UNIVERSITY OF DUBLIN

XMA3211?

TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

JS & SS Mathematics

Trinity Term 2006

Course 321 — Modern Analysis

Dr. R. M. Timoney

Credit will be given for the best 6 questions answered. Logarithmic tables are available if required.

- (a) State the axiom of choice and give a definition of any terminology involved in the statement.
 - (b) Let f: X → Y be a surjective function. Show that there exists a mapping g: Y → X such that f ∘ g is the identity map on Y.
 Show that this is in fact equivalent to the Axiom of Choice. [Hint: Given a family of sets {A_i: i ∈ I}, consider the family of disjoint sets given by B_i = A_i × {i}. Let f: ⋃_i B_i → I be the function which has the value i on B_i.]
 - (c) Show that there exists a discontinuous function $f: \mathbb{R} \to \mathbb{R}$ which satisfies the identity f(x + y) = f(x) + f(y). [Hint: Consider \mathbb{R} as a vector space over \mathbb{Q} and use the fact that \mathbb{R} has a basis over \mathbb{Q} that contains 1. Take f(1) = 0 and f(x) = 0 on other basis elements.]
- 2. (a) Define the terms partial order, linear order, well order and ordinal number.
 - (b) Explain why there is a cardinality associated with every ordinal number and give a brief explanation of why there is an ordinal with any given cardinality.
 - (c) State Zorn's lemma and explain the terminology involved in the statement.
 - (d) Show that in any inner product space, there exist maximal orthonormal subsets.
- (a) Define the terms *first countable*, *second countable* and *separable* for topological spaces. Show that every second countable topological space is first countable. Show that every second countable topological space is separable.
 - (b) Show that in a metric space (X, d) the collection B_x = {B(x, 1/n) : n ∈ N} of all open balls of radius 1/n centered at a point x ∈ X forms a neighbourhood base at x (in the metric topology).
 - (c) Let X be an infinite set with the cofinite topology. (The open subsets are the empty set and subsets with finite complements in X.) Show that a sequence in X with distinct terms has every point of X as a limit.

In case X is uncountable show that X is not first countable.

- 4. (a) Define the terms *net* and *subnet*, and explain the associated terminology.
 Show that a net (x_λ)_{λ∈Λ} in a topological space X has a limit point x ∈ X if and only if (x_λ)_{λ∈Λ} has a subnet which converges to x.
 - (b) Define *compactness* for topological spaces. Show that a topological space (X, T) is compact if and only if each family F of closed subsets of X with the finite intersection property has empty intersection.
 - (c) Show that a topological space is compact if and only if every net in the space has a limit point.

- 5. (a) Define *normality* for topological spaces and prove that compact Hausdorff spaces are normal.
 - (b) If X is a compact Hausdorff space and x₀, x₁ ∈ X are two different points of X, show that there is a continuous f: X → [0, 1] with f(x₀) = 0 and f(x₁) = 1.
 - (c) Define the notion of *compactification* of a topological space X and define what is meant by a *Tychonoff space*.
 - (d) Outline a proof that every Tychonoff space has a Stone-Čech compactification.

- 6. (a) Define *boundedness* for a linear transformation between normed spaces and show that it is equivalent to continuity and to uniform continuity of the transformation. Define the *operator norm* of a bounded linear operator.
 - (b) Define the Banach spaces usually denoted $L^p([0,1])$ $(1 \le p < \infty)$ and C([0,1]).
 - (c) Show that the inclusion map $C([0,1]) \rightarrow L^p([0,1])$ is continuous, linear, has operator norm 1, but is not surjective.

- 7. (a) Define what is meant by a *Hilbert space*.
 - (b) State and prove Bessel's inequality.
 - (c) Outline a proof that every separable infinite dimensional Hilbert space is isometrically isomorphic to ℓ^2 .
- 8. (a) Prove that the 'standard basis' of the Hilbert space ℓ^2 is an orthonormal basis for ℓ^{2^4} .
 - (b) Show that the sequence space c_0 cannot be a Hilbert space in the usual supremum norm on c_0 . [Hint: parallelogram identity.]
 - (c) Show that the sequence space c_0 cannot be a Hilbert space in any norm equivalent to the usual supremum norm. [Hint: Is it reflexive?]
 - (d) Show that there is $f \in L^2([0, 2\pi])$ with

$$\int_0^{2\pi} f(x)e^{-inx} dx = \frac{1}{|n|+1} \quad (\forall n \in \mathbb{Z}).$$

9. (a) If E is a normed space and F is a Banach space, show that

$$\mathcal{L}(E,F) = \{T: E \to F: T \text{ a bounded linear operator}\}$$

is a Banach space in the operator norm (when we define vector space operations on $\mathcal{L}(E, F)$ by (T + S)(x) = T(x) + S(x), $(\lambda T)(x) = \lambda(T(x))$).

(b) Let X be a nonempty compact Hausdorff space and $f: X \to X$ continuous. Show that there exists a nonempty closed subset $A \subset X$ with f(A) = A. [Hint: Put

$$A = X \cap f(X) \cap f(f(X)) \cap \cdots$$

To show $A \subset f(A)$, fix $a \in A$ and consider $f^{-1}(a) \cap A = (f^{-1}(a) \cap X) \cap (f^{-1}(a) \cap f(X)) \cap \cdots$.]

© UNIVERSITY OF DUBLIN 2006