Mathematics 321 2008–09

Exercises 7

[Due Thursday March 5th.]

1. Let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be normed spaces. For $1 \leq p \leq \infty$, verify that we can define a norm on $E \oplus F$ by

$$\|(x,y)\|_p = \|(\|x\|_E, \|y\|_F)\|_p = (\|x\|_E^p + \|y\|_F^p)^{1/p}$$

(in terms of the *p*-norm of \mathbb{R}^2).

(We denote the normed space $(E \oplus F, \|\cdot\|_p)$ by $E \oplus_p F$.)

- 2. With E and F as before and $1 \leq p, r \leq \infty$, show that the 'identity' map $T: E \oplus_p F \to E \oplus_r F$, given by T(x,y) = (x,y), is an isomorphism (of normed spaces bounded linear isomorphism with a bounded inverse).
- 3. With E and F as before and $1 \leq p \leq \infty$, let $\tilde{E} = \{(x,0) : x \in E\} \subset E \oplus_p F$ and $\tilde{F} = \{(0,y) : y \in F\} \subset E \oplus_p F$.

Show that $\tilde{E} \cap \tilde{F} = \{0\}$ and that each element $z \in E \oplus_p F$ can be expressed uniquely in the form z = x + y with $x \in \tilde{E}$, $y \in \tilde{F}$.

4. With E and F as before and $1 \le p \le \infty$, show that the dual space of $E \oplus_p F$ can be identified with $E^* \oplus_q F^*$ (where 1/p + 1/q = 1).

More precisely, show that the map $T: E^* \oplus_q F^* \to (E \oplus_p F)^*$ given by $T(\phi, \psi)(x, y) = \phi(x) + \psi(y)$ (for $\phi \in E^*$, $\psi \in F^*$, $x \in E$, $y \in F$) is an isometric isomorphism.

[Hint: Use Hölder's inequality to show $||T(\phi,\psi)|| \le ||(\phi,\psi)||_q$. To show the reverse inequality, fix (ϕ,ψ) and $\varepsilon > 0$. There are unit vectors $x \in E$, $y \in F$ so that $|\phi(x)| > ||\phi|| - \varepsilon$ and $|\psi(y)| > ||\psi|| - \varepsilon$. Show you can assume $\phi(x) = |\phi(x)|$ and $\psi(y) = |\psi(y)|$ (use rotations). Take z = (tx, sy) for suitable $0 \le s, t \le 1$, $s^p + t^p = 1$ and consider $T(\phi, \psi)(z)$.

You still have to show T is surjective.]

- 5. Suppose now Z is a normed space and $X,Y\subset Z$ are two closed subspaces with $X\cap Y=\{0\}$ and X+Y=Z (that is $\{x+y:x\in X,y\in Y\}=Z$).
 - (a) Show that each $z \in Z$ can be uniquely expressed in the form z = x + y for $x \in X, y \in Y$.
 - (b) Show that the map $T: X \oplus_1 Y \to Z$ given by T(x,y) = x + y is linear, bounded and bijective.
 - (c) If Z is complete, show that T has a bounded inverse. [So it is an isomorphism of Banach spaces. Hint: Open mapping theorem.]
- 6. If H and K are Hilbert spaces, show that there is an inner product on $H \oplus_2 K$ that gives rise to the norm.