. All connected components ofC\G are unbounded, whereasC\γ has just one unbounded
component by compactness ofγ. Hence ifw ∈ C \ γ, then Indγ(w) = 0 becausew is in the
unbounded component ofC \ γ.

Example 2.15 Returning to the example oflog z, letG = C\(−∞, 0] be the complement inC of
the negative real axis (or to be more precise the complement of the non-positive real axis). Then
G i clearly connected and its complement has just one connected component, the real interval
(−∞, 0] (which is of course unbounded).

By Proposition2.14, sincef(z) = z is analytic and never zero onG we can say that there
is a g : G → C analytic which is a branch oflog f(z) = log z on G. That isexp(g(z)) ≡ z.
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Sinceexp(g(1)) = 1, we haveg(1) = 2nπi for somen ∈ Z and if we replaceg(z) by h(z) =
g(z)− 2nπi we get a branch oflog z in G with h(1) = 0.

There can only be one such branch. (See Proposition2.9(iii ).)
This branch oflog z is called theprincipal branchand sometimes denotedLog z. It has the

properties

eLog z = z in C \ (−∞, 0]

Log 1 = 0

Log z analytic inC \ (−∞, 0]

We also know(d/dz) Log z = 1/z in C \ (−∞, 0].
Now<(Log z) = log |z| and if we write (just for a moment)φ = =(Log z), then we have

elog |z|+iφ = z

elog |z|eiφ = z

|z|eiφ = z

|z|(cos φ + i sin φ) = z

so thatφ is a value for the argument ofz (more usually denotedθ). We see that a choice of a
branch oflog z is a choice ofarg z so thatlog z = log |z| + i arg z is analytic. (From Proposi-
tion 2.11we know that choosing the argument continuously is the key thing — analyticity will
automatically follow).

The principal branchLog z chooses the argumentθ in the range−π < θ < π (which is also
known as theprincipal branchof the argument ofz).

If G ⊂ C \ {0} is any open connected set where each component ofC \ G is unbounded,
then we know from Proposition2.14that there has to be a branch oflog z on G. However the
principal branchLog z will not work onG unlessG does not meet the negative real axis.

If G is connected open and the complement ofG is an injective continuous curveσ : [0, 1) →
C whereσ(0) = 0 andlimt→1− |σ(t)| = ∞, then the complement ofG is the unbounded con-
nected setσ([0, 1)). So we can find a branch oflog z in G. By takingσ to be a spiral we can find
examples where the imaginary part oflog z will be unbounded onG (for all branches oflog z on
G).

Here are some of the elementary properties ofLog z.

Proposition 2.16 LetG = C \ [0,−∞).

(i) For z, w ∈ G such thatzw ∈ G, Log(zw) = Log z + Log w + 2nπi for somen ∈ Z.

(ii) If z ∈ G andk ∈ Z, then
zk = ek Log z

(iii) If z ∈ G, k ∈ Z andzk ∈ G, thenLog(zk) = k Log z + 2nπi (for somen ∈ Z).
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Proof. These are all quite easy to check. For example,

exp(Log(zw)) = zw = exp(Log z) exp(Log w) = exp(Log z + Log w)

implies thatLog(zw) andLog z + Log w differ by a multiple of2πi.

Definition 2.17 If w ∈ C is arbitrary andz ∈ C \ [0,−∞), then we define theprincipal branch
(or principal value) ofzw by

zw = (eLog z)w = ew Log z.

[Notice that there could be a case for other valuesew(Log z+2nπi) with n ∈ Z. If w is a rational
value (sayp/q), then there are only finitely many different possible values, but for irrational or
complexw we would have infinitely many different possible values we could plausibly attach to
zw via logs.]

Proposition 2.18 (i) For w ∈ C fixed andf : C\[0,−∞) → C given byf(z) = zw (principal
value), thenf ′(z) = wzw−1.

(ii) For a ∈ C \ [0,−∞) fixed andf : C → C given byf(z) = az (again (principal value),
thenf ′(z) = (Log a)az.

Proof. Simple to show just using the definitions and the chain rule.
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