Chapter 1: Cauchy’s theorem, various versions

Course 414, 2003-04
January 11, 2004

Definition 1.1 If G C Cis open,f: G — C a function anc:, € G, thenf is differentiableat

20 if
) = f ()

Z—20 z — ZO

exists. The value of the limit is denoted Ify(z,) when it exists.
If f'(20) exists for allz, € G, then we say thaf is analyticon G. (The termsholomorphic
or regular are also used.)

Remarks 1.2 (@) f'(zo) exists= f is continuous at.
(b) f: G — C analytic onG = f is continuous ort-.

(c) Sums, scalar multiples and products of analytic functions are analytic. Also quotients on a
domain where the denominator is never zero.

d) f(2)=anz"+ a1 2+ ag= f'(z) =na,z""' + - 2a22 + a.
(e) The chain rule holds(f o g)'(z) = f'(9(2))d'(2)

Terminology 1.3 A regionin C is a connected open subsetC C.

If an openGG C C has more than one connected component, then analytic fungtiofis—

C can be made by arbitrarily specifying analytic functigihisG; — C on each connected com-
ponentG; of G and then taking'(z) so thatf(z) = fi(z) for z € G;.

The differentf; need not be related to one another in any way.

For this reason itis rarely necessary to consider analytic functions on discontethedigh
some theorems remain true even for disconneGtddhey have hypotheses and conclusions that
are ‘local’. Being analytic is a local condition (only needs to be checked by working near any
given point), but to say that is constant is a global condition ghon all of its domain.

For example, the theorem that says

f'(z) =0 = f constant

is true only under the assumption that the domaiyi &f connected. You can make a version of
the theorem which is true for disconnected domains and says

1
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f: G — C analytic andf’(z) = 0 implies f is constant on each connected compo-
nent ofG.

However, the proof is just to work on each connected component independently of the others.

Theorem 1.4 (Cauchy-Riemann equationsSupposé&: C Cis open andf: G — Cis afunc-
tion. Write f(z) = f(z + iy) = u(x,y) + iv(x,y) whereu(z,y) = Rf(z + iy) is the real part
andu(z,y) = Sf(z + iy) the imaginary part.

() If fis analytic, theru, v satisfy

ou _ o
gi - ayau (C-R equations
or 0Oy

(i) If w andv are C! functions onG (regarded as a domain iiR?) which satisfy the C-R
equations, therf is analytic onG.

Remarks 1.5 The two parts ofl.4 are almost, but not quite converses, because the additional
assumption is made in the second part thandv are C' functions (continuous first order
partials). This assumption makes the proof relatively simple — it comes down to knowing from
real analysis that andv must have derivatives (or total derivatives), which is defined to mean
that the linear approximation formula works. As a map from a domaia R? with values in

R?, f is C* and must have a derivative too, given by the linear map

ou Ou
hy dr Oy hy
(i)=& 2 ()
or Oy

(where the partials are evaluated at the point in question). The C-R equation are equivalent to
saying that this linear mapR? — R? is actually a complex linear map

and this is the essence of the proof of the second pdrtof

We could enhance the first part to add the fact thamdv must in fact be”! (using Goursat's
theorem below, this is true) and this would make the two parts converses of one another.

It is in fact true that the second part is true without assuming«ttedv areC't. But this
requires some difficult results from partial differential equations, which say that solutions (even
generalised solutions) of the C-R equations are automatic¢allywe will not be able to prove
this fact in this course.
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The C-R equations (two real equations) can be written as a single complex equation by intro-
ducing the so call D-bar operator For f = u + iv as above, we define

~. 1(of Of
=35 (55 + %)

where byd f/0x and0f /0y we mean
of ou . Ou

o or oz
of _ Ou_ ou
oy Oy Oy

Then the single equation ) B
of =0 (0 equation

is equivalent to the system of C-R equations.

Definition 1.6 A power seriesentered at € C is a series

Z an(z —a)"

Recall 1.7 Every power series has a radius of convergeRaehich is a “number” satisfying
1. 0<R<™
2. The power series converges (absolutely) forallith |z — a| < R
3. The power series diverges for alwith |z —a| > R

Moreover

1
~ limsup |a, "

The existence oR can be shown by using thdl root test for convergence of a series, which
states

For a serie ™7 z,, considerp = limsup,,_ . |2,/"/". If p < 1, the series con-
verges (absolutely) but jf > 1 the series diverges.

For a power series centered @tind with radius of convergenc, the disk D(a, R) (or
its boundary circle) is called the circle of convergence. The power series converges inside the
(interior of) its circle of convergence, but diverges outside the circle.
An important fact is that a power series as above convargégsrmlyin any strictly smaller
circle D(a,r) C D(a, R) with 0 < r < R. This can be checked by using the Weierstrassest
for uniform convergence of a series of functions:
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For a serie$ .~ f.(z) of functionsf,: S — C all defined on some sé¢, if there
exists a convergent seri@s | M, (of constants) such thaf,(z)| < M,, holds for
alln and allz € S, then the seriey " -, f,.(z) converges uniformly o5

Theorem 1.81If Y~  a,(z — a)" is @ power series with radius of convergerige> 0 then

fz) = alz=a)"  (z€D(a,R)

defines an analytic functiofi: D(a, R) — C and its derivative is given by
f'(z) = Znan(z —a)"!
n=1

This latter series forf’(z) has the same radius of convergeri¢éand consequently’(z) is
analytic in D(a, R)).

It follows thatf ) (2) = f”(z), f®(z) = f"(z), ...are all analytic inD(a, R) and are each
representable by power seriesina, R).

Proof. First the serie$ "> | na,(z — a)"~! has radius of convergence

1 1

limsup,, .. |na,|Y®™D " iy sup,, .. nl/(n=1) (|an|1/n)n/(n*1)

and we can show that this B usinglim,,_,., n'/*~Y = 1.

Fix z with |z—a| < Rand letg(z) = >°°7 | na,(z —a)"~* (which we now know converges).
Consider (forh # 0)

fz+h) - f(2) —g(Z)h‘
h

Y an((z+h—a)"—(z—a)" —n(z—a)""'h)| /|}|

< D lal|(z=a+h)" = (z=a)" —n(z = a)""h| /|h
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Now we can bound this using

w4+ h)" —w" —nw" h| = n)w”jhj —w" —nw" 'h
w41 | (Z(]

J

0
= ( " ) w" IR
— \

<

< |p? ” n—j|p|i—2
< eSS () o
7=2
- -1 [ n-2 _—
_ ey ( )w”_3h3‘2
e S (5 ) e
zn n—2 n—j|pi—2
< |nl n(n—1>(. )|w| 5|
: J—=2
7j=2
n—2 n_2
< n(n_mm?;( [

= n(n—DIh[*(jw| + [R)"?

Hence

'f(erh) — f(2) —g(Z)h‘
h

and if we restrict tdh so small thath| < (R — |z —a|)/2, then|z —a| + |h| < (R + |z — al)/2

and . o
’f(2+h)—£(2)—g(2)h’ < 1S Dl (R+|2z—a|>

< [n Y n(n = Dlad (1= = al + |4l

n=2

n=2
The latter series converges by the same reasoning used to shoy{thabnverges. [In fact
>, n(n — 1)a,w™ ? has radius of convergendeand so converges absolutely for anyvith

|lw| < R.] Thus
o S+ 1) = F2) = g
h—0 h

and so we have showfi(z) = g(z).

=0

Definition 1.9 A Laurent seriesentered at € C is a series

Z an(z — 20)"

n=—oo

By definition this series converges if bofi> , a, (2 — 2)" and> .1 a,(z — 2)" con-
verge and the sum of the doubly infinite series is then defined as the sum of the two singly infinite
sums.

For any Laurent series, there are two “numbe®sand R;
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1.0 S Rl, R2 S o0
2. The power series converges (absolutely) forallith R, < |z —a| < Ry

3. The power series diverges for alwith |z — a| < R, and for allz with |z — a| > Rs.

We can takeR, to be the radius of convergence of the power se¥igs , a,(z — zp)" andR; to
be the reciprocal of the radius of convergence of the power sgijgs a_,w".

As long as the Laurent series converges for samie numbers?; and R, are uniquely
determined by the conditions 1. — 3. above.

Definition 1.10 By apathin C we mean a continuous function [a,b] — C, wherea < b are
real.

We could also consider the path as the imagey$kt b]). Sometimes we may be careless
about the distinction, but the actual parametrisatj¢t) is significant. Very often we can al-
low reparametrisations o o: [a, f] — C, whereo: [«, 5] — [a,b] iS @ monotone increasing
continuous bijection, as equivalent{o

For integration, we will restrict ourselves piecewiseC! curvesy. By aC'! curve we mean
a curvey where~'(t) = limgsp_o(y(t + h) — ~(t))/h exists (inC) at all pointst € [a,b]
and~’: [a,b] — C is continuous. (At the end points= « and¢ = b we definey’ as a one-
sided limit.) To say thaty: [a,b] — C is a piecewis&’! curve means that there is a partition
a=ap<a; <ay<-- <a,=>of[a,b] sothat the restriction of to eachla;_, a,] is C"* for
j =1,...,n. Note that such g must be continuous o, b].

We then also restrict to reparametrisations by piece@wiseontinuous bijections.

Examples where piecewigé' are easier to use than just would be where our curve is the
boundary of a square or a triangle or any polygon. We can parameterize the line segment from
2o 10 24 by

v:[0,1] = C:t— (1 —1t)z + 21
and this is clearlyC'!. If we string two such segmentsg to z; andz, to z, together we can get
a piecewise”! curve. To make &' version we would have to reparametrise to make- 0 at
the corners. This is possible but not convenient.

Finally if G C C, when we speak of a path {# we mean a continuous: [a,b] — G.

Definition 1.11 If ~: [a,b] — C is a piecewis&! curve andf: T — C is continuous on a set
T that containgy([a, b]) then we define theontour integralof f along~ as

[sera= | F ) )

Strictly speaking we should do this f@r! paths~ first and then defin@[7 f(z)dz as the
sum of the integrals along the finite number®frestrictions ofy (to [a;_1, a,] using the earlier
notation) in the piecewis€'' case. The problem is that(¢) may not be defined at the transition
pointsa;. We know~ must have a left hand derivative and a right hand derivative at each of
these points (the;) but the two may be different. Ag(¢) is bounded and continuous except for
these finitely many transition points, the integral makes sense using any arbitrary value in place
of 7/(¢) at these transition points.



Chapter 1 — Cauchy’s theorem, various versions 7

Recall 1.12 Some simple useful properties of contour integrals include:

1. If f: G — Cis continuous on an open sgtandF': G — C is an antiderivative forf on
G (thatisF'(z) = f(2)Vz € G) then

/ f(2) dz = / Fly(t)/(t) dt = F(o(b)) — F(2(b))
for any piecewise€! path~: [a,b] — G.

In particular, the integral depends only on the endpoints of the path. If the pelttsed
(thatis ify(a) = (b)) and f has an antiderivative, then the integrais

l f(2)dz

if we define thdengthof ~ to be

<length(y) sup |f(2)]
z€7([a,b])

length (7) = / ()] dt

3. f7 f(z2) dz is unchanged by (piecewis€) reparametrisations of.

4. Direction reversing ‘reparametrisations’ ofsuch asg — 7(t) = v(—t): [-b,—a] — C
change the sign of the integral:

/ﬁf(z)dz:—/vf(z)dz

Theorem 1.13 (Cauchy’s theorem for a triangle, or Goursat’s theorem)Supposg: G — C
is analytic on an open s&t C C and ~ is a curve inG traversing the perimeter of a triangle
exactly once. If the interior of the triangle is alsod# then

Af(z) dz = 0

Proof. Uses the idea of repeatedly subdividing the triangle into 4 similar triangles half the
size. At each step pick one where the integral is at least a quarter of the integral around the larger
triangle. See Conway for the details.

Corollary 1.14 Supposg : G — Cis continuous on an open s6tC C and analytic orG—{p}
for some one point € G and + is a curve inG traversing the perimeter of a triangle exactly
once. If the interior of the triangle is also i@, then

[yf(z) dz =0
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P “'_\,:""--___\_ - d

x\\?“‘:x
:;_, b
N\

Proof. The first step is to deal with the case wheris a vertex ofy. Say~ is the triangle
Apab. Assume the triangle is traversed in the direction « — b and pick points: on the side
pa andd on the sidepb both neamp.

Then

[t@e = [ g [ f@aes [ pe
¥ Apcd Adca Adab
:/ f(2)dz+0+0
Aped

Thus

< length(Aped) sup |f(2)]

z€Apcd

< length(Apcd) sup {|f(2)] : z inside or oy}

The supremum on the right is finite and thus the right hand side can be made arbitrarily small by

choosing the points andd close top. Thus the result follows in this case.

The case whep is inside (or on)y can be reduced to the first case by dividing the integral

into the sum of 3 (or 2) integrals around triangles witas a vertex.
Whenp is outsidey, there is nothing to do (by Theoreinl13).

Definition 1.15 A setG C Cis calledconvexf z,w € Gand0 < t < 1 impliestz+ (1 —t)w €
G (that is, if the line segment joiningandw is in G for all pairs of points:, w € G).

Theorem 1.16 (Cauchy’s theorem for a convex setl.et G be an open convex set . Sup-

posef: G — C is continuous orG and analytic onG — {p} for somep € G. Let~y be any
(piecewise'!) closed curve ir;. Then

Af(z) dz = 0
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Proof. Recall that aclosedcurve is a curvey: [a,b] — Cwith v(a) = ~(b). Thus by earlier
remarks inl1.12it is sufficient to show that there is an antiderivative G — C for f, that is
an analytic functionf’ with F’'(z) = f(z) for = € G. Fix a pointa € G and defineF" by
F(z) = f: f(¢) d¢ where the path of integration is the straight line frarto =. To show thatF'
is an antiderivative forf, fix z € G and consider the difference quotient

F(z+h) — F(2) PR S~ [T Q) de
; —f(z) = : — f(2)

[ F©) d¢
h

- f(2)
(using Corollary 1.14)
JIT RO - f2) e
h
where the last step relies on the fact that the integral of a coyfz§t+a{hf(z) d¢ = f(z)h. Now, if
given any= > 0, we can use continuity of atz to findé > 0 so that| f({) — f(z)| < € holds for

all ¢ with |¢ — z| < 4. But then, estimating from the above identity with the triangle inequality,
we see that if) < |h| < J, then

F(z+h) — F(z)
N CE

|h| SUDPp<t<1 |f(z+th) — f(2)]
Al

IA
™

This establishes thdt'(z) = f(z).

Definition 1.17 For~ a closed (piecewis&)! curve inC andz € C \ ~, we define thendexof
~ aboutz as

1 1
|ndq{<2) = Q_M[{C—ch

The index is also known as thinding numbeiof ~ aboutz.

Example 1.18 Let~: [0, 1] — C be the (closed) curve
Y(t) = a + re*™m
(wherea € C, n € Z andr > 0). Informally, we can see that this curve travelmes around
the circle|z — a| = r. Formally, we can compute
1 1
Ind,(a) = — dz

211 yZ—a

1 L ominremint

, 2mint
2mi Jo  rem

1
= / ndt =n
0
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Remark 1.19 Clearly f(¢) = C_La is analytic inC \ {a}. If it had an antiderivative irC \ {a}
(that is if we could find an analytic functiof'(¢) with £/(¢) = f({) there), then Ind(a) = 0
would hold for every closed curve(that did not go through) according to the first remark we
made inl1.12 From the previous example18we can then see that the index is not always zero
and so that we cannot be able to find such an antiderivatige.

We will see a little later that it is almost true thAt¢) has an antiderivative. We can define

an antiderivative but we cannot do it over the whole€Cof {a}. If we take
G=C\{a—t:teR,t>0}
we can defing”'({) = log(¢ — a) for { € G by taking

log(¢ — a) =log |¢ — af +iarg(C —a)

Here the real part is the ordinary natural logarithm from real analysis (sometimes denadigd by
and the imaginary part is the argumentof « and is chosen to lie in the ranger, 7).

We will return to this question of defining the logarithm and whY() = c%a holds for
¢ € G. Assuming this for a moment, we can see that the index(ind= 0 for any closed curve
v in G. We can also see thatif: [a, 3] — G begins just below the ray excluded frofhat
v(a) = a — t — ie and ends just above the raydt’) = a — t + ic (wheret > 0 ande > 0 is
small), then/ =, d¢ = log((5) —a) —log(y(«) — a) is close to beingr — (—ir) = 2ri. This
allows one to see that it seems likely that if we extertd make it closed we get index equal to
1.

One could extend this reasoning to give a plausible explanation why a closed cGryédn
that crosses the rayn — t : t € R, ¢ > 0} several times must have index equal to an integer (the
number of times the curve crosses the ray from top to bottom minus the number it crosses the
other way). But is is not so easy to make a proof this way. Instead we adopt a less direct proof.

Theorem 1.20 For any closed (piecewis€)’ curvey in C and anyz € C \ v, Ind,(z) is an
integer.

Moreover, the function Indz) is constant on each connected componer §fy and iden-
tically zero in the unbounded component®f ~.

Proof. Say~y: [a,b] — C. Define a function
ot la.b] — Chy
= X S
v P a ’)/(S) -z

From the Fundamental theorem of calculus, we can check that

A0 = e (] 5250) 56

v'(t)
Y(t) — 2
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(If ~ is only piecewise’!, there will be a finite number of points where this is not true.) Then
we can calculate that (again except at a finite number of points)

d ( () ) _ P O0() —2) — () (1)
dt \~(t) - = (7(t) — 2)*
At the exceptional points (if any) right and left hand derivatives exist and are both 0. Thus, we

can conclude thaé;% = ¢ = constant. Thug(a) = ¢(y(a)—z) andg(b) = c¢(v(b) —z). Since

we are dealing with a closed curve(a) = (b) and sop(a) = ¢(b). Buty(a) = exp(0) = 1
(from its definition) and so we conclude thath) = 1. But

o) = oo [ 2 as)

([

= exp(2milnd,(z))

=0.

Thusexp(2milnd, (z)) = 1 and so it follows that Ind(z) € Z.

To complete the proof of the result we use the fact that (aglis a continuous function on
C \ v (see Exercises). From that it follows that the index is constant on connected components
(aproofisthat{z € C\~y:n— 3 <Ind,(z) < n+ 3} is both open and closed relative@\ v
and so contains all of any connected component it intersects).

Finally, sincey: [a,b] — C is continuousy = ~([a, b]) is a compact subset &f. Thus there
existsR > 0 so thaty C D(0, R). If |z] > R, thenf(() = 1/(¢ — z) is analytic on the convex
setD(0, R) and so Cauchy’s theorem for a convex set tells us that( k)d= 0.

Example 1.21 Returning to the circle examplé..(L8) where we had the curve: [0,1] — C
with v(t) = a + r exp(2nmit), we can use the previous result to conclude that(nd= n for
|z —a|] <randiInd(z) =0for |z| > 1.

Theorem 1.22 (Cauchy’s integral formula for a convex set)LetG C C be an open convex set
andletf: G — C be analytic. Lety be a closed (piecewigg!) curve inG. Then, forz € G\ v,

1O s
s | £oR = S0, )

Proof. Forz € G \ v defineg: G — C by
.f(Cé:i‘(Z) if ¢ # 2
f2)if¢=2

Theng is continuous o7 and analytic orz \ {z}. Thus by Cauchy’s theorem for a convex
set (L.16), we havefv 9(¢) d¢ = 0. Rearranging this we get

(0= {

f(C) _ M — f(2 L = 211 z z
LFQ@_LO%M_ﬂylbw@—zmmmﬂ»
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Theorem 1.23 Suppose thaf(z) is analytic in a discD(a, R). Let
1 f(2)

ay = ———dz

N % |z—al=r (Z - a)n-i—l

wherer has any fixed value in the range< r» < R (forn = 0,1,2,...) and the circle is
traversed once anticlockwise. [So to be more precise we can specify the parametrisation of the
path of integration asg/(¢t) = a + re?™, 0 < t < 1.] Then

flz) = Zan(z —a)" for all zwith |z —a| < R.

n=0

Moreover the values of the, are independent of the choice ofand we can make a stronger
statement of uniqueness for thg If there are coefficients, and any) > 0 so that

f(z) = ibn(z —a)"for|z—al <o
n=0

thenb,, = a,, for all n.

Proof. We use Theorer.22together with the fact that the geometric series
1 = .
l—w ; v

converges uniformly fofw| < p, for any fixedp < 1. This allows us to write a term that occurs
in the Cauchy integral formula as a series. Takéth |z—a| < r and conside¢ with | —a| = 7.

Then
1 1 1 1 1 1

C—z:((’—a)—(z—a):{—al—z_:—g:C—al—w

|z—al

wherew = = has|w| < == = p < 1. Hence

1 Il — , 1 (z—a\" <« (z—a)
i L) S
Now Theoremil.22tells us that

z:L & z—al<r
£(2) /|< & (z—al <)

271 —a|=r C —Z
1 = (z—a)"
= — ——d
3 e Q) ; ot %

o0

=S (L ) e

n=0
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where we make use of the uniform convergence of the series to justify exchanging the sum of the
series and the integral.
Now we almost have established the first part of the statement. We now fiaye—=
Yoo gan(z —a)™ for |z —a| < r, but thea,, may depend on. We can include any pre-assigned
z with |z — a| < R by takingr in the ranggz — a| < r < R, but thea,, may change when we
are forced to go to a bigger Maybe we could call thera! .
We could show using Cauchy’s theorem tlgtis independent of, but if we prove the
final uniqueness statement we will also show independence 8b suppose we havg with
f(z) =>"ybu(z —a)" for |z — a| < 6. Then we can see th#{a) = b, (giving us only one
choice forb,). Differentiating the power series (using Theor#&rf) we get

= ann(z—a)”_l (Jz—a|l <§
n=1

Puttingz = a gives f'(a) = 1b; = by (giving only one choice fob,). By induction we can show
that

Znn—l (n—m+1)b,(2 —a)"* (lz—a|l <9d

and ™ (a) = mlb,, for all m. Thus there is only one possible choice figr. Applying this to
b, = a;, we find

. ()

a _—
" n!

and so is independent on

Corollary 1.24 If G C Cisopen andf: G — C is analytic, thenf’: G — C is also analytic.
So also aref”, f® and all higher derivatives of defined and analytic o

Proof. The second part follows immediately by induction eronce we establish that’ is
automatically analytic.

We know [’ is defined (because we are assuming th& complex differentiable at every
point of G) and to show it is analytic is cal problem By that we mean that to show thAtis
differentiable at any specific pointe G (that means showing that the second derivative makes
sense) we only need to concern ourselves with the poarid the other points nearky [We
don’t have to go far away from. Think of the limit definition of the derivative.] Sincee G
andG is open we know there is some diBx z, ) of positive radius about contained inz. We
will work inside this disc, forgetting for the moment about any other paét ofEssentially, this
is a theorem which is true once we can can show it for the Gasea disc.] But we know from
Theoreml.23that in the disc the analytic function can be represented by a power series.

Zan )yt for |w — z| <.
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And so we know from Theorerh.8that
f(w) = f: nay, (w — z)"
n=1
is analytic in that same disc. Hengé(z) exists.

Corollary 1.25 (Cauchy’s formula) If f: G — C is analytic on an open se&¥ C C and (the
closed disc))(a,r) C G (anyr > 0), then

LI Py (R ) R

B 2mi |z—a|=r (Z - a)n+1

Proof. We just proved this in the course of proving Theoreral

Theorem 1.26 (Liouville’s Theorem) If f: C — C is analytic and bounded (that iSM > 0
such that f(z)| < MVz € C) thenf is constant.

Aside. Functionsf analytic on all ofC are traditionally callentire functions Liouville’s
Theorem is usually statetbounded entire functions are constatitis an example of the rigidity
of analytic functions.

Proof. From Theorenl.23 f has a power series representation about the origin valid in @ll of
(the disc of infinite radius about 0),

flz) = Zanz” (z€C)

with
1 (2)
an:% ‘lerﬁdz (O<T<OO)

Estimatinga,, using the triangle inequality for integral%.(22), we get
1),

n+1
r 2

1 M M
S %(27{'7’) =

,rn+1 r_n :

] =
an| = —
2

l2l=

As this is valid for anyr > 0 we must haves,, = 0Vn > 0 and sof(z) = >~ a,2" = ag =
constant.

Theorem 1.27 (Morera’s theorem — a converse to Cauchy’s)f f: G — C is continuous on
an open seti ¢ C and iff7 f(z) dz = 0 for all triangles~ contained with their interiors inside
G, thenf is analytic onG.
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Proof. Fixinga € G, we can find adis®(a, R) C G (R > 0) (sinceG open) and the hypotheses
imply that for any triangley in R(a, R) [the interior ofy must be inD(a, R) by convexity, and
hence inG sinceD(a, R) C (] the restriction off to the disc satisfies the hypotheses of the
theorem. So if we prove the result for the c&se= D(a, R) a disc we getf’(a) exists (and
returning to the case of arbitrafy we have existence of the derivatiy&a) at anya € G).

We copy the proof of Cauchy’s theorem for a convex §et§) and definef": D(a, R) — C
by F(z) = [ f(¢) d¢. Then we can show as before (replacing the use of Corolldryby an
appeal to the hypothesis we have now) thatz) = f(z)Vz € D(a, R). By Corollary 1.24
F' = fis analytic onD(a, R).

Definition 1.28 A chainI' in C means a finite collection,, -, . . ., 7, of closed curves ilf.
We will often assume that the chain is piecewie meaning that each of the curvesis
piecewiseC'!.

We sometimes writd® = ~; + 7, + -+ + 7, as a formal sum, but we do not mean that
any operations should be performed. There may be repetitions (the same curve can occur more
than once) and the order of the curvgs~s,, ..., v, will never be significant. The plus sign is
however suggestive of the way we define integrals and lengths for chains.

Supposef(z) is continuous ofi’ (we mean now' regarded as a set of pointsU~,U- - - U,
in the plane, namely the union of the setsand these are in turn the ranges of the parametric
curvesy;). Then we define the integral gfalong the chail” as

/f(z)dzzz 'f(z)dz.

Forz € C\ I" we define

n

Indr(z) = ) Ind, (2)

j=1
and we define the length ofas

lengthT") = i length(~;).

We often allow ourselves to usey to mean the ‘same’ curve aswith a parametrisation
reversed in direction. Sincjé_7 f(z)dz = — f7 f(2) dz, and we mostly use chains for integrals
we often allow cancellation of + (—~). [In the case of lengths, however+ (—~) has twice
the length ofy.]

Notice that we are assumingis piecewiseC'" for all these integrations.

Remarks 1.29 1. Itis quite easy to check that

/rf(Z) dz

and that various other simple properties of integ(ﬁylg‘(z) dz along single curves also
hold for integrals over chains.

< lengthT") sup | f ()]

zel
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2. Similarly it is easy to see that Ing) is integer valued o€ \ ', constant on connected
components of \ I" and zero on the unbounded component.

3. Our main use of chaink will be for the situation wheré c G with G ¢ C open and
where Ing(w) = 0 for all w € C\ G outsideG.

One example mightb&' = {z € C: § < |z| < 3} andl’ = (—1) + 72 Where~, stands
for the circle of radius- about the origin traversed once anticlockwise: ([0, 1] — C,

(1) = rexp(2mit)).
N
T/

Using what we know of the index of individual circles (frohi21) we can easily see that

0 |2]<1
Indr(z) =< 1 1< |z <2
0 |z|>2

More complex examples could have a less regular shape but be more or less the same (one
hole inG, I' = (—o0y) + o, where the inner curve; wraps once anticlockwise tightly
around the hole and the outes takes a wider path around the hole) or one can have
examples with several holes {n, maybe one outer curve and several smaller ones going
around the holes. Here is a drawing of a case with 2 holeslamde up of 3 closed

curves.

We will be able to justify this type of example a little later.
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Theorem 1.30 (Cauchy’s formula — winding number version)If f: G — C is analytic on
an open seti C C and ifI" is a (piecewiseC!) chain in G with the property that Ing(w) =
OVw € C\ G, then

1
— / &dC = f(z)Indr(z) Vze G\T.

211 FC_Z

Proof. We begin by defining a new functiagh: G x G — C on the cartesian product x G C

CxC=C2hy
flw) = f(z)
gb(w,z){ T, Tefuw

w—z

f'(z) if z=w

We claim first thatp is continuous ordx x G (for this think of continuity defined analogously
to functions on subsets &f using the usual Euclidean distance®t). At points(w, z) of G x G
wherez # w, this continuity is quite easy(w, z) — z is continuous and so iQu, z) — w.
Hence(w, z) — w — z is continuous (difference of continuous functions), as(are:) — f(z)
(composition of continuous functions) and then, z) — f(w) — f(z) (difference). Finally
(w, z) — (f(w)— f(2))/(w—z) (quotient) is continuous as long as we keep away from dividing
by zero. Atapointz, zy) € G x G, we can argue as follows. There is some radius 0 so that
D(z,R) C G (asG is open) and fow, z € D(z, R) we can sayf(w) — f(z) = [ f/(¢) d¢
(where we integrate along the straight line segment fedow). Given anye > 0, by continuity
of f" atz, we can findy > 0 so that|¢ — zy| < 0 = |f'({) — f'(20)| < . Now take any(z, w)
with

diSt&nCE{(w, Z)a ('207 ZO)) = \/"LU - 20‘2 + |Z — 20’2 < 4.

We claim|o(w, z) — ¢(z0, 20)| < €. If w = z thisis true becausg(w, z) = f'(z) and|z — zy| <

5/V2 <6 fw# 2,

1

w—z

otu.2) = 9020 = | - [ (70 = P ] <
by the triangle inequality estimate for integrals. Thus the claimed continuityi®éstablished.
Nextletd = {z € C\ T :Indr(z) = 0}. H is open inC. (Sincel has to be compact (finite
union of closed curves, each compa€t)\ I" is open inC and so are its connected components.
H is a union of certain connected component€0ofI" and so is also open.)
Our hypotheses impl£ \ G € H and soG U H = C. We now defing;: C — C by

yo) ;ng?(z;)z) dw forze G

dw forze H
w — z

We make a sequence of claims abguaulminating in the result.

1. g is well-defined and analytic o6
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Verification. To show thatg is unambiguously defined we need to check that the two
formulae agree oo’ N H. Forz € G N H, we have

/Fqﬁ(w,z)dw _ /Fde

w—z

_ /Fg(iuldw—f(z)/rwl_zdw

_ / G F(2)(2mi)Indr (2)

w —z
= /de sincez € H
rw-—=z

To showy is entire we show separately that it is analytic@rand onH. In both cases
the proof is similar. We establish thatis continuous (Exercise to show that a function
defined by integrating a continuous function of two variaklgs around a curve in the
variable gives a continuous function of the parametgrThen we use Morera’s theorem
and Fubini’s theorem to show that the result is analytic. For examplesig triangle inGG
with its interior also inG, then

/Wg(z) dz = L/F¢(w,z)dwdz
= /FL¢(w,z)dzdw
0

because for any fixed € I, z — ¢(w, z) is continuous oriz and analytic orZ \ {w} and
so the integray7 ¢(w, z) dz = 0 by the Corollaryl.14to Cauchy’s theorem for a triangle.
2. g is also bounded and hence constant by Louville’s theorem

Verification. Compactness df implies it is bounded and so there is a dig¢0, R) of
some finite radiug? > 0 that containd™ (I' € D(0, R)). Now |z| > R implies z belongs
in the unbounded component®f\ I', hence where Indz) = 0, thatisz € H.

Thus for|z| > R we have

l9(2)| =

f(w) ‘ 1
dw| < length(T") su w)|———
[ A | < tengih(r)sup (0] =
For|z| > R + 1 we then have a fixed bound fg(z) of M; = length(I") sup,,.r |g(w)|
and for|z| < R + 1 we can use compactness to sdy = sup, <z |9(z)| < co. For all
z € C we then have
|9(2)| < max(M;, My)

andg is bounded. By Louvilleg must be constant.
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3. The constant is 0
Verification. By the estimate just above we have

M,

2| = R

9(0)] = lg(2)] < for |z| > R

and letting|z| — oo we getg(0) = 0.

4. The integral formula follows
Verification. Forz € G\ I we havey(z) = 0, which means

0 = /Fqb(w,z)dw—/Fde

w—z

:tég%Zdw—f@XAwi%dw

_ (/‘fluo dw — f(2)(2mi)Indr ()

w—z

Corollary 1.31 (Cauchy’s theorem — winding number version) If f: G — C is analytic on
an open seti C C and ifT" is a (piecewiseC") chain in G with the property that Ingl(w) =

OvVw € C\ G, then
1
3 [ 1)z =0

Proof. Apply Cauchy’s formulal.30above tow — f(w)(w — z) in place of f(w) (for any
z e G\T).

Definition 1.32 A simple closed curvén C is a closed curvey: [a,b] — C such thatyy
is injective. [In other words the curve has no self-intersections except that it closes — same
beginning point and end point.]

We rule out the trivial case af = b (curve has only one point).

Theorem 1.33 (Jordan curve theorem)If ~ is a simple closed curve i@, thenC\ v has exactly
two connected components, one unbounded component which we will cailttiegeand one
bounded which we will call theside

Proof. (Omitted as it is rather difficult.) One book that proves itk [

Theorem 1.34 (Cauchy’s theorem — for simple closed curved)et f: G — C be an analytic
function on an open sét C C and lety be a (piecewis€'!) simple closed curve i@ which has
its inside also contained i&'. Then

quyk:o
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Proof. We can deduce this from the winding number version Theote®h and the fact that
Ind, (z) = 0 for z in the unbounded component @f\ ~ (that is forz outsidey). If = € C\ G
thenz is outsidey by our hypothesis.

Theorem 1.35 Let~ be a simple closed piecewié€ curve inC and z a point of the inside of
7. Then Ind(z) is either+1 or —1.

Proof. Omitted. Seel].

Definition 1.36 Let v be a simple closed piecewig¢' curve inC. We say thaty is oriented
anticlockwisef Ind, (z) = 1 for z inside~. Otherwise (Ind(z) = —1 for z inside~) we cally
oriented clockwise

Theorem 1.37 (Cauchy’s integral formula — simple closed curve version)etG C C be open,
f: G — C analytic andy an anticlockwise (piecewisg') simple closed curve it with its in-
side also contained i. Then

%/ch(%dg = f(z) for z inside~y

Proof. This is a consequence of the facts about simple closed curves above and the winding
number version of the Theorerh.80).

Remarks 1.38 We can use the terminology of Definitiadn36 to justify the rough picture at
the end of Remarks.29 provided we belive that the definition corresponds to our picture of
anticlockwise curves.

In cases like those examples of Remaik&9it is possible to use the versions of Cauchy
Theorem and Cauchy’s Integral Formula for simple closed curves to justify the winding number
versions (.31 and 1.30. One constructs a simple closed curve (or maybe several such) by
building narrow bridges between the ‘outer’ curves and the inner ones. Apply the simple closed
curve theorems, let the width of the ‘bridge’ tend to zero and cancel out the contributions from
integrating back and forth across the bridges.
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We proceed now to another way to state something like ‘the points betyyemnd~, are
in G’ (or that both~, and~; wind equally often around each point of the complemené:pf
even when there is no obvious way to describe what the points between might be. The idea of
homotopy is used extensively in algebraic topology. The formal definition is meant to capture
the idea that we can move one closed curve onto another without breaking the curve and without
ever going outside a given sét

We keep our curves parametrised by the same intgry8ll (we could standardise it 48, 1]
but we don't).

Definition 1.39 Let vy, v : [a,b] — G be two closed curves in a sét C C. Then we say that
7o IS homotopic tey, in G if there exists a continuous mdp: [a, b] x [0, 1] — G satisfying:

1. H(t,0) = yo(t)Vt € [a, ]
2. H(t,1) =y (t)Vt € [a, b]
3. H(a,s) = H(b,s)Vs € [0,1]

Such a maH is called ahomotopyfrom ~q to ;.

Note that for fixeds € [0, 1] we have a closed curveg: [a,b] — G given by~,(t) =
H(t, s) (closed by the third condition). The way to think of it is that these closed curvesry
continuously fronm, to v; (ass varies from 0 to 1).

Examples 1.40 1. LetG = C\ {0} andletyy, v1: [0, 1] — G beyy(t) = exp(2mit), 11 (t) =
2 exp(2mit).

Then a homotopyd : [0,1] x [0,1] — G can be given a#/ (¢, s) = (1 + s) exp(2mit).

2. If 49,71 : [a,b] — C are any pair of closed curves @ parametrised by the same interval
la, b], then they are homotopic i@ via H (¢, s) = (1 — s)y0(t) + sy1(1).

3. If v, [a,b] — G are any pair of closed curves in a convex &etC C, then they are
homotopic inG (by the samé{ as in the previous example).

The existence of a homotopy becomes open to question when the shépés ahore
complicated.

Definition 1.41 If : [a,b] — G is aclosed curve in asét C C, we say that is null homotopic
in G if v is homotopic inG to a constant curve, such as the curvda, b — G with o(t) = v(a).

Theorem 1.42 (Cauchy’s theorem — homotopy version} et f: G — C be analytic on an
open setz C C and letyy, v:: [a,b] — G be two (piecewis€™) closed curves iit7 which are

homotopic inG. Then
dz = f(z)dz.
/70 f(z)dz [,1 (z)dz
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Proof. We will see that a complication arises in the proof because, although we assume the
curvesy,, v, areC', we do not assume that the homotopy is a differentiable map. This means
that the intermediate curves involved in the homotopy are not neces§ardypd so we cannot
necessarily integrate along them.

Notice first that ifG' is convex, then we already knoW f(z)dz = 0 = [ f(z)dz by
Cauchy’s theorem for a convex set. So there is nothing to do. In parti€ularC is ok and
whenG # C we make use of the following observation.

Let H: [a,b] x [0, 1] — G be a particular homotopy from, to ;. Since the rangé/([a, b] x
[0, 1]) is compact, it has a positive distance to the closed comple@&rit,

e =inf{|z —w|: 2z € H([a,b] x [0,1]),w e C\ G} > 0.

Next H is uniformly continuous on the rectangle, b] x [0, 1] (because the rectangle is
compact and{ is continuous) and so we can fiad> 0 so that

(tl,Sl), (tg, 82) € [a,b] X [07 1],d|st((t1, 81), (tQ,Sg)) <= |H(t1, 81) — H(tg, 82)| < E.

Now divide[a, b] x [0, 1] into a grid of rectangles each of diametep.

n—1

at; t b

To explain this more formally in symbols, choose a partitios to) < t; <ty < -+ < t,_1 <

t, = bof[a,b]withallt; —t; , < §/+/2 (for example we can have = a + j(b—a)/n andn so
large that(b — a)/n < 6/+/2) and another partitiofl = sy < s; < 55 < - -+ < 5,1 < 5, = 1 Of

0,1] with all 5; — s < 6 /+/2 (for example we could have = j/n as long as is also large
enough that /n < §/v/2).

Let (¢;,s;) (0 < i,57 < n) denote the grid points in the rectangle alig = H(t;, s;) the
corresponding image points@i. Now the fact that the small grid rectangle from with bottom left
corner(t;, s;) (more exactly the rectangle, ;1] x [s;, s;+1] for 0 < i, 5 < n) has diagonal of
length less than implies that its image undét is entirely contained in the disB(H,;,¢) C G.
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(tis1,Sj41)

(ti, s5)

Consider for a moment this single small rectangle of the grid. We would like to be able to
say that the integral of around the contour which is the image of the perimeter of the rectangle
under H is 0 (by Cauchy’'s theorem for the convex setH, ;,<)) but we are not necessarily
justified in this claim because we cannot be sure that the contour is pieagiise

Instead we consider the closed curve made of 4 straight line segilents- H,.,; —
Hiij — H;j1 — H; ;. We call this contourz; ; (0 < 7, < n). Now, we can say

/R f(z)dz =0

and then we can add all these up to get

"Zl /RM f(z)dz =0.

1,j=0

When we express these integrals aldhg as the sum of 4 integrals along line segments, we will
find many line segments that are integrated along twice, one in each directiof. For< n

and0 < j < n, the segment{;; — H,,,; occurs inR;; and the segment/,,, ; — H,;

occurs inR;;_;. For0 < i < nand0 < j < n, the segmentd; ;;; — H,; occurs in

R, ; and the segment; ; — H, 4, occurs inR,_, ;. The segment{,;.; — H,  occurs in

Ro; (0 < j < n) while the segment?,, ; — H, ;1 occurs inRk,_; ;. By the properties of a
homotopyH, ; = H(ty,s;) = H(a,s;) = H(b,s;) = H(t,,s;) = H,; and so these last pair

of segments are the same segment in different directions. After all the cancellations, we end up

with
n—1 n—1
Z/ f(z)dz—Z/ f(z2)dz=0
i=0 v [Hi,0.Hit1,0] i=0 ¥ [Hin:Hit1,n]

Now, the straight line segmefk; ,, H;.1,] and the restriction ofy (t) = H(¢,0) tot €
[t:, t;+1] @re both curves i (H, o, ) C G with the same start and end. Hence the integrals of
along them is the same and

n—1

; /[vHi,O,HH,LO] f(z) dz = [Yo f(Z) dz.
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Similarly

n—1
2 /[HH] f(z)dz = / S

/%f(z)dz—/wf(z)dz:().

Corollary 1.43 (Cauchy’s theorem) Let f: G — C be analytic on an open sét C C and let
v be a (piecewis€') closed curve irG which is null homotopic ir;. Then

/y (=) dz = 0.

Example 1.44 The curvey: [0,1] — C\ {0} with v(¢) = exp(2mit) is not null homotopic in
C\ {0}.

Proof. We knowf7 1 dz = 2mi # 0. Now f(z) = 1/zis analytic inC \ {0}. By the Corollaryy
cannot be null homotpic i€ \ {0}.

We conclude

Corollary 1.45 (Cauchy’s integral formula — homotopy version) Let f: G — C be analytic
on an open seff C C and lety be a (piecewis€') closed curve irG which is null homotopic
in G. Then

% L Cf(Tong _ (2)ind,(2) Vze G\,
Proof. By corollary1.43 forw € G \ v we have
ind, (w) — L/Ldgzo Vw e C\ G,
21i ), ¢ — 2
The result follows by the winding number version Theore®Q
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