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Before we launch into complex analysis, it may be helpful to look back for a
moment at the history of the subject. Calculus goes back to Leibniz and Newton,
but calculus with complex-valued functions of a complex independent variable is
not quite so old. There was a debate on the validity of complex numbers (and the
imaginaryi) but there was also a long process of discovery of the concept of a
function or map as we know it today.

At one time functions were regarded as things that were given by a ‘proper’
formula and analytic functions fitted into this idea.

Cauchy (1769-1857) developed contour integrals and the idea of analytic
functions as complex differentiable functions with a continuous derivative.

Riemann (1826-1866) took a geometrical view and looked as complex func-
tions as mappings or transformations.

Weierstrass (1815—-1897) is responsible for a formal approach;theay of
dealing with things and the theory of uniform convergence of power series.

Chapter 0: Basics

Notation 0.1 C will denote the complex numbers. For C we will often write
z = x + iy with z, y € R the real and imaginary parts efand:? = —1.

The modulus (or absolute value) of such & |z| = /22 + y2. Properties:
|z + w| < |z| + |w| (triangle inequality)|zw| = |z| |w| (z,w € C).

Thecomplex conjugatef z = z+iy is z = x—iy. Properties:z + w = z+w,
Zw = zw, 2z = |z|*

The usual (Euclidean) distance between points € Cisd(z, w) = |z — w|.
d is also called anetric. Properties: d(z,w) > 0 with equality if and only if
z=w,d(z,w) = d(w,z),d(z,w) < d(z,v) + d(v,w) (triangle inequality).

D(zp,7) ={2€C:|z— 2| <r}
is the open disk about € C of radiusr > 0.

D(zg,r) ={2€C:|z— 2| <r}

is the closed disk.
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Open and closed subsets 0.2 setG C C is openif eachz € G is aninterior
pointof G.

A point z € G is called an interior point of7 if there is a diskD(z,r) C G
with r > 0.

Picture for an open set containsnoneof its ‘boundary’ points.

Any unionG = |J..; G; of open setg7; C C is open ( any index set, arbi-
trarily large).

F C Cisclosedif its complementC \ F'is open.

Picture for a closed setf’ containsall of its ‘boundary’ points.

Note that open and closed are opposite extremes. There are plenty of sets
which are neither open nor closed. For examflet+ iy : 0 < z,y < 1} is
a square in the plane with some of the ‘boundary’ included and some not. Itis
neither open nor closed.

el

Any intersection/’ = | J,, F; of closed sets’; C Cis closed.
Finite intersectiorG; N Gy N - - - N G, of open sets are open.
Finite unions of closed sets are closed.

Interiors and closures 0.3 For any sety’ C C, the interiorE” is the set of all its
interior points.

E°={z¢€ E:3r>0with D(z,r) C E}
Is the largest open subset@fcontained ink. Also
E° = | {G: G € E,G openinC}

Picture: E°is E minus all its ‘boundary’ points.
The closure off is

E=(){F:FCC,ECFandF closed

and it is the smallest closed subsettontainingE.
Picture: £ is ' with all its ‘boundary’ points added.
Properties:E =C\ (C\ E)°andE° =C\ (C\ E).
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Boundary 0.4 TheboundarydE of a sett C C is defined a9 F = E \ E°.
This formal definition makes the previous informal pictures into facts.

Relatively open and closed 0.3f R C T C C is a subset of a subsét of C,
thenR is calledopen inT (or open relative td") if for eachz € R it is possible
to find some > 0 so thatD(z,7)NT C R.

Note that for eachh € R we have a choice of = r, > 0 that depends on
z € RsothatD(z,r,) NT C R. TakingG = |J,., D(z,7.) we find an open set
G C Cwith R =T N G. This is an equivalent condition fa¢ C 7' to be open in
T.

S C Tis calledclosed inT' if T'\ S is openinT. Equivalently, ifS =T NF
for F* C C closed.

Picture: S C T'is closed inT" contains all of its boundary points that are in
T.

This can also be used a pictorial explanation of relatively dpen7": R does
not contain any of the boundary 8f= 7"\ R.

Connected 0.6A subsefl” C C is called connectedf the only subsetsX’ C T
that are both open ifi" and closed il are X = ) and X =T

Equivalently, if it is not possible to decompdfe= T U T, with T, N T = (),
T, # 0, T, # () and bothI’; andT), open inT'.

Proposition 0.7 If Ty, T, C C are each connected arid N 75 # 0, thenTy U T,
is connected.

More generally, if{T; : i € I} is a family of connected subséts C C and
T; N T; # 0 for eachi, j € I, thenJ,., T; is connected.

Definition 0.8 If T' C C is a set and: € C, then theconnected componenf =
inTis
J{X: X ST z€ XandX connected

Remark 0.9 We can define an equivalence relation on any/set C by defining
z ~w (for z,w € T) if there is some connected C T with bothz, w € X.

The connected component of a poing T is then the equivalence classof
under this equivalence relation.

Using the general theory of equivalence relations, it follows that the connected
components of any’ C C partitionT'. (That is, any two connected components
of T" are either identical or disjoint.)
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Example 0.10 1. 7= D(0,1) U D(2,1) is not connected.

2. We will see thaD(0,1) U D(2,1) U {1} is connected.
Theorem 0.11 Intervals inR are connected.

Continuity 0.12 If f: T — C is a function on a subsét C C, thenf is called
continuous at a poind, € 7' if for eache > 0 it is possible to find > 0 so that

zeT, |z—2| <d=|f(z) = f(z0)] <€
f: T — Cis calledcontinuousf it is continuous at each poing, € T'.

Proposition 0.131f 7' C C and f: T — C, thenf is continuous if and only if
it satisfies the following condition: for each open setc C, its inverse image
Y U)={2€T: f(z) e U}isopeninT.

Proposition 0.14 If T' C C, thenT is connected if and only if there is no contin-
uous functionf: 7" — R with range the two point s€0, 1}.

Equivalently if the only continuous functiorfis7 — R with range f(T") C
{0,1} are constant.

Proof. Exercise.

Theorem 0.151f f: T'— C is continuous and” C C is connected, theli(T") =
{f(2) : z € T} is connected. (Continuous images of connected sets are con-
nected.)

Proof. Exercise. (Not so hard using the previous result.)

Path Connectedness 0.1®y apathin C, we mean a continuous functien/ —
C from an intervall C R.

We say that a sét C C is path connected for each pair of pointgg, z; € T
it is possible to find a path: [0,1] — T in T with starting pointy(0) = z, and
ending pointy(1) = z.

Proposition 0.17 Path connected subséfsC C are connected.
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Proof. If v: [0, 1] — T'is a path, thery([0, 1) is a connected set by Theorems 0.11
and 0.15. Thus/(0) andv(1) belong in the same connected componerit’ ¢br
any such path.

If T is path connected, this argument shows that every pair of points of
belong in the same connected component and so there is only one connected com-
ponent (or no connected components at all is empty). Thug'" is connected.

Remark 0.18 This proposition can be used to show that discs are connected sets.
For example ifz € D(zo,r) then the pathy: [0,1] — D(zo,r) given by~(t) =
(1 —t)zo + tz is a path in the disc joining, to z.

One can also show thd?(0,1) U D(2,1) U {1} is path connected and so
connected, justifying an earlier example.

Theorem 0.191f G C C is open and connected, théhis path connected.
Proof. Exercise.

Limits 0.20 We will find it convenient to have the idea of a punctured disc. A
punctured (open) disc is a dige(z, r) \ {z} minus its center.

If f/:T — Cis a function defined on some sEtC C which includes some
punctured disd(zp, ) \ {20} of positive radius about, € C and if¢ € C, then
to say that the limit off asz approaches, is ¢, or in symbols,

lim f(z)=1¢

z—20

means the following:

for eache > 0 it is possible to find > 0 so that

2€C,0<|z—2|<0=|f(z) = (| <€

An equivalent condition is that: for each sequerieg)s®, in G \ {z} with
lim,, . 2, = 2o We havelim,,_., f(z,) = ¢.

The catch is that we neet to define limits of sequences. To davi,, .., w,, =
¢ means:

for eache > 0 it is possible to findV € N so that

neNn>N = |w, — (| <e.



6 Chapter 0: Basics

Proposition 0.21 If G C C is open andf: G — C, then f is continuous at a
pointz, € G if and only iflim, .., f(z) = f(20)-

Remark 0.22 One can show that the limit of a sum is the sum of the limits (pro-
vided the individual limits make sense). More symbolically,
lim f(z) 4+ ¢g(z) = lm f(2)+ lim g(2).

Z—20 zZ—20 zZ—20

Similarly

lim £(2)g(2) = (lim £(=))(lim g(=))

z—20 z—20 z—20

if both individual limits exist.
We also have the result on limits of quotients,

i £ limasy £(2)

=z g(2)  lim, .., g(2)
providedlim, .., g(z) # 0. In short the limit of a quotient is the quotient of the
limits provided the limit in the denominator is not zero.

There is also a theorem on limits of compositions, which needs continuity. If
lim,_.., f(z) = {andg: T — C is defined on a séf that had as in interior point
and if g is continuous at, then

lim g(f(2)) = g(0).

z—20

An important basic example of continuity is provided by polynomial functions
p(2) = ap2" + ap_ 12"+ - + a1z + ag. We havelim, ., p(z) = p(z) (for
any polynomialp and anyz, € C).

Compactness 0.23Let 7' C C be a subset of the complex plane. 8pen cover
of 7" is a familyl/ of open subsets d such that

T\ J{U:Ueu}

A subfamilyV C U is called a subcover @f if V is also a cover of .

T is calledcompactf each open cover df’ has a finite subcover.

T is calledboundedf there existsk > 0 with T C D(0, R).

One way to state theleine-Borel theorens that a subset’ C C is compact
if and only if it is both (1) closed and (2) bounded.

Continuous images of compact sets are compact: C compact,f: 7 — C
continuous implie§ (7') compact.



