
Stokes’s theorem

Suppose S is an oriented suface in R3
(means that there is a

continuously varying unit normal at all points of S) which is well behaved
and bounded by a closed curve C (or possibly a finite number of

closed curves) and suppose C is oriented so that S is to the
left. Let F = F(x, y, z) = [F1, F2, F3] be a vector field
well-behaved on S and its boundary C. Then∫∫

S

(∇× F).n dA =
∮

C

F.dx
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Examples. (i) Green’s theorem (S planar). (ii) S a
closed surface like a sphere (no C).
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Green’s theorem

Another way to write the theorem (equivalant way) is:
Assume F(x, y) = [F1(x, y), F2(x, y)] is well behaved
in a region of the plane that includes an anticlockwise
simple closed curve C and its interior R. Suppose n is
the unit normal to C pointing outwards. Then∮

C

F.n ds =
∫∫

R

∇.F dx dy

(ds = arclength).
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Reason . T = dx
dsi + dy

dsj is the unit tangent vector to C.
n = dy

dsi−
dx
dsj. Hence F.n ds = F1 dy − F2 dx.
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Heat equation

We consider a heated solid object. u(x, y, z, t) =
temperature at position (x, y, z) and at time t.

Law of heat flow : Heat will flow in direction of
maximum decrease of termperature, that is in the
direction of −∇u = −[∂u

∂x,
∂u
∂y,

∂u
∂z ] at a rate proportional

to ‖∇u‖. Flow rate = K‖∇u‖ with K = thermal
conductivity.

We assume K > 0 constant. Consider any subregion
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R inside the solid with boundary surface S.
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∫∫
S

−K(∇u).n dS = rate of heat flow out of S.

(Pictorially (∇u).n dS = ‖∇u‖ cos θ dS = ‖∇u‖ area of
infinitesimal section dS times cosine of angle with
direction of flow (effective cross sectional area for flow
from dS).

On the other hand, total heat inside R at any time is∫∫∫
R

σρu dx dy dz (with σ = specific heat, ρ = density

of material). Computing rate of decrease of heat (or
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rate of heat loss) in two ways∫∫
S

−K(∇u).n dS = − ∂

∂t

∫∫∫
R

σρu dx dy dz
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Apply Gauss’ theorem on the left and bring the
deriviative inside the integral on the right∫∫∫

R

−Kdiv (∇u) dx dy dz =
∫∫∫

R

−σρ
∂u

∂t
dx dy dz∫∫∫

R

(σρ
∂u

∂t
−K∇2u) dx dy dz = 0

True for all small regions R inside solid. Forces

∂u

∂t
=

K

σρ
∇2u

or
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∂u

∂t
= c2∇2u

with c2 = K/(σρ) = thermal diffusivity of the material.

Remark. If the heat distribution is in a steady state
(i.e. no t dependence in u) then ∂u/∂t = 0. Hence
∇2u = 0 (u satisfies Laplace’s equation).

Remark. To derive the Heat equation for
2-dimensions (no z) can either use 2-D version of the
divergence theorem (= version of Green’s theorem
stated after Stokes’ above) or just assume u(x, y, z, t)
independent of z.
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Remark. For 1-dimensional heat equation, can either
use latter aproach (assume no y or z dependence) or
look at thin rod with temperature u(x, t) and heat flow
proprtional to −∂u/∂x. Instead of Gauss’ theorem use∫ β

α

∂2u

∂x2 dx =
∂u

∂x
(β, t)− ∂u

∂x
(α, t)

Exercise: Try to work this argument through.
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