Mathematics 321 2008–09 Exercises 1 [Due Friday October 17th.]

- 1. In a metric space (X, d) show that an open ball $B(x_0, r)$ (for $x_0 \in X, r > 0$) is an open set.
- 2. In a metric space (X, d) show that a closed ball $\overline{B}(x_0, r)$ (for $x_0 \in X, r > 0$) is a closed set.
- 3. Consider the set \mathbb{N} as a submetric space of the real line (with the usual distance on \mathbb{R}). Show that the ball B(n, 1) of radius 1 about every point $n \in \mathbb{N}$ is open. Deduce that every subset of \mathbb{N} is open.
- 4. Consider the set \mathbb{N} with the usual metric again. Show that the closed ball $\overline{B}(5,1) = \{4, 5, 6\}$ but that the closure of the open ball B(5,1) is different.
- 5. Let (X, d) be a metric space and $x_0 \in X$ a given point. Define $f: X \to \mathbb{R}$ by $f(x) = d(x, x_0)$. Show that f is a continuous function. [Hint: Show that in a metric space (X, d) we have $|d(x, z) - d(y, z)| \leq d(x, y)$ for $x, y, z \in X$.]
- 6. In the metric space (\mathbb{R}^2, d) , where d is the standard euclidean metric, show that the square $\{(x, y) : |x| < 1, |y| < 1\}$ is open.
- 7. Consider the two point space $X = \{1, 2\}$ (with the discrete topology)¹ and the normed space $CB(X, \mathbb{K})$ with the supremum norm $||f||_{\infty} = \max(|f(1)|, |f(2)|)$. (Here \mathbb{K} denotes either \mathbb{R} or \mathbb{C} .)

Show that $CB(X, \mathbb{K})$ is two-dimensional by exhibiting a vector space isomorphism with \mathbb{K}^2 .

Calculate the distance $d_{\infty}(f,g) = ||f - g||_{\infty}$ on $CB(X,\mathbb{K})$ in terms of the values of $f,g \in CB(X,\mathbb{K})$.

What is the open ball of radius 1 around the origin in $CB(X, \mathbb{K})$? (We usually call this the 'unit ball' for the normed space.)

¹The discrete topology on any set Y arises from the metric ρ on Y given by $\rho(y, z) = 1$ if $y \neq z$ and $\rho(y, y) = 0$ $(y, z \in Y)$. In the case of $\{1, 2\}$ this just happens to be the same as the same as the standard euclidean value distance.