## **3E1 Hilary/Trinity Term Tutorial sheet 7** [March 5 – 31, 2003]

## Name: Solutions

1. Use the simplex algorithm to maximise  $z = 900x_1 + 800x_2 + 300x_3$  subject to

| $3x_1$ | + | $2x_2$ | + | $x_3$ | + | $x_4$ |   |       | = | 60 |
|--------|---|--------|---|-------|---|-------|---|-------|---|----|
| $x_1$  | + | $x_2$  |   |       |   |       | + | $x_5$ | = | 15 |

and  $x_j \ge 0$  for  $1 \le j \le 5$ . [Note: This is the continuation of the problem at the end of the previous tutorial sheet.]

Solution: Writing things as a tableau, we get

| 1 | -900 | -800 | -300 | 0 | 0 | 0  |
|---|------|------|------|---|---|----|
| 0 | 3    | 2    | 1    | 1 | 0 | 60 |
| 0 | 1    | 1    | 0    | 0 | 1 | 15 |

Choose the pivot column as 2 (the one with -900 at the top, most negative) and then for the row of the pivot entry we look at the ratios 60/3 = 20, 15/1 = 15 of the right hand sides to the (positive) entries in the column. We choose the least of these anad pivot on the (3, 2) entry. This is already 1 [no need to divide across the row by it] and so we do Row 1 +900 Row 3, Row 2 - 3 Row 3, to get

| ſ | 1 | 0 | 100 | -300 | 0 | 900 | 13500 |
|---|---|---|-----|------|---|-----|-------|
|   | 0 | 0 | -1  | 1    | 1 | -3  | 15    |
|   | 0 | 1 | 1   | 0    | 0 | 1   | 15    |

Next pivot column is Column 4 (-300) and Row 2 (only 15/1 to consider). Pivot on entry (2, 4). We do Row 1 +300 Row 2 and get

| Γ | 1 | 0 | -200 | 0 | 300 | 0  | 18000 |
|---|---|---|------|---|-----|----|-------|
|   | 0 | 0 | -1   | 1 | 1   | -3 | 15    |
|   | 0 | 1 | 1    | 0 | 0   | 1  | 15    |

Next pivot column is 3 (-200) and Row 3. Pivot on (3,3) entry. Row 1 +200 Row 3, Row 2 + Row 3.

| 1 | 200 | 0 | 0 | 300 | 200 | 21000 |
|---|-----|---|---|-----|-----|-------|
| 0 | 1   | 0 | 1 | 1   | -2  | 30    |
| 0 | 1   | 1 | 0 | 0   | 1   | 15    |

The basic variables are now  $x_2$  and  $x_3$  (where there are zeros in the objective function row (Row 1) and a permuted identity matrix in the remaining columns excluding the right hand sides column). The objective function has value  $z = 21000 - (200x_1 + 300x_4 + 200x_5)$  which is never more than 21000 and is 21000 at  $x_1 = x_4 = x_5 = 0$  [non-basic equal to zero]. Corresponding values of  $x_2$  and  $x_3$  are  $x_3 = 30$ ,  $x_2 = 15$ .

So the maximum is 21000 at  $(x_1, x_2, x_3, x_4, x_5) = (0, 15, 30, 0, 0)$ .

[In the original problem,  $x_4$  and  $x_5$  were the slack variables.]

2. The following is the adjacency matrix for a graph. Sketch the graph.

| 0 | 1   | 0 | 1 | 0 ] |
|---|-----|---|---|-----|
| 1 | 0   | 0 | 1 | 0   |
| 0 | 0   | 0 | 1 | 0   |
| 1 | 1   | 1 | 0 | 1   |
| 0 | 0   | 0 | 1 | 0   |
|   | . • |   |   | -   |

Solution:



3. For the following directed graph, write out the adjacency matrix.



6

Solution: Edge from vertex i to vertex j gives 1 in (i, j) entry.

| 0 | 1 | 1 | 0 | 0 | 0 |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |