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Chapter 5: Application: Fourier Series
For lack of time, this chapter is only an outline of some applications of Functional
Analysis and some proofs are not complete.

5.1 Definition. If f ∈ L1[0, 2π], then the Fourier coefficients of f are

f̂(n) =
1

2π

∫ 2π

0

e−intf(t) dt (n ∈ Z).

The Fourier series of f is

∞∑
n=−∞

f̂(n)eint.

5.2 Remark. Using the fact that the functions φn(t) =
1√
2π

eint (n ∈ Z) form an

orthonormal basis for L2[0, 2π] we can conclude that, for f ∈ L2[0, 2π],

f =
∑
n∈Z

〈f, φn〉φn

independent of the order of the φn and with convergence in the norm of L2[0, 2π].
See example 4.11. As 〈f, φn〉φn(t) = f̂(n)eint, we see that the Fourier series of a
function f ∈ L2[0, 2π] converges to f in L2 norm.

The coefficients f̂(n) can be defined for f ∈ L1[0, 2π] (recall L2[0, 2π] ⊂
L1[0, 2π]), but there is no guarantee that the series converges to the function in
any sense. However it is true that the Fourier series (or the sequence of Fourier
coefficients f̂(n), n ∈ Z) uniquely determines the function f ∈ L1[0, 2π] (see
Theorem 5.8) even though the way the Fourier series of f ∈ L1[0, 2π] determines
the function f is not very straightforward.

5.3 Theorem (Riemann-Lebesgue Lemma). If f ∈ L1[0, 2π], then

lim
|n|→∞

f̂(n) = 0.
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Proof. Some of the details are omitted here, but the idea is based on the observa-
tion that the result is quite obvious when f is a trigonometric polynomial. These
polynomials are dense in L1[0, 2π] (and each trigonometric polynomial p has only
finitely many nonzero Fourier coefficients, hence p̂(n) = 0 for |n| large).

We can define a linear operator

T : L1[0, 2π] → `∞

T (f) = (f̂(0), f̂(1), f̂(−1), f̂(2), f̂(−2), . . .).

To check that T (f) ∈ `∞ when f ∈ L1[0, 2π] use the fact that (for each n ∈ Z)

|f̂(n)| ≤ 1

2π

∣∣∣∣∫ 2π

0

e−intf(t) dt

∣∣∣∣
≤ 1

2π

∫ 2π

0

|f(t)| dt

using |e−int| = 1

=
1

2π
‖f‖1.

So ‖T (f)‖∞ = supn |f̂(n)| < ∞ and T (f) ∈ `∞. By linearity of the integral,
we can see that T is linear and then the inequality ‖T (f)‖∞ ≤ (1/2π)‖f‖1 shows
that T is a bounded operator.

As T maps the trigonometric polynomials into c0, and c0 ⊂ `∞ is closed,
it follows (using density of the trigonometric polynomials in L1[0, 2π]) that the
values of T are all in c0. [The idea is that if f ∈ L1[0, 2π], there is a sequence
(pn)∞n=1 of trigonometric polynomials with limn→∞ pn = f (in the norm ‖ · ‖1).
By continuity of T , T (f) = limn→∞ T (pn) in `∞. As T (pn) ∈ c0 for each n, and
c0 is closed in `∞, we must have t(f) ∈ c0.]

We have not proved that the trigonometric polynomials are actually dense in
L1[0, 2π]. The proof of that is not so different to the proof that the same trigono-
metric polynomials are dense in L2[0, 2π]. Some indication of how a proof can go
was in Example 4.11.

5.4 Corollary. The map T : L1[0, 2π] → c0 given by

T (f) = (f̂(0), f̂(1), f̂(−1), f̂(2), f̂(−2), . . .)

is a bounded linear operator.



321 2008–09 3

The corollary is essentially a restatement of the Riemann-Lebesgue Lemma,
or of the way we proved it.

5.5 Definition. The Dirichlet kernels are

Dn(t) =
n∑

j=−n

eijt (n = 0, 1, 2, . . .).

5.6 Remark. This is related to Fourier series because the partial sums of the
Fourier series of f ∈ L1[0, 2π] are given by

n∑
j=−n

f̂(j)eijt =
1

2π

∫ 2π

0

Dn(t− θ)f(θ) dθ.

This formula is easy to verify and the integral involved is known as a convolution
(of f and Dn).

We sometimes write Snf for the function

(Snf)(t) =
n∑

j=−n

f̂(j)eijt

and refer to Snf as the nth partial sum of the Fourier series of f . The partial sum
operator is a linear operator on functions. We can say Sn: L1[0, 2π] → L1[0, 2π]
or we can regard Sn as having its values in a nicer space than L1[0, 2π], such as
the 2π-periodic continuous functions on [0, 2π].

5.7 Lemma.

‖Dn‖1 →∞ as n →∞.

This is proved by a fairly direct calculation to show that

Dn(t) =
sin(n + 1

2
)t

sin 1
2
t

and then estimating the integral in a somewhat careful way.

5.8 Theorem. The map T of Corollary 5.4 is injective but not surjective.
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This Theorem implies that the Fourier coefficients of a function f ∈ L1[0, 2π]
determine f completely, but that the Riemann-Lebesgue lemma is not a full de-
scription of the possible sequences of Fourier coefficients for such f .

The proof of injectivity relies on Lusin’s theorem and the Weierstrass theorem
to show that if f̂(n) = 0 for all n ∈ Z, then∫

E

f(t) dt = 0 (1)

for all measurable subsets E ⊂ [0, 2π]. From f̂(n) = 0 for all n we quickly see
that

∫ 2π

0
f(t)p(t) dt = 0 for all trigonometric polynomials p and then from the

Weierstrass theorem it follows easily that
∫ 2π

0
f(t)g(t) dt = 0 for all continuous

2π-periodic functions g. From Lusin’s theorem we can get a sequence gn of such
continuous 2π-periodic functions so that

lim
m→∞

gn(t) =

{
1 if t ∈ E
0 if t /∈ E

for almost every t ∈ [0, 2π].

Moreover we can get such a sequence where supt |gn(t)| = ‖gn‖∞ ≤ 1 for all n.
By the Lebesgue dominated convergence theorem we get (1).

If f is not zero in L1[0, 2π] then it must have nonzero real or imaginary part.
Then we can find δ = 1/k > 0 so that one of the following sets E has positive
measure:

E = {t ∈ [0, 2π] : <f(t) > δ}
E = {t ∈ [0, 2π] : <f(t) < −δ}
E = {t ∈ [0, 2π] : =f(t) > δ}
E = {t ∈ [0, 2π] : =f(t) < −δ}

In all cases equation (1) leads to a contradiction.
This way we can show that T is injective.
If it was surjective then it would be a bijective bounded linear operator between

Banach spaces and so the open mapping theorem would say that its inverse T−1

would have to be bounded from c0 to L1[0, 2π]. But that is not the case because
from Lemma 5.7 one can see ‖TDn‖ = 1 in c0 but ‖T−1(TDn)‖1 = ‖Dn‖1 →∞
as n →∞.

The next result aims to show that Fourier series are not so well-behaved even
for continuous 2π-periodic functions.
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5.9 Theorem. There exists a continuous 2π-periodic function f such that the par-
tial sums of its Fourier series do not converge at t = 0, that is such that

lim
n→∞

(Snf)(0)

does not exist.

Proof. This can be shown via the uniform boundedness principle applied to the
Banach space CP [0, 2π] of all continuous functions f : [0, 2π] → C with f(0) =
f(2π). (These functions are the restrictions to [0, 2π] of continuous 2π-periodic
functions f : R → C. It is quite easy to see that CP [0, 2π] = {f ∈ C[0, 2π] :
f(0) − f(1) = 0} is a closed linear subspace of C[0, 2π]. It is the kernel of the
bounded linear functional α: C[0, 2π] → C given by α(f) = f(0) − f(1). So
CP [0, 2π] is a Banach space in the norm ‖ · ‖∞ we usually use on C[0, 2π].) We
take the supremum norm ‖f‖ = supt∈[0,2π] |f(t)| on CP [0, 2π] and then it is a
Banach space.

For each n the linear operator

sn: CP [0, 2π] → C

f 7→ (Snf)(0) =
1

2π

∫ 2π

0

f(t)Dn(t) dt

can be seen to have norm ‖sn‖op = 1
2π
‖Dn‖1 < ∞. (This requires some proof,

but is not very difficult. To show ‖sn‖op ≤ 1
2π
‖Dn‖1, estimate |sn(f)| by taking

the absolute value inside the integral. To show that ‖sn‖ ≥ 1
2π
‖Dn‖1, take f(t) =

Dn(t)/|Dn(t)| and check that f ∈ CP [0, 2π], ‖f‖∞ = 1 and sn(f) = 1
2π
‖Dn‖1.)

If limn→∞(Snf)(0) did exist for each f ∈ CP [0, 2π], then it would also be
true that

sup
n≥0

|(Snf)(0)| < ∞

for each f ∈ CP [0, 2π]. By the uniform boundedness principle it would then
follow that supn≥0 ‖sn‖op < ∞. But this is false and so there must exist f as
required.

This type of proof is not constructive. It does not tell you how to find a function
f ∈ CP [0, 2π] with a Fourier series that fails to converge at t = 0. It only tells
you that such a function exists.

By the way, there is nothing very special about t = 0. A similar proof
would show that for any θ ∈ [0, 2π] there is a function f ∈ CP [0, 2π] such
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that limn→∞(Snf)(θ) fails to exist. Actually this also follows from the theorem
by making a change of variables.

To see the details of these results, look in W. Rudin, Real and Complex Anal-
ysis.

Richard M. Timoney (March 19, 2009)


