Mathematics 321 2008–09 Exercises 5 [Due Friday January 30th.]

1. Let E and F be Banach spaces and $T: E \to F$ a linear transformation (not assumed to be bounded). Let

 $S_T = \{ y \in F : \exists \text{ a sequence } (x_n)_{n=1}^{\infty} \text{ in } E \text{ with } \lim_{n \to \infty} x_n = 0 \text{ and } \lim_{n \to \infty} T(x_n) = y \}$

- (a) If T is bounded, show that $S_T = \{0\}$.
- (b) If $S_T = \{0\}$ show that the graph of T is closed.
- (c) If $S_T = \{0\}$ show that T is bounded.

 $(S_T \text{ is known as the 'separating space' of } T.)$

2. Let $f: X \to Y$ be a surjective function. Show that there exists a mapping $g: Y \to X$ such that $f \circ g$ is the identity map on Y.

Show that this is in fact equivalent to the Axiom of Choice. [Hint: Given a family of sets $\{A_i: i \in I\}$, consider the family of disjoint sets given by $B_i = A_i \times \{i\}$. Let $f: \bigcup_i B_i \to I$ be the function which has the value i on B_i .]

3. Draw the picture of $(\mathcal{P}(X), \subseteq)$ for $X = \{0, 1, 2\}$.

Give an example of a chain in $(\mathcal{P}(X), \subseteq)$ in this case.

- 4. Give an example of a chain in a partially ordered set such that the chain has no upper bound.
- 5. Give an example of a subset of a partially ordered set with a maximal element but no upper bound.
- 6. Let S = the set of all proper subsets of \mathbb{N} which are nonempty ($\neq \emptyset$ and $\neq \mathbb{N}$), and order S by set inclusion.

Find a maximal element of S and a minimal element. (How should a minimal element be defined?)

Is the maximal element you found the largest element?

7. Show that every group has a maximal abelian subgroup. [Note not necessarily a proper subgroup.]