Mathematics 321 2008–09 Exercises 6 [Due Friday February 13th.]

- 1. If (S, \leq) is a partially ordered set, show that the union of any chain of linearly ordered subsets of S is again a linearly ordered subset of S.
- 2. Let V be the vector space of all sequences $(x_1, x_2, \ldots, x_n, \ldots)$ of real numbers which become zero after some term x_n (n depends on the sequence). We refer to these as finitely nonzero sequences of real numbers. V is a vector space over \mathbb{R} when we define

$$(x_1, x_2, \dots, x_n, \dots) + (y_1, y_2, \dots, y_n, \dots) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n, \dots) \lambda(x_1, x_2, \dots, x_n, \dots) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n, \dots)$$

Exhibit a basis for V (with proof).

- 3. Consider \mathbb{R} as a vector space over \mathbb{Q} . Let $E \subset \mathbb{R}$ be a basis for \mathbb{R} over \mathbb{Q} . Prove that E is uncountable.
- 4. Let V be a vector space over a field F and suppose $S \subset V$ spans V. If $A \subset S$ is a linearly independent subset, show that there exists a basis B of V with $A \subset B \subset S$.
- 5. Let V be a vector space over a field F and $v_0 \in V$ a non-zero vector in V.
 - (a) If V does not have dimension one, show that V has a basis which does not contain v_0 .
 - (b) Is there a counterexample in the case when V has dimension one?