Mathematics 321 2008–09 Exercises 3 [Due Friday November 28th.]

- 1. If $(X, \|\cdot\|)$ is a normed space and $a \in X$, show that the translation map $x \mapsto x + a$ on X is continuous.
- 2. If $(X, \|\cdot\|)$ is a normed space (over \mathbb{K}) and $\lambda \in \mathbb{K}$, show that the dilation map $x \mapsto \lambda x$ on X is continuous.
- 3. Show that $\ell^p \subset c_0$ for $1 \leq p < \infty$.
- 4. Show that c_0 is a separable metric space.

[Hint: Recall that a metric space (X, d) is called separable if there is a countable dense subset $S \subset X$. Countable means S is finite or else the elements of S can be listed in an infinite sequence $S = \{s_1, s_2, \ldots\}$ of elements. To say S is dense in X means that the closure $\bar{S} = X$.

In \mathbb{R} the rationals \mathbb{Q} are a countable dense subset. In \mathbb{C} , $\{q_1 + iq_2 : q_1, q_2 \in \mathbb{Q}\}$ (the complex numbers with real and imaginary parts both rational) forms a countable dense subset.

In c_0 , consider the elements of the form $x = (x_1, x_2, \ldots, x_n, 0, 0, \ldots)$ (finitely nonzero sequences) with all terms x_j rational (or complex rational if $\mathbb{K} = \mathbb{C}$).]

- 5. Show that ℓ^p is a separable metric space for each $1 \leq p < \infty$.
- 6. Show that ℓ^{∞} is not separable.

[Hint: Metric subspaces of separable metric spaces are known to be separable. In ℓ^{∞} the subset consisting of sequences $x = (\epsilon_1, \epsilon_2, \ldots)$ where $\epsilon_j = 0$ or 1 for each j. is uncountable and discrete.]