Note: This material is contained in Kreyszig, Chapter 13.

Complex integration

We will define integrals of complex functions along curve<in(This is a bit similar to [real-
valued] line integralgf7 Pdx + QdyinR2)

A curve is most conveniently defined by a parametrisation. So a curve is a functians] —
C (from a finite closed real intervale, b] to the plane). We can imagine the poirit) being
traced out by a pen which is at positigf¥) at time¢. We can writey(t) = z(t) + iy(t) in terms
of its real an imaginary parts.

Then we define/(t) = 2/(t) + i/ (t) (can be viewed as the tangent vector or velocity vector
to the curve) and we will only be dealing with curves whefg) is defined and continuous.

A curve is callecclosedif v(a) = ~(b) (start and end point coincide).

A curve is calledsimpleif it never goes though the same point twice (with the possible
exception that/(a) = ~(b) is allowed — apart from this aj(¢) have to be different points).

Example. A simple example to keep in mind is a circle, say the circle of radius0 about
the origin where we travel once around it anticlockwise starting and ending at the-oirthe
positive axis.

Then~,: [0,27] — C,

Y- (t) = re = rcost + irsint

is one obvious parametrisation.

Definition If ~v: [a,b] — Cis a curve inC and f(z) is a complex-valued function defined at
least for allz = ~(t), then we define

A ez | F 0t

(This last is a fairly ordinary integral, except thaty(t))'(t) will have complex values. Say
F(y(@)y'(t) = p(t) + iq(t) (in terms of the real pani(t) and imaginary parg(t)). Then the
complex integral means simply

/abp(t)—|—iq(t)dt:/abp(t)dt—l—i/abq(t)dt

Technically we will require that these ordinary integral®@ndg should exist, but that will
be ok in all our examples. Continuity gfand of+/(¢) is enough to make the integral ok.
Example. Take~, as in the example above arfifz) = 1/z. Then we can explicitly compute

1 27 1 ) 27
/ —dz = / —retdt = / idt = 21
oy 2 g ret 0

(In practice, we can rarely do the calculation so directly. Typically we will use theorems to
simplify the curve first.)

Elementary properties (of complex integrals). The basic properties are reminiscent of those
for line integrals inR? (except that we now have complex values).
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1. The exact parametrisation of the cunves not important, although the direction is. So for
example, if we take the circle| = r but parametrise it in a different way, while still going
once around anticlockwise — say by: [0, 1] — C with o,.(¢t) = €™, then the integral

will not change. So
| 1= [ s

Changing the direction of the curve changes the the integral by a fadtofFor exam-
ple in the case of the circlg,: [0,27] — C with p.(t) = e>™ has [, f(2)dz =
— f% f(2) dz. These fact follow by ordinary substitution (or change of variables).

2. If f(z) = F'(z) for some analytid”(z) and~: [a,b] — C is a curve with all pointsy(t)
in the set wherd”(z) is analytic, then

[te@ri= [ Paop@a= [ LFOw)E = Fo@), = Fo0)-Fh@)

is the difference of the valugs(end — F'(stard.

3. In particular, if the integrand(z) has an analytic antiderivativé(z) that works all along
v, then the exact path does not enter in to the value ﬁf(z) dz (as long agy stays in
the set wherd" is analytic) and the integral will be O if the path is closed (start = end).

If you look back at the last example you will see that the integraf(ef) = 1/z around
the closed curve, was not zero. Thus there is no antiderivativel pf that works all the
way aroundy,. [Recall thatlog = is an antiderivative ot /> except on the negative axis.
The jump we make in the argumentg(z) at the negative axis actually corresponds to the
value2mi of the integral.]

4. We can use Green’s theorem for complex valiéd, y) andQ(z, y). That is

/deerQdy://R (%_2_19 dz dy

is true for complex-value®, Q if v is a simple closed curve iR?, R is the interior ofy
and bothP and(@ are well-behaved inside and on

Here we interpret the integrals of complex things as the integral of the real-péirhes
the integral of the imaginary part.

Theorem 1 (Cauchy’s theorem)If ~ is a simple closed anticlockwise curve in the complex
plane andf(z) is analytic on some open set that includes all of the cuyvend all points

inside~, then
/f(z) dz =0
v
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Proof. We writedz = dx + idy and use Green’s theorem on

A F(z)dz = / ferdo+ i) = [ (a“gf” - agf;)) i dy

(with R denoting the interior of). If you recall the proof of the CR equations you will remember
that (because the limit defining(z) = lim;,_ w can be taken in any direction or in all
directions at once

0f(z) _ 10f(2)

F) = ox i Oy
It follows that the integrand of the double integral we got from Green'’s theorem

Oif(z) 1) (5‘f_<2> _Lof <Z>) 0
o oy Ox i 0Oy

and so we gef7 f(2)dz = 0. [Another way to do this is to writ¢(z) = u + iv and use the CR
equations to get the integrand of the double integral to be zero.]

Remark. Itis vital that there are no bad points §fz) inside or ory. Look again at the last
example and see th#@tz) = 1/z is fine everywhere except at= 0. This can (and does in that
case) make the integral nonzero.

Corollary 2 Suppose we have two anticlockwise simple closed cui\aasd~, with one entirely
contained in the interior of the other. Suppogg) is analytic on some open set that includes
both~; and~; and the region between the two curves. Then

/ﬂf(z)dz:/mf(z)dz

(The proof involves making a ‘narrow bridge’ between the two curves and a simple closed
curvel that goes almost once around the outer curve, in across one side of the bridge, the wrong
way around the inner curve and back across the bridge.

f(z) will be analytic on and in-
sidel” and then|[. f(z) dz = 0 by
- Cauchy’s theorem. Let the width of
/ Q f the bridge tend to zero and we find
AN = that we get the result we want be-
V% cause the integral along the bridge
= in different directions cancel.)

Example. Looking back at the examplﬁw 1/zdz we saw they all turned out to i no
matter what the radius > 0 was. We can now see that this independencefoflows because
of (the Corollary to) Cauchy’s theorem. Also we can see that we will also get the Zaime
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for integrals around more complicated curves that go once anticlockwise around the origin. For
example the ellipse: [0, 27] — C with

o(t) =4cost + 3isint
containsy, if r < 3. So [, 1/zdz = [ 1/zdz = 2ri.

Theorem 3 (Cauchy’s integral formula) Suppose that is a simple closed anticlockwise curve
in the complex plane and(z) is analytic on some open set that includes all of the curead
all points insidey. Then for any point, inside~y we have

S dz = 2mif(z)

»yZ_ZO

(We will not proved this but the idea is that the integral will remain the same if we replace
by a small circle around,. If we let the radius of the small circle> 0 then we can show that
the integral must be very close 2aif(z,). As the integral is idependent of the radius, it must

actually be2rif(z).)
/ 2 4+z2+1
210, 3
w20 t22-3

Example. Consider
The integrand is bad at two points because the denominator is zero at two places.

224241 Py |

22422-3  (2+3)(z—1)

(The bad points are = 1 andz = —3.) Only one of these bad points= 1 is inside~,. We can
in fact write the integral as

2 1 2 1
/ 71 et dz:/ /(z) dzwheref(z):iz rer
v ? +2z—3 722—1 z+3

and then the Cauchy integral formula gives the ansiwef (1) = 27i2 = 3mi/2 for the integral
we started with.

It did not matter that the curve was exactly the circle of radius 2, only that it went around 1
but not around-3.

Power series.One can make use of Cauchy’s integral formula to prove that every analytic
function f(z) can be represented by a power series in any disc where it is analytic.

If f(z) is analytic in an open set that includes the disec C : |z — z| < r} of radiusr > 0
aboutzy, then

F(z) =) an(z — z)" forall z with |2 — z| < r.
n=0
The coefficients:,, can be represented as integrals
B f(”)(zo)

1
an:—,/ Ldzforany0<s<r,ora5an_
270 J |y spms (2 — 20)" T n!
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Example. Take f(z) = 1/z andz, = 2. Thenf(z) is analytic for|z — z| < 2 and so there
is a power series fof (z) there.

eZ

(z—=1)(z—2)
there is power series fof(z) in the largest dis¢z — z| < r that misses 1 and 2. Specifically
is the shorter of the two distancgs— 1| and|z — 2|.

A more complicated example §z) = . For anyz, different from 1 and 2,



