Mathematics 321 2008–09 Exercises 8 [Due Monday March 30th.]

1. Suppose Z is a Banach space and $X, Y \subset Z$ are two closed subspaces with $X \cap Y = \{0\}$ and X + Y = Z (that is $\{x + y : x \in X, y \in Y\} = Z$).

Show that the map $P: Z \to Z$ given by P(x+y) = x is

- (a) well-defined and linear;
- (b) bounded;
- (c) idempotent (that is satisfies $P \circ P = P$); and
- (d) has ker P = Y.
- 2. If Z is a normed space and P: Z → Z is a bounded linear idempotent map [we call P a (bounded) 'projection' in that case], show that Z is isomorphic to P(Z) ⊕₁ ker P.
 [Hint: Show that z P(z) ∈ ker P for z ∈ Z. Write z ∈ Z as z = P(z) + (z P(z)). Show that the map S: Z → P(Z) ⊕₁ ker P given by S(z) = (P(z), z P(z)) is bounded, linear and inverse to the map T: P(Z) ⊕₁ ker P given by T(x, y) = x + y.]
- 3. If $X \subset Z$ is a one-dimensional subspace of a normed space Z, show that there is a bounded projection of Z onto X (*i.e.* with range X). [Hint: Hahn-Banach]
- 4. If Z is a Banach space and $X \subset Z$ is a closed subspace of codimension one (*i.e.* the quotient Z/X has dimension one), show that there is a bounded projection of Z onto X. [Hint: Recall that the quotient vector space Z/X is the set of cosets z + X with $z \in Z$ and we have $z_1 + X = z_2 + X \iff z_1 z_2 \in X$. Choose a vector $y \in Z \setminus X$. Every $z \in Z$ can be expresse as $z = x + \lambda y$ for $\lambda \in \mathbb{K}$. Look at $Y = \{\lambda y : \lambda \in \mathbb{K}\}$.]
- 5. If H is a Hilbert space and $S \subset H$ is an orthonormal subset, show that there is an orthonormal basis for H that contains S.
- 6. If H is a Hilbert space and $M \subset H$ is a closed linear subspace, let $M^{\perp} = \{y \in H : \langle x, y \rangle = 0 \forall x \in M\}$. Show that each element $z \in H$ can be expressed as z = x + y for $x \in M$ and $y \in M^{\perp}$. [Hint: Extend an orthonormal basis of M to get one for H.]
- 7. If H is a Hilbert space and $M \subset H$ is a closed linear subspace, show that there is an isometric linear isomorphism $: M \oplus_2 M^{\perp} \to H$ given by $(x, y) \mapsto x + y$.
- 8. If H is a Hilbert space and $M \subset H$ is a closed linear subspace, show that the projection $P: H \to H$ with P(H) = M and ker $P = H^{\perp}$ is self-adjoint (that is, satisfies $P^* = P$).