Mathematics 321 2008–09 Exercises 4 [Due Monday January 12th.]

- 1. Let E be a normed space and define $B_E = \{x \in E : ||x|| < 1\} = B(0,1)$. [We refer to B_E as the 'unit ball' of E.]
 - (i) For r > 0 show that $B(0, r) = rB_E$. [Here rB_E means $\{rx : x \in B_E\}$.]
 - (ii) For r > 0 and $x_0 \in E$, show that $B(x_0, r) = x_0 + B(0, r) = x_0 + rB_E$. [Here the notation $x_0 + B(0, r)$ means $\{x_0 + x : x \in B(0, r)\}$.]
- 2. Consider a finite closed interval $[a, b] \subset \mathbb{R}$ and let μ denote normalised length measure on [a, b]. So that means $d\mu(x) = \frac{1}{b-a} dx$ and for (measurable and integrable) functions $f: [a, b] \to \mathbb{R}, \int_{[a,b]} f(x) d\mu(x) = \frac{1}{b-a} \int_a^b f(x) dx.$

Let $1 \leq p < \infty$, and consider the two L^p spaces $L^p([a, b])$ (where we will use $||f||_p$ for the norm) and $L^p([a, b], \Sigma, \mu)$. Here Σ means the measurable subsets of [a, b], and we will denote the norm of the 'abstract' L^p space $L^p([a, b], \Sigma, \mu)$ by $||f||_{L^p(\mu)}$ so as to distinguish it from $||f||_p$.

- (i) Show that as sets, $\mathcal{L}^p([a,b])$ and $\mathcal{L}^p([a,b], \Sigma, \mu)$ coincide.
- (ii) Show that as sets, $L^p([a, b])$ and $L^p([a, b], \Sigma, \mu)$ coincide. [That means that the equivalence relation we use to pass from \mathcal{L}^p to L^p is the same in both situations.]
- (iii) Express $||f||_p$ in terms of $||f||_{L^p(\mu)}$.
- (iv) If $1 \le p_1 < p_2 < \infty$, how are $L^{p_1}([a, b], \Sigma, \mu)$ and $L^{p_2}([a, b], \Sigma, \mu)$ related? And how are the norms $\|f\|_{L^{p_1}(\mu)}$ and $\|f\|_{L^{p_2}(\mu)}$ related?
- (v) Again if $1 \le p_1 < p_2 < \infty$, how are $L^{p_1}([a, b])$ and $L^{p_2}([a, b])$ related? And how are the norms $||f||_{p_1}$ and $||f||_{p_2}$ related?
- 3. Let X and Y be normed spaces (over \mathbb{K}) and denote by B(X, Y) the set of bounded linear operators from X to Y.

Let $T, S \in B(X, Y)$ and $\lambda \in \mathbb{K}$.

- (i) Define $T + S: X \to Y$ by the rule (T + S)(x) = T(x) + S(x). Show that T + S is linear, that T + S is bounded and that $||T + S|| \le ||T|| + ||S||$. [Here ||T|| means the operator norm of T, and similarly for ||S|| and ||T + S||.]
- (ii) Define $\lambda T: X \to Y$ by the rule $(\lambda T)(x) = \lambda T(x)$. Show that λT is linear, that λT is bounded and that $\|\lambda T\| = |\lambda| \|T\|$.

- (iii) Show that B(X, Y) is a vector space when we use the notions of addition and multiplication by scalar just defined.
- (iv) Show that B(X, Y) becomes a normed space with the vector space structure in the previous part of the question and the operator norm.
- (v) Supose $(T_n)_{n=1}^{\infty}$ is a Cauchy sequence in B(X, Y) (with the operator norm). Show that for each $x \in X$, $(T_n x)_{n=1}^{\infty}$ is a Cauchy sequence in Y. [You could read this as follows: A Cauchy sequence of operators (in the operator norm) is pointwise Cauchy.]
- (vi) Assuming that Y is a Banach space (complete as well as normed) show that B(X,Y) is a Banach space (in the operator norm). [Hint: The previous part should help. If $(T_n)_{n=1}^{\infty}$ is a Cauchy sequence in B(X,Y) we can define a function $T: X \to Y$ by $Tx = \lim_{n \to \infty} T_n x$. (Why?) You need to check that $T \in B(X,Y)$ and then that $\lim_{n\to\infty} T_n = T$ in $(B(x,Y), \|\cdot\|_{op})$.]