414 2003–04

Before we launch into complex analysis, it may be helpful to look back for a moment at the history of the subject. Calculus goes back to Leibniz and Newton, but calculus with complex-valued functions of a complex independent variable is not quite so old. There was a debate on the validity of complex numbers (and the imaginary i) but there was also a long process of discovery of the concept of a function or map as we know it today.

At one time functions were regarded as things that were given by a 'proper' formula and analytic functions fitted into this idea.

Cauchy (1769–1857) developed contour integrals and the idea of analytic functions as complex differentiable functions with a continuous derivative.

Riemann (1826–1866) took a geometrical view and looked as complex functions as mappings or transformations.

Weierstrass (1815–1897) is responsible for a formal approach, the ϵ - δ way of dealing with things and the theory of uniform convergence of power series.

Chapter 0: Basics

Notation 0.1 \mathbb{C} will denote the complex numbers. For $z \in \mathbb{C}$ we will often write z = x + iy with $x, y \in \mathbb{R}$ the real and imaginary parts of z and $i^2 = -1$.

The modulus (or absolute value) of such a z is $|z| = \sqrt{x^2 + y^2}$. Properties: $|z + w| \le |z| + |w|$ (triangle inequality), $|zw| = |z| |w| (z, w \in \mathbb{C})$.

The complex conjugate of z = x + iy is $\overline{z} = x - iy$. Properties: $\overline{z + w} = \overline{z} + \overline{w}$, $\overline{zw} = \overline{z} \, \overline{w}$, $z\overline{z} = |z|^2$.

The usual (Euclidean) distance between points $z, w \in \mathbb{C}$ is d(z, w) = |z - w|. d is also called a *metric*. *Properties:* $d(z, w) \ge 0$ with equality if and only if $z = w, d(z, w) = d(w, z), d(z, w) \le d(z, v) + d(v, w)$ (triangle inequality).

$$D(z_0, r) = \{ z \in \mathbb{C} : |z - z_0| < r \}$$

is the open disk about $z_0 \in \mathbb{C}$ of radius r > 0.

$$\overline{D}(z_0, r) = \{ z \in \mathbb{C} : |z - z_0| \le r \}$$

is the closed disk.

Open and closed subsets 0.2 A set $G \subseteq \mathbb{C}$ is *open* if each $z \in G$ is an *interior point* of G.

A point $z \in G$ is called an interior point of G if there is a disk $D(z,r) \subset G$ with r > 0.

Picture for an open set: G contains **none** of its 'boundary' points.

Any union $G = \bigcup_{i \in I} G_i$ of open sets $G_i \subseteq \mathbb{C}$ is open (I any index set, arbitrarily large).

 $F \subseteq \mathbb{C}$ is *closed* if its complement $\mathbb{C} \setminus F$ is open.

Picture for a closed set: F contains all of its 'boundary' points.

Note that open and closed are opposite extremes. There are plenty of sets which are neither open nor closed. For example $\{x + iy : 0 \le x, y < 1\}$ is a square in the plane with some of the 'boundary' included and some not. It is neither open nor closed.

Any intersection $F = \bigcup_{i \in I} F_i$ of closed sets $F_i \subset \mathbb{C}$ is closed. Finite intersection $G_1 \cap G_2 \cap \cdots \cap G_n$ of open sets are open. Finite unions of closed sets are closed.

Interiors and closures 0.3 For any set $E \subseteq \mathbb{C}$, the interior E° is the set of all its interior points.

$$E^{\circ} = \{ z \in E : \exists r > 0 \text{ with } D(z, r) \subseteq E \}$$

is the largest open subset of \mathbb{C} contained in *E*. Also

$$E^{\circ} = \bigcup \{ G : G \subseteq E, G \text{ open in } \mathbb{C} \}$$

Picture: E° is *E* minus all its 'boundary' points. The closure of *E* is

$$\bar{E} = \bigcap \{F : F \subset \mathbb{C}, E \subset F \text{ and } F \text{ closed} \}$$

and it is the smallest closed subset of \mathbb{C} containing E.

Picture: \overline{E} is E with all its 'boundary' points added.

Properties: $\overline{E} = \mathbb{C} \setminus (\mathbb{C} \setminus E)^{\circ}$ and $E^{\circ} = \mathbb{C} \setminus (\overline{\mathbb{C} \setminus E})$.

Boundary 0.4 The boundary ∂E of a set $E \subseteq \mathbb{C}$ is defined as $\partial E = \overline{E} \setminus E^{\circ}$. This formal definition makes the previous informal pictures into facts.

Relatively open and closed 0.5 If $R \subseteq T \subseteq \mathbb{C}$ is a subset of a subset T of \mathbb{C} , then R is called open in T (or open relative to T) if for each $z \in R$ it is possible to find some r > 0 so that $D(z, r) \cap T \subset R$.

Note that for each $z \in R$ we have a choice of $r = r_z > 0$ that depends on $z \in R$ so that $D(z, r_z) \cap T \subset R$. Taking $G = \bigcup_{z \in R} D(z, r_z)$ we find an open set $G \subset \mathbb{C}$ with $R = T \cap G$. This is an equivalent condition for $R \subset T$ to be open in T.

 $S \subseteq T$ is called *closed in* T if $T \setminus S$ is open in T. Equivalently, if $S = T \cap F$ for $F \subset \mathbb{C}$ closed.

Picture: $S \subset T$ is closed in T contains all of its boundary points that are in T.

This can also be used a pictorial explanation of relatively open $R \subset T$: R does not contain any of the boundary of $S = T \setminus R$.

Connected 0.6 A subset $T \subseteq \mathbb{C}$ is called connected if the only subsets $X \subseteq T$ that are both open in T and closed in T are $X = \emptyset$ and X = T.

Equivalently, if it is not possible to decompose $T = T_1 \cup T_2$ with $T_1 \cap T_2 = \emptyset$, $T_1 \neq \emptyset$, $T_2 \neq \emptyset$ and both T_1 and T_2 open in T.

Proposition 0.7 If $T_1, T_2 \subseteq \mathbb{C}$ are each connected and $T_1 \cap T_2 \neq \emptyset$, then $T_1 \cup T_2$ is connected.

More generally, if $\{T_i : i \in I\}$ is a family of connected subsets $T_i \subseteq \mathbb{C}$ and $T_i \cap T_j \neq \emptyset$ for each $i, j \in I$, then $\bigcup_{i \in I} T_i$ is connected.

Definition 0.8 If $T \subseteq \mathbb{C}$ is a set and $z \in \mathbb{C}$, then the connected component of z in T is

$$\bigcup \{X : X \subseteq T, z \in X \text{ and } X \text{ connected } \}$$

Remark 0.9 We can define an equivalence relation on any set $T \subseteq \mathbb{C}$ by defining $z \sim w$ (for $z, w \in T$) if there is some connected $X \subseteq T$ with both $z, w \in X$.

The connected component of a point $z \in T$ is then the equivalence class of z under this equivalence relation.

Using the general theory of equivalence relations, it follows that the connected components of any $T \subseteq \mathbb{C}$ partition T. (That is, any two connected components of T are either identical or disjoint.)

Example 0.10 *1.* $T = D(0, 1) \cup D(2, 1)$ is not connected.

2. We will see that $D(0,1) \cup D(2,1) \cup \{1\}$ is connected.

Theorem 0.11 Intervals in \mathbb{R} are connected.

Continuity 0.12 If $f: T \to \mathbb{C}$ is a function on a subset $T \subseteq \mathbb{C}$, then f is called continuous at a point $z_0 \in T$ if for each $\varepsilon > 0$ it is possible to find $\delta > 0$ so that

$$z \in T, |z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \epsilon$$

 $f: T \to \mathbb{C}$ is called continuous if it is continuous at each point $z_0 \in T$.

Proposition 0.13 If $T \subseteq \mathbb{C}$ and $f: T \to \mathbb{C}$, then f is continuous if and only if it satisfies the following condition: for each open set $U \subset \mathbb{C}$, its inverse image $f^{-1}(U) = \{z \in T : f(z) \in U\}$ is open in T.

Proposition 0.14 If $T \subseteq \mathbb{C}$, then T is connected if and only if there is no continuous function $f: T \to \mathbb{R}$ with range the two point set $\{0, 1\}$.

Equivalently if the only continuous functions $f: T \to \mathbb{R}$ with range $f(T) \subset \{0, 1\}$ are constant.

Proof. Exercise.

Theorem 0.15 If $f: T \to \mathbb{C}$ is continuous and $T \subseteq \mathbb{C}$ is connected, then $f(T) = \{f(z) : z \in T\}$ is connected. (Continuous images of connected sets are connected.)

Proof. Exercise. (Not so hard using the previous result.)

Path Connectedness 0.16 By a *path* in \mathbb{C} , we mean a continuous function $\gamma: I \to \mathbb{C}$ from an interval $I \subseteq \mathbb{R}$.

We say that a set $T \subseteq \mathbb{C}$ is *path connected* if for each pair of points $z_0, z_1 \in T$ it is possible to find a path $\gamma: [0, 1] \to T$ in T with starting point $\gamma(0) = z_0$ and ending point $\gamma(1) = z_1$.

Proposition 0.17 *Path connected subsets* $T \subseteq \mathbb{C}$ *are connected.*

Proof. If $\gamma: [0,1] \to T$ is a path, then $\gamma([0,1)$ is a connected set by Theorems 0.11 and 0.15. Thus $\gamma(0)$ and $\gamma(1)$ belong in the same connected component of T for any such path.

If T is path connected, this argument shows that every pair of points of T belong in the same connected component and so there is only one connected component (or no connected components at all if T is empty). Thus T is connected.

Remark 0.18 This proposition can be used to show that discs are connected sets. For example if $z \in D(z_0, r)$ then the path $\gamma: [0, 1] \to D(z_0, r)$ given by $\gamma(t) = (1 - t)z_0 + tz$ is a path in the disc joining z_0 to z.

One can also show that $D(0,1) \cup D(2,1) \cup \{1\}$ is path connected and so connected, justifying an earlier example.

Theorem 0.19 If $G \subset \mathbb{C}$ is open and connected, then G is path connected.

Proof. Exercise.

Limits 0.20 We will find it convenient to have the idea of a punctured disc. A punctured (open) disc is a disc $D(z,r) \setminus \{z\}$ minus its center.

If $f: T \to \mathbb{C}$ is a function defined on some set $T \subseteq \mathbb{C}$ which includes some punctured disc $D(z_0, r) \setminus \{z_0\}$ of positive radius about $z_0 \in \mathbb{C}$ and if $\ell \in \mathbb{C}$, then to say that the limit of f as z approaches z_0 is ℓ , or in symbols,

$$\lim_{z \to z_0} f(z) = \ell$$

means the following:

for each $\epsilon > 0$ it is possible to find $\delta > 0$ so that

$$z \in \mathbb{C}, \ 0 < |z - z_0| < \delta \Rightarrow |f(z) - \ell| < \epsilon$$

An equivalent condition is that: for each sequence $(z_n)_{n=1}^{\infty}$ in $G \setminus \{z_0\}$ with $\lim_{n\to\infty} z_n = z_0$ we have $\lim_{n\to\infty} f(z_n) = \ell$.

The catch is that we need ϵ 's to define limits of sequences. To say $\lim_{n\to\infty} w_n = \ell$ means:

for each $\epsilon > 0$ it is possible to find $N \in \mathbb{N}$ so that

$$n \in \mathbb{N}, n > N \Rightarrow |w_n - \ell| < \epsilon.$$

Proposition 0.21 If $G \subset \mathbb{C}$ is open and $f: G \to \mathbb{C}$, then f is continuous at a point $z_0 \in G$ if and only if $\lim_{z\to z_0} f(z) = f(z_0)$.

Remark 0.22 One can show that the limit of a sum is the sum of the limits (provided the individual limits make sense). More symbolically,

$$\lim_{z \to z_0} f(z) + g(z) = \lim_{z \to z_0} f(z) + \lim_{z \to z_0} g(z).$$

Similarly

$$\lim_{z \to z_0} f(z)g(z) = (\lim_{z \to z_0} f(z))(\lim_{z \to z_0} g(z))$$

if both individual limits exist.

We also have the result on limits of quotients,

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)}$$

provided $\lim_{z\to z_0} g(z) \neq 0$. In short the limit of a quotient is the quotient of the limits provided the limit in the denominator is not zero.

There is also a theorem on limits of compositions, which needs continuity. If $\lim_{z\to z_0} f(z) = \ell$ and $g: T \to \mathbb{C}$ is defined on a set T that has ℓ as in interior point and if g is continuous at ℓ , then

$$\lim_{z \to z_0} g(f(z)) = g(\ell).$$

An important basic example of continuity is provided by polynomial functions $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$. We have $\lim_{z \to z_0} p(z) = p(z_0)$ (for any polynomial p and any $z_0 \in \mathbb{C}$).

Compactness 0.23 Let $T \subseteq \mathbb{C}$ be a subset of the complex plane. An *open cover* of T is a family \mathcal{U} of open subsets of \mathbb{C} such that

$$T \subseteq \bigcup \left\{ U : U \in \mathcal{U} \right\}$$

A subfamily $\mathcal{V} \subseteq \mathcal{U}$ is called a subcover of \mathcal{U} if \mathcal{V} is also a cover of T.

T is called *compact* if each open cover of T has a finite subcover.

T is called *bounded* if there exists $R \ge 0$ with $T \subseteq \overline{D}(0, R)$.

One way to state the *Heine-Borel theorem* is that a subset $T \subseteq \mathbb{C}$ is compact if and only if it is both (1) closed and (2) bounded.

Continuous images of compact sets are compact: $T \subseteq \mathbb{C}$ compact, $f: T \to \mathbb{C}$ continuous implies f(T) compact.