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Before we launch into complex analysis, it may be helpful to look back for a
moment at the history of the subject. Calculus goes back to Leibniz and Newton,
but calculus with complex-valued functions of a complex independent variable is
not quite so old. There was a debate on the validity of complex numbers (and the
imaginaryi) but there was also a long process of discovery of the concept of a
function or map as we know it today.

At one time functions were regarded as things that were given by a ‘proper’
formula and analytic functions fitted into this idea.

Cauchy (1769–1857) developed contour integrals and the idea of analytic
functions as complex differentiable functions with a continuous derivative.

Riemann (1826–1866) took a geometrical view and looked as complex func-
tions as mappings or transformations.

Weierstrass (1815–1897) is responsible for a formal approach, theε-δ way of
dealing with things and the theory of uniform convergence of power series.

Chapter 0: Basics

Notation 0.1 C will denote the complex numbers. Forz ∈ C we will often write
z = x + iy with x, y ∈ R the real and imaginary parts ofz andi2 = −1.

The modulus (or absolute value) of such az is |z| =
√

x2 + y2. Properties:
|z + w| ≤ |z|+ |w| (triangle inequality),|zw| = |z| |w| (z, w ∈ C).

Thecomplex conjugateof z = x+iy is z̄ = x−iy. Properties:z + w = z̄+w̄,
zw = z̄ w̄, zz̄ = |z|2.

The usual (Euclidean) distance between pointsz, w ∈ C is d(z, w) = |z −w|.
d is also called ametric. Properties: d(z, w) ≥ 0 with equality if and only if
z = w, d(z, w) = d(w, z), d(z, w) ≤ d(z, v) + d(v, w) (triangle inequality).

D(z0, r) = {z ∈ C : |z − z0| < r}

is the open disk aboutz0 ∈ C of radiusr > 0.

D̄(z0, r) = {z ∈ C : |z − z0| ≤ r}

is the closed disk.
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Open and closed subsets 0.2A setG ⊆ C is openif eachz ∈ G is an interior
point of G.

A point z ∈ G is called an interior point ofG if there is a diskD(z, r) ⊂ G
with r > 0.

Picture for an open set:G containsnoneof its ‘boundary’ points.
Any unionG =

⋃
i∈I Gi of open setsGi ⊆ C is open (I any index set, arbi-

trarily large).
F ⊆ C is closedif its complementC \ F is open.
Picture for a closed set:F containsall of its ‘boundary’ points.
Note that open and closed are opposite extremes. There are plenty of sets

which are neither open nor closed. For example{x + iy : 0 ≤ x, y < 1} is
a square in the plane with some of the ‘boundary’ included and some not. It is
neither open nor closed.

Any intersectionF =
⋃

i∈I Fi of closed setsFi ⊂ C is closed.
Finite intersectionG1 ∩G2 ∩ · · · ∩Gn of open sets are open.
Finite unions of closed sets are closed.

Interiors and closures 0.3 For any setE ⊆ C, the interiorE◦ is the set of all its
interior points.

E◦ = {z ∈ E : ∃r > 0 with D(z, r) ⊆ E}

is the largest open subset ofC contained inE. Also

E◦ =
⋃
{G : G ⊆ E, G open inC}

Picture: E◦ is E minus all its ‘boundary’ points.
The closure ofE is

Ē =
⋂
{F : F ⊂ C, E ⊂ F andF closed}

and it is the smallest closed subset ofC containingE.
Picture: Ē is E with all its ‘boundary’ points added.
Properties:Ē = C \ (C \ E)◦ andE◦ = C \ (C \ E).
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Boundary 0.4 Theboundary∂E of a setE ⊆ C is defined as∂E = Ē \ E◦.
This formal definition makes the previous informal pictures into facts.

Relatively open and closed 0.5If R ⊆ T ⊆ C is a subset of a subsetT of C,
thenR is calledopen inT (or open relative toT ) if for eachz ∈ R it is possible
to find somer > 0 so thatD(z, r) ∩ T ⊂ R.

Note that for eachz ∈ R we have a choice ofr = rz > 0 that depends on
z ∈ R so thatD(z, rz) ∩ T ⊂ R. TakingG =

⋃
z∈R D(z, rz) we find an open set

G ⊂ C with R = T ∩G. This is an equivalent condition forR ⊂ T to be open in
T .

S ⊆ T is calledclosed inT if T \ S is open inT . Equivalently, ifS = T ∩ F
for F ⊂ C closed.

Picture: S ⊂ T is closed inT contains all of its boundary points that are in
T .

This can also be used a pictorial explanation of relatively openR ⊂ T : R does
not contain any of the boundary ofS = T \R.

Connected 0.6A subsetT ⊆ C is calledconnectedif the only subsetsX ⊆ T
that are both open inT and closed inT areX = ∅ andX = T .

Equivalently, if it is not possible to decomposeT = T1 ∪T2 with T1 ∩T2 = ∅,
T1 6= ∅, T2 6= ∅ and bothT1 andT2 open inT .

Proposition 0.7 If T1, T2 ⊆ C are each connected andT1 ∩ T2 6= ∅, thenT1 ∪ T2

is connected.
More generally, if{Ti : i ∈ I} is a family of connected subsetsTi ⊆ C and

Ti ∩ Tj 6= ∅ for eachi, j ∈ I, then
⋃

i∈I Ti is connected.

Definition 0.8 If T ⊆ C is a set andz ∈ C, then theconnected componentof z
in T is ⋃

{X : X ⊆ T, z ∈ X andX connected}

Remark 0.9 We can define an equivalence relation on any setT ⊆ C by defining
z ∼ w (for z, w ∈ T ) if there is some connectedX ⊆ T with bothz, w ∈ X.

The connected component of a pointz ∈ T is then the equivalence class ofz
under this equivalence relation.

Using the general theory of equivalence relations, it follows that the connected
components of anyT ⊆ C partitionT . (That is, any two connected components
of T are either identical or disjoint.)
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Example 0.10 1. T = D(0, 1) ∪D(2, 1) is not connected.

2. We will see thatD(0, 1) ∪D(2, 1) ∪ {1} is connected.

Theorem 0.11 Intervals inR are connected.

Continuity 0.12 If f : T → C is a function on a subsetT ⊆ C, thenf is called
continuous at a pointz0 ∈ T if for eachε > 0 it is possible to findδ > 0 so that

z ∈ T, |z − z0| < δ ⇒ |f(z)− f(z0)| < ε

f : T → C is calledcontinuousif it is continuous at each pointz0 ∈ T .

Proposition 0.13 If T ⊆ C and f : T → C, thenf is continuous if and only if
it satisfies the following condition: for each open setU ⊂ C, its inverse image
f−1(U) = {z ∈ T : f(z) ∈ U} is open inT .

Proposition 0.14 If T ⊆ C, thenT is connected if and only if there is no contin-
uous functionf : T → R with range the two point set{0, 1}.

Equivalently if the only continuous functionsf : T → R with rangef(T ) ⊂
{0, 1} are constant.

Proof. Exercise.

Theorem 0.15 If f : T → C is continuous andT ⊆ C is connected, thenf(T ) =
{f(z) : z ∈ T} is connected. (Continuous images of connected sets are con-
nected.)

Proof. Exercise. (Not so hard using the previous result.)

Path Connectedness 0.16By apathin C, we mean a continuous functionγ: I →
C from an intervalI ⊆ R.

We say that a setT ⊆ C is path connectedif for each pair of pointsz0, z1 ∈ T
it is possible to find a pathγ: [0, 1] → T in T with starting pointγ(0) = z0 and
ending pointγ(1) = z1.

Proposition 0.17 Path connected subsetsT ⊆ C are connected.
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Proof. If γ: [0, 1] → T is a path, thenγ([0, 1) is a connected set by Theorems 0.11
and 0.15. Thusγ(0) andγ(1) belong in the same connected component ofT for
any such path.

If T is path connected, this argument shows that every pair of points ofT
belong in the same connected component and so there is only one connected com-
ponent (or no connected components at all ifT is empty). ThusT is connected.

Remark 0.18 This proposition can be used to show that discs are connected sets.
For example ifz ∈ D(z0, r) then the pathγ: [0, 1] → D(z0, r) given byγ(t) =
(1− t)z0 + tz is a path in the disc joiningz0 to z.

One can also show thatD(0, 1) ∪ D(2, 1) ∪ {1} is path connected and so
connected, justifying an earlier example.

Theorem 0.19 If G ⊂ C is open and connected, thenG is path connected.

Proof. Exercise.

Limits 0.20 We will find it convenient to have the idea of a punctured disc. A
punctured (open) disc is a discD(z, r) \ {z} minus its center.

If f : T → C is a function defined on some setT ⊆ C which includes some
punctured discD(z0, r) \ {z0} of positive radius aboutz0 ∈ C and if ` ∈ C, then
to say that the limit off asz approachesz0 is `, or in symbols,

lim
z→z0

f(z) = `

means the following:

for eachε > 0 it is possible to findδ > 0 so that

z ∈ C, 0 < |z − z0| < δ ⇒ |f(z)− `| < ε

An equivalent condition is that: for each sequence(zn)∞n=1 in G \ {z0} with
limn→∞ zn = z0 we havelimn→∞ f(zn) = `.

The catch is that we needε’s to define limits of sequences. To saylimn→∞wn =
` means:

for eachε > 0 it is possible to findN ∈ N so that

n ∈ N, n > N ⇒ |wn − `| < ε.
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Proposition 0.21 If G ⊂ C is open andf : G → C, thenf is continuous at a
point z0 ∈ G if and only iflimz→z0 f(z) = f(z0).

Remark 0.22 One can show that the limit of a sum is the sum of the limits (pro-
vided the individual limits make sense). More symbolically,

lim
z→z0

f(z) + g(z) = lim
z→z0

f(z) + lim
z→z0

g(z).

Similarly

lim
z→z0

f(z)g(z) = ( lim
z→z0

f(z))( lim
z→z0

g(z))

if both individual limits exist.
We also have the result on limits of quotients,

lim
z→z0

f(z)

g(z)
=

limz→z0 f(z)

limz→z0 g(z)

providedlimz→z0 g(z) 6= 0. In short the limit of a quotient is the quotient of the
limits provided the limit in the denominator is not zero.

There is also a theorem on limits of compositions, which needs continuity. If
limz→z0 f(z) = ` andg: T → C is defined on a setT that has̀ as in interior point
and ifg is continuous at̀, then

lim
z→z0

g(f(z)) = g(`).

An important basic example of continuity is provided by polynomial functions
p(z) = anz

n + an−1z
n−1 + · · · + a1z + a0. We havelimz→z0 p(z) = p(z0) (for

any polynomialp and anyz0 ∈ C).

Compactness 0.23Let T ⊆ C be a subset of the complex plane. Anopen cover
of T is a familyU of open subsets ofC such that

T ⊆
⋃
{U : U ∈ U}

A subfamilyV ⊆ U is called a subcover ofU if V is also a cover ofT .
T is calledcompactif each open cover ofT has a finite subcover.
T is calledboundedif there existsR ≥ 0 with T ⊆ D̄(0, R).
One way to state theHeine-Borel theoremis that a subsetT ⊆ C is compact

if and only if it is both (1) closed and (2) bounded.
Continuous images of compact sets are compact:T ⊆ C compact,f : T → C

continuous impliesf(T ) compact.


