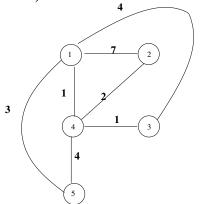
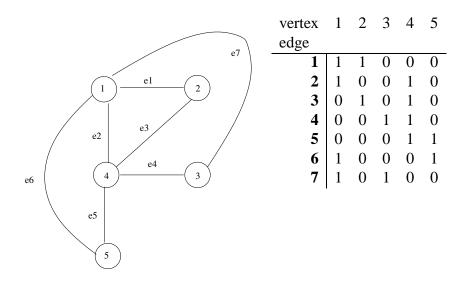
3E1 Trinity Term Tutorial sheet 8 [April 2 – 7, 2003]

Name: Solutions

1. For the following graph, write out the incidence table. (Ignore the edge "lengths" given for now.)



Solution:



2. Use Dijkstra's algorithm to find the shortest lengths from vertex 1 to each of the other vertices j for the graph in the above picture.

Solution:

Step 0 (preliminary): Vertex 1 gets permanent shortest length $L_1 = 0$. Other vertices get temporary lengths $TL_2 = 7$, $TL_3 = 4$, $TL_4 = 1$ and $TL_5 = 3$.

Define the permanent lengths set as $\mathcal{PL} = \{1\}$ and the temporary lengths set as $\mathcal{TL} = \{2, 3, 4, 5\}$.

Step 1: j = 4 has the smallest TL_j , $j \in T\mathcal{L}$. $L_4 = 1$, $\mathcal{PL} = \{1, 4\}$ and $\mathcal{TL} = \{2, 3, 5\}$. As \mathcal{TL} is not the empty set, continue to step 2.

Step 2: For each j in \mathcal{TL} , update TL_j :

$$TL_{2} = \min (TL_{2}, L_{1} + \ell_{12}, L_{4} + \ell_{42})$$

$$= \min (7, 0 + 7, 1 + 2)$$

$$= 3$$

$$TL_{3} = \min (TL_{3}, L_{1} + \ell_{13}, L_{4} + \ell_{43})$$

$$= \min (4, 0 + 4, 1 + 1)$$

$$= 2$$

$$TL_{5} = \min (TL_{5}, L_{1} + \ell_{15}, L_{4} + \ell_{45})$$

$$= \min (3, 0 + 3, 1 + 4)$$

$$= 3$$

Step 1: j = 3 has the smallest TL_j , $j \in T\mathcal{L}$. $L_3 = 2$, $\mathcal{PL} = \{1, 3, 4\}$ and $\mathcal{TL} = \{2, 5\}$. As \mathcal{TL} is not the empty set, continue to step 2.

Step 2: For each j in \mathcal{TL} , update TL_j :

$$TL_{2} = \min (TL_{2}, L_{1} + \ell_{12}, L_{3} + \ell_{32}, L_{4} + \ell_{42})$$

$$= \min (3, 0 + 3, 2 + \infty, 1 + 2)$$

$$= 3$$

$$TL_{5} = \min (TL_{5}, L_{1} + \ell_{15}, L_{3} + \ell_{35}, L_{4} + \ell_{45})$$

$$= \min (3, 0 + 3, 2 + \infty, 1 + 4)$$

$$= 3$$

Step 1: j = 2 has the smallest TL_j , $j \in T\mathcal{L}$. (So has j = 5 but we choose the smaller j according to the algorithm.) $L_2 = 3$, $\mathcal{PL} = \{1, 2, 3, 4\}$ and $\mathcal{TL} = \{5\}$.

As $T\mathcal{L}$ is not the empty set, continue to step 2.

Step 2: For each j in \mathcal{TL} , update TL_j :

$$TL_5 = \min (TL_5, L_1 + \ell_{15}, L_2 + \ell_{25}, L_3 + \ell_{35}, L_4 + \ell_{45})$$

= min (3, 0 + 3, 3 + \infty, 2 + \infty, 1 + 4)
= 3

Step 1: j = 5 has the smallest TL_j , $j \in T\mathcal{L}$. $L_5 = 3$, $\mathcal{PL} = \{1, 2, 3, 4, 5\}$ and $\mathcal{TL} = \emptyset$.

As $T\mathcal{L}$ is now empty, we finish with output

$$L_1 = 0, L_2 = 3, L_3 = 2, L_4 = 1, L_5 = 3.$$