3E1 Hilary Term Tutorial sheet 5
[February 19-24, 2003]

Name: Solution

1. The circularly symmetric fundamental (or modal) solutions to the wave equation for a
circular drum of radius are given by

un(r,t) = <An cos (Cc;ont) + B, sin (%t)) Jo (ll%r)

for the Bessel functiod, and the positive zerds < ag; < agy < ag3 < --- Of Jq.

Find the nodal lines (in fact nodal circles) foy. (These are the points wheug(r,t) = 0
for all t.)

Solution: We seek the values ofwhereJ, (‘“jT"r) = 0 and this means that

Qon

—r = aq,, for some (maybe other)
a
Qom
r = —a
Aon

Sincer is restricted td < r < a we have to have,, < ag,, orm < n. The casen = n only

gives the outer rim of the drum (which is fixed anyhow by the boundary condition) and so the

nodal circles are a
I —L m=1,2...,n—1
Aon

A graph of the Bessel functiorf, and a

picture (see Fig. 1) of a snapshot«f at 1

atime when the origin is depressed dow -* |

(The picture has a sector cut outand has ;" |

hor!zontal cross through the Ol’lgl.n). Theo \ N\ N\
horizontal cuts the surface attwo interme 15 "\{E/‘/ ' ﬂsk/o
diate circles. IRV
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Figure 1: Snapshot af;

2 A thin circular disk of radius 2 is insulated on its faces. The round edge is kept at temper-
ature 0 and the temperaturér, y, t) (at points(x, y) of the disk) obeys the heat equation

ou *u  O%*u
— =92 — + —
ot or?  Oy?
Find the circularly symmetric product form solutions (using polar coordinates).

Solution: Here we proceed in a way similar to the circular drum, but there are some differences
because of the first order partial with respect.to

Let (in polar coordinatesy(r,0,t) = u(r,t) = F(r)G(t) (no # dependence since we are
dealing with the circularly symmetric case). Thgh= F(r)G’(t) and

Pu  Pu Pu 10u 1% ” 1,
922 + 92~ o + ~ar + 200 F'(r)G(t) + ;F (r)G(1)

so that the PDE says

F(r)G'(t) = 2 (F”(T)G(t) + %F’(r)G(t))

G'(t) F'(r)  1F'(r)
2G(t) F(r) r F(r)

(on dividing across bg F'(r)G(t)). So both sides have to be constant, say.

Now G'(t) — 2kG(t) = 0 and this has solution§(t) = Ae?** (for A a constant). If > 0
then this means that the absolute valti¢t)| — oo ast — oo and this seems to be unlikely on
physical grounds (that(r, t)| — oo ast — oo for fixedr). To rule it out in a mathematical way
is also possible, by considering the ODE foland the boundary conditions, but this would take

2



quite a bit of extra work. Fok = 0 we haveG(t) = A = constant, or a steady state solution.
This is not ruled out on physical grounds. So we have —p? < 0 with p > 0.
The ODE forF'(r) is then

() + %F'(r) +pPR(r) =0

Forp > 0 we know the solution that is finite at= 0 is F'(r) = Jo(pr) (and multiples of that).

We deduced this by the change of variables pr, r = s/p. Leth(s) = F(s/p). Now
R (s) = I—ljF’(s/p), h'(s) = z%F”(s/p). The ODE becomes’h”(s) + Eph'(s) + p*h(s) = 0.
Dividing byp? we get the ODE for,. The other solutions of Bessels equation have a logarithmic
term (involveln z) and so are infinite ab. Soh(s) = Jy(s) (or a multiple).

The boundary conditio'(2) = 0 tells us that/y(2p) = 0 and so2p is one of the zeros
0 < ap < agp < --- of Jy. 2p = agp, (say) orp = ag, /2. This leads us to the modal solutions

U (r, 1) = e 2 Jo(pr) = exp(—(a, /2)t) Jo (agar/2) n=1,2,...

(or a constanti,, times that).

We should still look into the cage = 0. Then the ODE for¥' is F"(r) + (1/r)F'(r) = 0
which is a first order linear equation fét (r). If we put H(r) = F'(r) itis H'(r)+(1/r)H(r) =
0 and this kind of ODE can be solved by the integrating factor method. (First order linear
ODE. Integrating factoexp ([(1/r)dr) = explnr = r.) We getrH'(r) + H(r) = 0 or
4(rH(r)) = 0. ThusrH(r) = B = constantF”(r) = H(r) = B/r and soF (r) = Blnr + C.
We cannot have the log term &%0) would not be defined. SB = 0 andF'(r) = C' = constant,
but the boundary conditiof’'(2) = 0 then forcesC" = 0. So we end up with only the zero
solution if k. = 0. So we already had all the fundamental solutiapsbove.



