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Chapter S: Application: Fourier Series

For lack of time, this chapter is only an outline of some applications of Functional
Analysis and some proofs are not complete.

5.1 Definition. If f € L'[0, 27], then the Fourier coefficients of f are

- 1

f(n) = %/0 We_i”tf(t) dt (neZ).

The Fourier series of f is

Z f(n)e™.

n=—oo

1 )
5.2 Remark. Using the fact that the functions ¢, () = \/?emt (n € Z) form an
™

orthonormal basis for L?[0, 2] we can conclude that, for f € L?[0, 2],

F=> fn)n

neL

independent of the order of the ¢,, and with convergence in the norm of L?[0, 27].
See example 4.11. As (f, ¢,)dn(t) = f(n)e™, we see that the Fourier series of a
function f € L?[0, 27 converges to f in L? norm.

The coefficients f(n) can be defined for f € L0, 2] (recall L2[0,2n] C
L'[0,27]), but there is no guarantee that the series converges to the function in
any sense. However it is true that the Fourier series (or the sequence of Fourier
coefficients f(n), n € Z) uniquely determines the function f € L[0,27] (see
Theorem even though the way the Fourier series of f € L'[0, 27| determines

the function f is not very straightforward.
5.3 Theorem (Riemann-Lebesgue Lemma). If f € L'[0, 27], then

lim f(n) = 0.

[n|—o0
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Proof. Some of the details are omitted here, but the idea is based on the observa-
tion that the result is quite obvious when f is a trigonometric polynomial. These
polynomials are dense in L]0, 2] (and each trigonometric polynomial p has only
finitely many nonzero Fourier coefficients, hence p(n) = 0 for |n| large).

We can define a linear operator

T:L'0,27] — ¢

To check that T'(f) € > when f € L'[0, 27| use the fact that (for each n € Z)
R 1|/ .
fol < 5| [T emroa
0

27

1 2w
< — t)| dt
< 5| 1o

using e”"| =1

1
= lflh.

So |T(f)|lse = sup,, |f(n)| < oo and T(f) € £>°. By linearity of the integral,
we can see that T is linear and then the inequality || 7(f)||c < (1/27)]| f]|1 shows
that 7" is a bounded operator.

As T maps the trigonometric polynomials into cg, and ¢y C ¢*° is closed,
it follows (using density of the trigonometric polynomials in L'[0, 27]) that the
values of T are all in cy. [The idea is that if f € L'[0,27], there is a sequence
(pn)52, of trigonometric polynomials with lim,, .., p, = f (in the norm || - ||1).
By continuity of 7', T'(f) = lim,, .o T'(py) in £>°. As T'(p,,) € ¢ for each n, and
co is closed in £*°, we must have ¢(f) € ¢.]

We have not proved that the trigonometric polynomials are actually dense in
L0, 27]. The proof of that is not so different to the proof that the same trigono-
metric polynomials are dense in L2[0, 27|. Some indication of how a proof can go
was in Example 4.11. ]

5.4 Corollary. The map T: L'|0, 27| — c¢q given by

A

T(f) = (f(0), f(1), f(=1), f(2). f(=2)....)

is a bounded linear operator.
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The corollary is essentially a restatement of the Riemann-Lebesgue Lemma,
or of the way we proved it.

5.5 Definition. The Dirichlet kernels are

n

Dy(t)=> €' (n=0,1,2..).

j=—n

5.6 Remark. This is related to Fourier series because the partial sums of the
Fourier series of f € L'(0, 2| are given by

;ymwzilzw—www

This formula is easy to verify and the integral involved is known as a convolution
(of f and D,,).
We sometimes write S,, f for the function

(5,10 = 3 e

and refer to S,, f as the nth partial sum of the Fourier series of f. The partial sum
operator is a linear operator on functions. We can say S,,: L'[0, 2xr] — L'[0, 27]
or we can regard S, as having its values in a nicer space than L'[0, 27], such as
the 27-periodic continuous functions on [0, 27].

5.7 Lemma.
| Dyp|ls — o0 as n — oc.
This is proved by a fairly direct calculation to show that

Dy (1) = sin(n + 1)t

sin %t
and then estimating the integral in a somewhat careful way.

5.8 Theorem. The map T of Corollary is injective but not surjective.
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This Theorem implies that the Fourier coefficients of a function f € L'[0, 27]
determine f completely, but that the Riemann-Lebesgue lemma is not a full de-
scription of the possible sequences of Fourier coefficients for such f.

The proof of injectivity relies on Lusin’s theorem and the Weierstrass theorem
to show that if f(n) = 0 for all n € Z, then

/E f(t)dt =0 (1)

for all measurable subsets E C [0, 27]. From f(n) = 0 for all n we quickly see
that fOQW f(t)p(t)dt = 0 for all trigonometric polynomials p and then from the
Weierstrass theorem it follows easily that fo% f(t)g(t)dt = 0 for all continuous
2m-periodic functions g. From Lusin’s theorem we can get a sequence g,, of such
continuous 27-periodic functions so that

. 1 ifte
nllinm gn(t) = { 0 iftéE for almost every t € [0, 27].
Moreover we can get such a sequence where sup, |g,,(t)| = ||gn||cc < 1 for all n.

By the Lebesgue dominated convergence theorem we get (I).

If f is not zero in L'[0, 2] then it must have nonzero real or imaginary part.
Then we can find § = 1/k > 0 so that one of the following sets F has positive
measure:

E = {tel0,2n]: Rf(t) >0}
E = {te|0,2n]: Rf(t) < —0}
E = {tel0,2n]:3f(t) >}
E = {tel0,2n]:3f(t) < -0}

In all cases equation (1)) leads to a contradiction.

This way we can show that 7" is injective.

If it was surjective then it would be a bijective bounded linear operator between
Banach spaces and so the open mapping theorem would say that its inverse 7'
would have to be bounded from ¢, to L'[0, 27]. But that is not the case because
from Lemmal5.7|one can see || T'D,,|| = 1linco but [|[T-(TD,)||; = || Dali — o
as n — o0.

The next result aims to show that Fourier series are not so well-behaved even
for continuous 27-periodic functions.
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5.9 Theorem. There exists a continuous 27-periodic function f such that the par-
tial sums of its Fourier series do not converge at t = 0, that is such that

lim (S, f)(0)

n—oo

does not exist.

Proof. This can be shown via the uniform boundedness principle applied to the
Banach space C'P[0, 2] of all continuous functions f: [0, 27] — C with f(0) =
f(27). (These functions are the restrictions to [0, 27| of continuous 27-periodic
functions f:R — C. It is quite easy to see that CP[0,2n] = {f € C|0,2x7] :
f(0) — f(1) = 0} is a closed linear subspace of C[0,2x]. It is the kernel of the
bounded linear functional a: C[0,27] — C given by a(f) = f(0) — f(1). So
C'P|0, 27| is a Banach space in the norm || - ||, we usually use on C'[0, 27].) We
take the supremum norm || f|| = sup;c(g o, [f(¢)] on CP[0,27] and then it is a
Banach space.
For each n the linear operator

sp: CP[0,2r] — C
1 2

e (5O =5 [ fODun i
T Jo

can be seen to have norm ||s, o, = 5=||Dyll1 < oo. (This requires some proof,
but is not very difficult. To show |[|s, [0, < 5=/ Dy |1, estimate |s,(f)| by taking
the absolute value inside the integral. To show that ||s,|| > 5= || Dy||1, take f(t) =
D, (t)/|D,(t)| and check that f € C'P[0,27], || f|lcc = 1 and s,,(f) = %HDnHl.)

If lim,, oo (S, f)(0) did exist for each f € CP[0,27], then it would also be
true that

sup [ (S f)(0)] < oo

n>0
for each f € CP|0,2r]. By the uniform boundedness principle it would then
follow that sup,,~ [|sn|lop < 00. But this is false and so there must exist f as
required. [

This type of proof is not constructive. It does not tell you how to find a function
f € CP|0,2n] with a Fourier series that fails to converge at t = 0. It only tells
you that such a function exists.

By the way, there is nothing very special about ¢ = 0. A similar proof
would show that for any § € [0, 2] there is a function f € CP[0,2n] such
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that lim,, (5, f)(0) fails to exist. Actually this also follows from the theorem
by making a change of variables.

To see the details of these results, look in W. Rudin, Real and Complex Anal-
VSis.

Richard M. Timoney (March 19, 2009)



