
Note: This material is conatined in Kreyszig, sections 21.1–3.

Incidence tables of graphs

The incidence table of a graph has as many rows as there are edges in the graph and as many
columns as vertices. The row for a given edge has two 1’s in it, corresponding to the two ends of
the edge. (This is for undirected graphs — for directed graphs we could use−1 to show the start
vertex and+1 for the end, but we will not really consider this case.)

It is also possible to write the incidence table in a form where each row has just two entries,
for the two ends of the edge.

2

4

5

21

3

1

3

4

5

vertex 1 2 3 4 5
edge

1 1 1 0 0 0
2 1 0 0 1 0
3 0 1 0 1 0
4 0 0 1 1 0
5 0 0 0 1 1

Alternative
e1 v1, v2

e2 v1, v4

e3 v2, v4

e4 v3, v4

e5 v4, v5

Algorithms

An algorithm is a method that is spelled out in a way that can be followed (for example by a
computer programme) step by step.

There are many algorithms for dealing with graph-theoretic problems but we will just deal
with one, Dijkstra’s algorithm for finding shortest paths. The simplex method is another example
of an algorithm.

An important consideration for an algorithm is the running time, or number of low level
steps it takes to finish (which is more or less the same if one knows the time for each step).
The conventional wisdom is that an algorithm which takes a number of steps that is at most a
polynomial function of the size of the problem is a good one. For graphs, this means a polynomial
function in the number of edges (m) or vertices (n). Since a graph withn vertices can have at

most

(
n
2

)
=
n(n− 1)

2
edges, a polynomial inm is less than a polynomial of twice the degree

in n.
The rationale if that is an algorithm requires2m steps (not polynomial, but exponential) then

a sizem = 10 problem takes210 = 1024 ∼= 103 steps, a problem withm = 100 (not very big)



Graphs 2

takes2100 ∼= (103)10 = 1030 steps — a huge number. A problem of sizem = 1000 would be
impossible.

On the other hand if the number of steps is roughlym4 (quite a bad bound, in fact, for
practical purposes), thenm = 10 means104 steps,m = 1000 means10004 = 1012 (which is still
fine for a computer that maybe can do around109 steps per second).

Graphs with lengths

We consider now graphs where there is a length attached to each edge. We will onlyallow positive
lengths (though they could represent something other than lengths suchas a toll or cost). If we
number the vertices1, 2, . . . , n, then we can call the length of the edge from vertexi to vertex
j by `ij. To cope with the fact that there may be no edge between some pairs ofi andj we put
`ij =∞ in those cases (and̀ii = 0).

When dealing with undirected graphs,`ij = `ji. Dijkstra’s algorithm finds the lengths of
shortest paths from a given vertex (vertex number 1, say) to the other vertices.

It is based on a single idea calledBellman’s principle of optimality . The principle says that
if v1, v2, . . . , vk−1, vk is a shortest path from vertexv1 to vertexvk, then leaving off the last edge
gives a shortest pathv1, v2, . . . , vk−1 from v1 to vk−1 = the penultimate vertex. (Reason: if there
was a shorter route tovk−1 we could use that plus the last step tovk.)

Dijkstra’s algorithm

Setup: Graph withn vertices numbered1, 2, . . . , n and lengths̀ ij of the edge from vertexi to
vertexj. (All `ij ≥ 0, but`ij =∞ possible. Each̀ii = 0.)

Aim: Find each of the lengthsLj of the shortest paths from vertex 1 to the other verticesj
(or to a given other vertex).

Step 0 (preliminary): Vertex 1 gets permanent shortest lengthL1 = 0. Other vertices get tem-
porary lengthsTLj = `1j for 2 ≤ j ≤ n.

Define the permanent lengths set asPL = {1} and the temporary lengths set asT L =
{2, 3, . . . , n}.

Step 1: Find the (or a)j ∈ T L with the smallestTLj. (Choose the smallestj if there are more
than one possible.) Addj to the setPL, setLj = TLj, and removej from T L.

If T L is now the empty set, then outputL2, L3, . . . , Ln and stop.

If not, continue to step 2.

Step 2: For eachj in T L, set

TLj = min

(
TLj, min

k∈PL
Lk + `kj

)
Return to Step 1.



Graphs 3

[To find just one of theLj, can stop when thatj is in the setPL.]
Fact: Dijkstra’s algorithm takes a number of steps approximately proportional ton2.


