
Note: This material is contained in Kreyszig, Chapter 13.

Complex integration

We will define integrals of complex functions along curves inC. (This is a bit similar to [real-
valued] line integrals

∫
γ
P dx+Qdy in R2.)

A curve is most conveniently defined by a parametrisation. So a curve is a functionγ : [a, b]→
C (from a finite closed real intervale[a, b] to the plane). We can imagine the pointγ(t) being
traced out by a pen which is at positionγ(t) at timet. We can writeγ(t) = x(t) + iy(t) in terms
of its real an imaginary parts.

Then we defineγ′(t) = x′(t) + iy′(t) (can be viewed as the tangent vector or velocity vector
to the curve) and we will only be dealing with curves whereγ′(t) is defined and continuous.

A curve is calledclosedif γ(a) = γ(b) (start and end point coincide).
A curve is calledsimple if it never goes though the same point twice (with the possible

exception thatγ(a) = γ(b) is allowed — apart from this allγ(t) have to be different points).
Example. A simple example to keep in mind is a circle, say the circle of radiusr > 0 about

the origin where we travel once around it anticlockwise starting and ending at the pointr on the
positive axis.

Thenγr : [0, 2π]→ C,
γr(t) = reit = r cos t+ ir sin t

is one obvious parametrisation.
Definition If γ : [a, b]→ C is a curve inC andf(z) is a complex-valued function defined at

least for allz = γ(t), then we define∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt.

(This last is a fairly ordinary integral, except thatf(γ(t))γ′(t) will have complex values. Say
f(γ(t))γ′(t) = p(t) + iq(t) (in terms of the real partp(t) and imaginary partq(t)). Then the
complex integral means simply∫ b

a

p(t) + iq(t) dt =

∫ b

a

p(t) dt+ i

∫ b

a

q(t) dt

Technically we will require that these ordinary integrals ofp andq should exist, but that will
be ok in all our examples. Continuity off and ofγ′(t) is enough to make the integral ok.

Example. Takeγr as in the example above andf(z) = 1/z. Then we can explicitly compute∫
γr

1

z
dz =

∫ 2π

0

1

reit
ireit dt =

∫ 2π

0

idt = 2πi

(In practice, we can rarely do the calculation so directly. Typically we will use theorems to
simplify the curve first.)

Elementary properties (of complex integrals). The basic properties are reminiscent of those
for line integrals inR2 (except that we now have complex values).
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1. The exact parametrisation of the curveγ is not important, although the direction is. So for
example, if we take the circle|z| = r but parametrise it in a different way, while still going
once around anticlockwise — say byσr : [0, 1] → C with σr(t) = e2πit, then the integral
will not change. So ∫

γr

f(z) dz =

∫
σr

f(z) dz

Changing the direction of the curve changes the the integral by a factor−1. For exam-
ple in the case of the circle,µr : [0, 2π] → C with µr(t) = e−2πit has

∫
µr
f(z) dz =

−
∫
γr
f(z) dz. These fact follow by ordinary substitution (or change of variables).

2. If f(z) = F ′(z) for some analyticF (z) andγ : [a, b] → C is a curve with all pointsγ(t)
in the set whereF (z) is analytic, then∫
γ

f(z) dz =

∫ b

a

F ′(γ(t))γ′(t) dt =

∫ b

a

d

dt
F (γ(t)) dt = [F (γ(t))]bt=a = F (γ(b))−F (γ(a))

is the difference of the valuesF (end)− F (start).

3. In particular, if the integrandf(z) has an analytic antiderivativeF (z) that works all along
γ, then the exact pathγ does not enter in to the value of

∫
γ
f(z) dz (as long asγ stays in

the set whereF is analytic) and the integral will be 0 if the path is closed (start = end).

If you look back at the last example you will see that the integral off(z) = 1/z around
the closed curveγr was not zero. Thus there is no antiderivative of1/z that works all the
way aroundγr. [Recall thatlog z is an antiderivative of1/z except on the negative axis.
The jump we make in the argumentarg(z) at the negative axis actually corresponds to the
value2πi of the integral.]

4. We can use Green’s theorem for complex valuedP (x, y) andQ(x, y). That is∫
γ

P dx+Qdy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dx dy

is true for complex-valuedP , Q if γ is a simple closed curve inR2, R is the interior ofγ
and bothP andQ are well-behaved inside and onγ.

Here we interpret the integrals of complex things as the integral of the real part+i times
the integral of the imaginary part.

Theorem 1 (Cauchy’s theorem) If γ is a simple closed anticlockwise curve in the complex
plane andf(z) is analytic on some open set that includes all of the curveγ and all points
insideγ, then ∫

γ

f(z) dz = 0
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Proof. We writedz = dx+ idy and use Green’s theorem on∫
γ

f(z) dz =

∫
γ

f(z) dx+ (if(z)) dy =

∫∫
R

(
∂(if(z))

∂x
− ∂f(z)

∂y

)
dx dy

(withR denoting the interior ofγ). If you recall the proof of the CR equations you will remember
that (because the limit definingf ′(z) = limh→0

f(z+h)−f(z)
h

can be taken in any direction or in all
directions at once

f ′(z) =
∂f(z)

∂x
=

1

i

∂f(z)

∂y

It follows that the integrand of the double integral we got from Green’s theorem

∂(if(z))

∂x
− ∂f(z)

∂y
= i

(
∂f(z)

∂x
− 1

i

∂f(z)

∂y

)
= 0

and so we get
∫
γ
f(z) dz = 0. [Another way to do this is to writef(z) = u+ iv and use the CR

equations to get the integrand of the double integral to be zero.]
Remark. It is vital that there are no bad points off(z) inside or onγ. Look again at the last

example and see thatf(z) = 1/z is fine everywhere except atz = 0. This can (and does in that
case) make the integral nonzero.

Corollary 2 Suppose we have two anticlockwise simple closed curvesγ1 andγ2 with one entirely
contained in the interior of the other. Supposef(z) is analytic on some open set that includes
bothγ1 andγ2 and the region between the two curves. Then∫

γ1

f(z) dz =

∫
γ2

f(z) dz

(The proof involves making a ‘narrow bridge’ between the two curves and a simple closed
curveΓ that goes almost once around the outer curve, in across one side of the bridge, the wrong
way around the inner curve and back across the bridge.

f(z) will be analytic on and in-
sideΓ and then

∫
Γ
f(z) dz = 0 by

Cauchy’s theorem. Let the width of
the bridge tend to zero and we find
that we get the result we want be-
cause the integral along the bridge
in different directions cancel.)

Example. Looking back at the example
∫
γr

1/z dz we saw they all turned out to be2πi no
matter what the radiusr > 0 was. We can now see that this independence ofr follows because
of (the Corollary to) Cauchy’s theorem. Also we can see that we will also get the same2πi
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for integrals around more complicated curves that go once anticlockwise around the origin. For
example the ellipseσ : [0, 2π]→ C with

σ(t) = 4 cos t+ 3i sin t

containsγr if r < 3. So
∫
σ

1/z dz =
∫
γ2

1/z dz = 2πi.

Theorem 3 (Cauchy’s integral formula) Suppose thatγ is a simple closed anticlockwise curve
in the complex plane andf(z) is analytic on some open set that includes all of the curveγ and
all points insideγ. Then for any pointz0 insideγ we have∫

γ

f(z)

z − z0

dz = 2πif(z0)

(We will not proved this but the idea is that the integral will remain the same if we replaceγ
by a small circle aroundz0. If we let the radius of the small circle→ 0 then we can show that
the integral must be very close to2πif(z0). As the integral is idependent of the radius, it must
actually be2πif(z0).)

Example. Consider ∫
γ2

z2 + z + 1

z2 + 2z − 3
dz

The integrand is bad at two points because the denominator is zero at two places.

z2 + z + 1

z2 + 2z − 3
=

z2 + z + 1

(z + 3)(z − 1)

(The bad points arez = 1 andz = −3.) Only one of these bad pointsz = 1 is insideγ2. We can
in fact write the integral as∫

γ2

z2 + z + 1

z2 + 2z − 3
dz =

∫
γ2

f(z)

z − 1
dz wheref(z) =

z2 + z + 1

z + 3

and then the Cauchy integral formula gives the answer2πif(1) = 2πi3
4

= 3πi/2 for the integral
we started with.

It did not matter that the curve was exactly the circle of radius 2, only that it went around 1
but not around−3.

Power series.One can make use of Cauchy’s integral formula to prove that every analytic
functionf(z) can be represented by a power series in any disc where it is analytic.

If f(z) is analytic in an open set that includes the disc{z ∈ C : |z− z0| < r} of radiusr > 0
aboutz0, then

f(z) =
∞∑
n=0

an(z − z0)n for all z with |z − z0| < r.

The coefficientsan can be represented as integrals

an =
1

2πi

∫
|z−z0|=s

f(z)

(z − z0)n+1
dz for any0 < s < r, or asan =

f (n)(z0)

n!
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Example. Takef(z) = 1/z andz0 = 2. Thenf(z) is analytic for|z − z0| < 2 and so there
is a power series forf(z) there.

A more complicated example isf(z) =
ez

(z − 1)(z − 2)
. For anyz0 different from 1 and 2,

there is power series forf(z) in the largest disc|z − z0| < r that misses 1 and 2. Specificallyr
is the shorter of the two distances|z − 1| and|z − 2|.


