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Chapter 4: Hilbert Spaces
4.1 Definition. An inner product space (also known as a pre-Hilbert space) is a
vector space V over K (= R or C) together with a map

〈·, ·〉 : V × V → K

satisfying (for x, y, z ∈ V and λ ∈ K):

(i) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

(ii) 〈y, x〉 = 〈x, y〉

(iii) 〈λx, y〉 = λ〈x, y〉

(iv) 〈x, x〉 ≥ 0

(v) 〈x, x〉 = 0 ⇒ x = 0

Note that it follows from the first 3 properties that:

(i)’ 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

(ii)’ 〈x, λy〉 = λ〈x, y〉

An inner product on V gives rise to a norm

‖x‖ =
√
〈x, x〉.

If the inner product space is complete in this norm (or in other words, if it is
complete in the metric arising from the norm, or if it is a Banach space with this
norm) then we call it a Hilbert space.

Another way to put it is that a Hilbert space is a Banach space where the norm
arises from some inner product.

4.2 Examples. (i) Cn with the inner product 〈z, w〉 =
∑n

j=1 zjwj is a Hilbert
space (over K = C). (Here we mean that z = (z1, z2, . . . , zn) and w =
(w1, w2, . . . , wn).)

We know that Cn is complete (in the standard norm, which is the one arising
from the inner product just given, but also in any other norm) and so Cn is a
Hilbert space.
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(ii) Rn with the inner product 〈x, y〉 =
∑n

j=1 xjyj is a Hilbert space over R.

(iii) `2 with the inner product

〈a, b〉 =
∞∑

j=1

ajbj

is a Hilbert space over K (where we mean that a = {aj}∞j=1, b = {bj}∞j=1).
The fact that the series for 〈a, b〉 always converges is a consequence of
Hölder’s inequality with p = q = 2. The properties that an inner prod-
uct must satisfy are easy to verify here. The norm that comes from the inner
product is the norm ‖ · ‖2 we had already on `2.

(iv) L2[0, 1], L2[a, b] and L2(R) are all Hilbert spaces with respect to the inner
product

〈f, g〉 =

∫
fg

(the integral to be taken over the appropriate domain).

4.3 Remarks. (i) The triangle inequality holds on any inner product and this is
proved via the Cauchy-Schwarz inequality:

|〈x, y〉| ≤ ‖x‖ ‖y‖

(for the norm arising from inner product). Equality holds in this inequality
if and only if x and y are linearly dependent.

(ii) One can use Cauchy-Schwarz to show that the inner product map 〈·, ·) : V ×
V → K is always continuous on V × V (for any inner product space, and
where we take the product topology on V × V ). If we take a sequence
(xn, yn) converging in V × V to a limit (x, y), then limn→∞ xn = x and
limn→∞ yn = y in V and so

|〈xn, yn〉 − 〈x, y〉| ≤ |〈xn, yn〉 − 〈xn, y〉|+ |〈xn, y〉 − 〈x, y〉|
= |〈xn, yn − y〉|+ |〈xn − x, y〉|
≤ ‖xn‖ ‖yn − y‖+ ‖xn − x‖ ‖y‖
→ 0 as n→∞

(In the last step we are using the fact that (xn)∞n=1 is bounded, that is supn ‖xn‖ <
∞, because limn→∞ xn exists.)
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4.4 Notation. By default we will use the letter H to denote a Hilbert space.
Two elements x and y of an inner product space are called orthogonal if

〈x, y〉 = 0.
A subset S ⊂ H of a Hilbert space (or of an inner product space) is called

orthogonal if

x, y ∈ S, x 6= y ⇒ 〈x, y〉 = 0.

S is called orthonormal if it is an orthogonal subset and if in addition ‖x‖ = 1 for
each x ∈ S.

Observe that these definitions are phrased so that they apply to both finite and
infinite subsets S.

Note also that if S is orthogonal, then {x/‖x‖ : x ∈ S \ {0}} is orthonormal.

4.5 Proposition. If S ⊂ H is any orthonormal subset of an inner product space
H and if x ∈ H , then

(i) 〈x, φ〉 is nonzero for at most a countable number of φ ∈ S.

(ii) ∑
φ∈S

|〈x, φ〉|2 ≤ ‖x‖2 (Bessel’s inequality). (4.1)

Observe that (i) implies that we can list those φ ∈ S for which 〈x, φ〉 6= 0 as a
finite or infinite list φ1, φ2, . . . and then (ii) means that

∑
n

|〈x, φn〉|2 ≤ ‖x‖2. (4.2)

The sum is independent of the order in which the φ1, φ2, . . . are listed.

Proof. Suppose φ1, φ2, . . . , φn are n distinct elements of S and x ∈ H . Let aj =
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〈x, φj〉 for 1 ≤ j ≤ n. Then

0 ≤

∥∥∥∥∥x−
n∑

j=1

ajφj

∥∥∥∥∥
2

=

〈
x−

n∑
j=1

ajφj, x−
n∑

k=1

akφk

〉

= 〈x, x〉 −
n∑

k=1

āk〈x, φk〉 −
n∑

j=1

aj〈φj, x〉+
n∑

j,k=1

aj āk〈φj, φk〉

= 〈x, x〉 −
n∑

k=1

ākak −
n∑

j=1

aj āj +
n∑

j=1

aj āj

since 〈φj, φk〉 = 0 if j 6= k

= 〈x, x〉 −
n∑

k=1

|ak|2

Therefore
n∑

k=1

|ak|2 =
n∑

k=1

|〈x, φk〉|2 ≤ 〈x, x〉 = ‖x‖2. (4.3)

Now we can finish the proof by making use of this finite version of Bessel’s in-
equality.

To show that there are only a countable number of φ ∈ S with 〈x, φ〉 6= 0,
consider the set of all such φ:

Sx = {φ ∈ S : 〈x, φ〉 6= 0} =
∞⋃

n=1

Sn
x

where
Sn

x = {φ ∈ S : |〈x, φ〉| ≥ 1/n}.

Now each Sn
x is finite because if we could find N elements φ1, φ2, . . . , φN in

Sn
x then by (4.3)

‖x‖2 ≥
N∑

j=1

|〈x, φj〉|2 ≥ N

(
1

n

)2

and so N ≤ n2‖x‖2.
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Thus Sn
x is finite and Sx is a countable union of finite sets, hence countable.

If we list the elements of Sx in a finite or infinite list {φ1, φ2, . . .} then we can
let n→∞ in (4.3) to get Bessel’s inequality in the form (4.2).

4.6 Corollary. Let H be a Hilbert space (completeness is essential now). Let S
be any maximal orthonormal subset of H (such subsets always exist by Zorn’s
lemma). Let x ∈ H . Then

x =
∑
φ∈S

〈x, φ〉φ.

This sum is to be interpreted as follows. We can list all the φ ∈ S for which
〈x, φ〉 6= 0 as φ1, φ2, . . .. The list could be finite or infinite. If it is finite then there
is no real problem interpreting the sum. If it is infinite, we mean

x = lim
n→∞

n∑
j=1

〈x, φj〉φj,

as a limit in the norm ofH . Moreover the order of the list φ1, φ2, . . . is immaterial.
Maximal orthonormal subsets of a Hilbert space are called orthonormal bases

because of this result. They are also sometimes known as complete orthonormal
systems.

Note the difference between this kind of orthonormal basis and the finite kind
encountered in finite dimensional inner product spaces, where no infinite summa-
tions are required.

The simplest example of this kind of orthonormal basis, apart from the finite
dimensional ones, is the standard basis of `2. We’ll spell that out now, but the
verification of the example is quite straightforward. It does not use Zorn’s lemma.

4.7 Example. In H = `2, let en denote the sequence where all the terms are 0
except the nth term, which is 1. It may be more helpful to write

en = (0, 0, . . . , 0, 1, 0, 0, . . .)

(with 1 in the nth position).
Let

B = {e1, e2, . . .} = {en : n ∈ N}.

Then B is orthonormal because ‖en‖2 = 1 for each n and if n 6= m then
〈en, em〉 = 0.
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Also if x = (xj)
∞
j=1 = (x1, x2, . . .) ∈ `2, it is easy to see that 〈x, en〉 = xn.

The idea of an orthonormal basis is that we can express x (any x ∈ `2)

x =
∞∑

j=1

〈x, ej〉ej = lim
n→∞

n∑
j=1

〈x, ej〉ej

and we can check that quite easily in this case. We have
n∑

j=1

〈x, ej〉ej =
n∑

j=1

xjej = (x1, x2, . . . , xn, 0, 0, . . .)

and

x−
n∑

j=1

〈x, ej〉ej = (0, 0, . . . , 0, xn+1, xn+1, . . .).

So ∥∥∥∥∥x−
n∑

j=1

〈x, ej〉ej

∥∥∥∥∥
2

=

√√√√ ∞∑
j=n+1

|xj|2.

Recall that x ∈ `2 means that
∑∞

j=1 |xj|2 <∞ and so it follows that

∞∑
j=n+1

|xj|2 → 0 as n→∞.

We can see then that

lim
n→∞

∥∥∥∥∥x−
n∑

j=1

〈x, ej〉ej

∥∥∥∥∥
2

= 0

and that is what it means to say x =
∑∞

j=1〈x, ej〉ej .

Proof (of Corollary 4.6). The fact that such maximal orthonormal subsets exist is
easy to verify with Zorn’s lemma. (Consider the collection of all orthonormal sub-
sets of H ordered by inclusion. The empty set is one option and so the collection
is nonempty. For any linearly ordered sub-collection, the union is orthonormal
and is an upper bound for the sub-collection.)

Fix one such S and let Sx = {φ ∈ S : 〈x, φ〉 6= 0} = {φ1, φ2, . . .}. The case
where Sx is finite is simpler than the infinite case. In the infinite case consider the
series

∞∑
n=1

〈x, φn〉φn
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in H . We show it is Cauchy. By a calculation with inner products we can show∥∥∥∥∥
m∑

j=n

〈x, φj〉φj

∥∥∥∥∥
2

=
m∑

j=n

|〈x, φj〉|2.

By Bessel’s inequality (4.1) the series of positive scalars
∑∞

n=1 |〈x, φn〉|2 con-
verges, hence it is Cauchy and so our series in H also satisfies the Cauchy crite-
rion.

Since H is complete, y =
∑∞

n=1〈x, φn〉φn exists in H . By continuity of the
inner product, we find

〈y, φk〉 =

〈
lim

n→∞

n∑
j=1

〈x, φj〉φj, φk

〉

= lim
n→∞

〈
n∑

j=1

〈x, φj〉φj, φk

〉
= lim

n→∞
〈x, φk〉

= 〈x, φk〉.

Hence
〈x− y, φk〉 = 0

for each k. Also, repeating the above argument with φk replaced by one of the
φ ∈ S with 〈x, φ〉 = 0 shows that 〈x− y, φ〉 = 0 for all φ ∈ S.

If x 6= y, we could get a strictly larger orthonormal subset of H than S by
taking S ∪

{
x−y
‖x−y‖

}
. That would contradict the maximality of S. Therefore x =

y =
∑∞

n=1〈x, φn〉φn.

4.8 Corollary. If H is a Hilbert space and S ⊂ H is an orthonormal basis for H ,
then for each x, y ∈ H we have

〈x, y〉 =
∑
φ∈S

〈x, φ〉〈y, φ〉

and
‖x‖2 =

∑
φ∈S

|〈x, φ〉|2.
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Proof. From Proposition 4.5 (i) we see that Sx,y = {φ ∈ S : 〈x, φ〉 6= 0 or 〈y, φ〉 6=
0} = Sx ∪ Sy is countable. If we list it as Sx,y = {φ1, φ2, . . .} then we have

x = lim
n→∞

n∑
j=1

〈x, φj〉φj

and

y = lim
n→∞

n∑
k=1

〈y, φk〉φk.

By continuity of the inner product

〈x, y〉 = lim
n→∞

〈
n∑

j=1

〈x, φj〉φj,
n∑

k=1

〈y, φk〉φk

〉

= lim
n→∞

n∑
j,k=1

〈x, φj〉〈y, φk〉〈φj, φk〉

= lim
n→∞

n∑
j=1

〈x, φj〉〈y, φj〉

=
∞∑

n=1

〈x, φn〉〈y, φn〉

If we do this for x = y we find the second part of the statement.

4.9 Theorem. A Hilbert space H is separable (that is, has a countable dense
subset) if and only if it has one countable orthonormal basis if and only if every
orthonormal basis for H is countable.

Proof. ⇒: Suppose H is separable and consider any orthonormal basis S ⊂ H .
Then if φ1, φ2 ∈ S and φ1 6= φ2 we conclude ‖φ1−φ2‖ =

√
〈φ1 − φ2, φ1 − φ2〉 =√

2. Thus S ⊂ H has the discrete topology.
Now H a separable metric space ⇒ S is a separable metric space ⇒ S has a

countable dense subset. But S is the only subset of itself that is dense in S (since
S has the discrete topology) and so S must be countable.

⇐: Suppose for the converse that there is one countable orthonormal basis
S = {φ1, φ2, . . .} for H . We look at the case K = R (H a real Hilbert space) first.
It is quite easy to check that the sets

Dn =

{
n∑

j=1

qjφj : qj ∈ Q for 1 ≤ j ≤ n

}
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are each countable and that their unionD =
⋃∞

n=1Dn is countable and dense inH .
The closure of eachDn is easily seen to be the R-linear span of φ1, φ2, . . . , φn and
so the closure of D includes all finite linear combinations

∑n
j=1 xjφj . But, each

x ∈ H is a limit of such finite linear combinations by Corollary 4.6. Hence the
closure of D is all of H . As D is countable, this shows that H must be separable.

In the complex case (H a Hilbert space over K = C) we must take qj ∈ Q+iQ
instead, so that we can get all finite C-linear combinations of the φj in the closure
of D (and there is no other difference in the proof).

4.10 Theorem. Every separable Hilbert space H over K is isometrically isomor-
phic to either Kn (ifH has finite dimension n) or to `2. The isometric isomorphism
preserves the inner product.

Proof. The finite dimensional case is just linear algebra and we treat this as known.
If H is infinite dimensional and separable, then it has a countably infinite

orthonormal basis S = {φ1, φ2, . . .}. We can define a map

T : H → `2

by Tx = (〈x, φn〉)∞n=1

By Corollary 4.8, the map T is well defined (actually maps into `2) and preserves
the inner product and the norm. That is 〈x, y〉 = 〈Tx, Ty〉 and ‖x‖H = ‖Tx‖2

for x, y ∈ H . Moreover, it is easy to see that T is a linear map.
From ‖Tx‖ = ‖x‖ we can see that the kernel of T is just {0} and so T is

injective and what remains to be seen is that T is surjective.
To show that, consider any a = {an}∞n=1 ∈ `2. Then one can quite easily

verify that
∑∞

n=1 anφn is a Cauchy sequence in H because a calculation with
inner products shows that ∥∥∥∥∥

m∑
j=n

ajφj

∥∥∥∥∥
2

=
m∑

j=n

|aj|2.

Now a ∈ `2 ⇒
∑∞

n=1 |an|2 < ∞ ⇒
∑∞

n=1 |an|2 is Cauchy and so it follows∑∞
n=1 anφn is Cauchy in H . Take x ∈ H to be the sum of this series (which exists

since H is complete) and then an argument using continuity of the inner product
shows that

〈x, φn〉 = an

for each n. Thus Tx = a and T is surjective.
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4.11 Example. An important and non-trivial example of an orthonormal basis is
H = L2[0, 2π] with

S =

{
φn(t) =

1√
2π
eint : n ∈ Z

}
.

This fact then implies that L2[0, 2π] is a separable Hilbert space (since it has a
countable orthonormal basis) and that f ∈ L2[0, 2π] implies

f =
∑
n∈Z

〈f, φn〉φn.

This series is known as the Fourier series for f and the Hilbert space theory tells
us that it converges to f in the norm of L2[0, 2π]. This means that the partial sums

Snf =
n∑

j=−n

〈f, φj〉φj → f

in the sense that

‖Snf − f‖2 =

√∫ 2π

0

|Snf(t)− f(t)|2 dt→ 0

as n → ∞. Thus the Fourier series converges to the function in a root-mean-
square sense, but that is not the same as pointwise convergence. In fact, at any
given point t ∈ [0, 2π], there is no guarantee that limn→∞ Snf(t) exists or equals
f(t) if it does exist. When we recall that elements of L2[0, 2π] are not exactly
functions, but rather equivalence classes of functions up to almost everywhere
equality, we should not be surprised that we cannot pin down the Fourier series at
any specific point of [0, 2π].

Of course, it requires proof that this is indeed an example of an orthonormal
basis. By integration we can easily check that S is orthonormal and then, ac-
cording to the general theory, it would be enough to show that S is a maximal
orthonormal subset of L2[0, 2π]. That means that no non-zero f ∈ L2[0, 2π] can
be orthogonal to all the functions φn(t). If such an f did exist it would be orthog-
onal to all the finite linear combinations

p(t) =
n∑

j=−n

ajφj(t) =
n∑

j=−n

aj√
2π
eijt.
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Such p(t) are known as trigonometric polynomials and what we need to do this
proof is the fact that the trigonometric polynomials are dense in L2[0, 2π]. The
proof of this depends on

• Lusin’s theorem — a theorem in measure theory that allows us to show
that continuous functions g : [0, 2π] → K which satisfy the 2π-periodicity
condition g(0) = g(2π) are dense in L2[0, 2π].

• A theorem of Weierstrass that shows that each such continuous function can
be approximated uniformly on [0, 2π] by trigonometric polynomials.

• The fact that ‖g − p‖2 ≤
√

2π‖g − p‖∞ which shows then that these con-
tinuous functions can be approximated by trigonometric polynomials in the
norm of L2[0, 2π].

• The final step is then to observe that if f ∈ L2[0, 2π] was orthogonal to
all trigonometric polynomials, then 〈f, f〉 = 0 because f = limn→∞ pn for
some sequence of trigonometric polynomials pn (by density of the polyno-
mials) and so by continuity of the inner product 〈f, f〉 = limn→∞〈f, pn〉 =
0. Thus f = 0.

As Lusin’s theorem would take us into measure theory and the proof of the Weier-
strass theorem is quite lengthy, we skip this proof.

4.12 Theorem (Gram-Schmidt Orthonormalisation). Suppose φ1, φ2, . . . is a lin-
early independent set in a Hilbert spaceH . (By this we mean linearly independent
in the usual algebraic sense.) Suppose that the finite linear combinations

a1φ1 + a2φ2 + · · ·+ anφn

are dense in H .
Then the Gram-Schmidt process,

ψ1 =
φ1

‖φ1‖

ψ2 =
φ2 − 〈φ2, ψ1〉ψ1

‖φ2 − 〈φ2, ψ1〉ψ1‖

ψ3 =
φ3 − 〈φ3, ψ2〉ψ2 − 〈φ3, ψ1〉ψ1

‖φ3 − 〈φ3, ψ2〉ψ2 − 〈φ3, ψ1〉ψ1‖

ψn =
φn −

∑n−1
j=1 〈φn, ψj〉ψj∥∥∥φn −

∑n−1
j=1 〈φn, ψj〉ψj

∥∥∥
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produces an orthonormal basis ψ1, ψ2, . . . for H .

Proof. From the finite dimensional version of Gram-Schmidt, we know that for
each n, the finite linear combinations b1ψ1 + b2ψ2 + · · · + bnψn are the same
as the linear combinations a1φ1 + a2φ2 + · · · + anφn. Also ψ1, ψ2, . . . , ψn are
orthonormal for each n.

Hence the linear combinations
∑n

j=1 bjψj are dense in H and {ψj : j ∈ N} is
an orthonormal set.

It follows that {ψj : j ∈ N} is a maximal orthonormal set because if ψ ∈
H is orthogonal to that set then it is orthogonal to the linear combinations x =∑n

j=1 bjψj . There is a sequence xk of such linear combinations such that xk → ψ

in H . It follows that 〈xn, ψ〉 = 0 → 〈ψ, ψ〉 and so that ‖ψ‖2 = 0, or ψ = 0.

4.13 Example. By similar reasoning to that outlined for the (omitted) proof of
Example 4.11, it can be shown that the linear combinations of φn(x) = xn

(n = 0, 1, 2, . . .) are dense in L2[−1, 1]. That is the polynomials are dense in
L2[−1, 1]. (Another version of the Weierstrass theorem mentioned earlier says
that continuous functions on [−1, 1] can be approximated uniformly by polyno-
mials, hence approximated in L2[−1, 1]-norm by polynomials. Lusin’s theorem is
used to show that arbitrary elements of L2[−1, 1] can be approximated by polyno-
mials and this shows the density.)

Applying the Gram-Schmidt process to these functions φn yields an orthonor-
mal basis for L2[−1, 1] that is related to the Legendre polynomials. The first
few iterations of Gram-Schmidt yield p0(x) = 1/

√
2, p1(x) =

√
3/2x, p2(x) =√

5
2

(
3
2
x2 − 1

2

)
, p3(x) =

√
7
2

(
5
2
x3 − 3

2
x
)
. The Legendre polynomials Pn(x) are

related to the pn by Pn(x) =
√

2
2n+1

pn(x). The Legendre polynomials are nor-
malised by Pn(1) = 1 rather that

‖pn‖2 =

√∫ 1

−1

|pn(x)|2 dx = 1.

From the fact that the pn form an orthonormal basis we have

f =
∞∑

n=0

〈f, pn〉pn =
∞∑

n=0

(∫ 1

−1

f(x)pn(x) dx

)
pn

for each f ∈ L2[−1, 1].
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The dual space of a Hilbert space can be identified.

4.14 Theorem (Riesz representation theorem). Let H be a Hilbert space and α ∈
H∗. Then there exists y ∈ H such that

α(x) = 〈x, y〉 for all x ∈ H.

Conversely, given y ∈ H , α(x) = 〈x, y〉 defines an element of H∗ and moreover
‖α‖ = ‖y‖.

Proof. We give most of the details, but not quite all of them.
For H = `2, we have nearly done this already because

(`2)∗ = `2

by Examples 3.4 (i). It is a short step from this to the result for all separable
Hilbert spaces (using Theorem 4.10).

For a non-separable Hilbert space H , we know there is an orthonormal basis
{φi : i ∈ I} for H (with I uncountable). Let α ∈ H∗. We claim that S = {i ∈ I :
α(φi) 6= 0} is countable. Let Sn = {i ∈ I : |α(φi)| ≥ 1/n}. If i1, i2, . . . , ik ∈ Sn

then we can take

x =
k∑

j=1

α(φi)

|α(φi)|
√
k
φi

and compute

α(x) =
k∑

j=1

α(φi)

|α(φi)|
√
k
α(φi) =

k∑
j=1

|α(φi)|√
k

≥
√
k

n

But also

|α(x)| ≤ ‖α‖‖x‖ = ‖α‖

√√√√ k∑
j=1

|α(φi)|2
|α(φi)|2k

= ‖α‖

and so we conclude ‖α‖ ≥
√

k
n

, or k ≤ n‖α‖2. This shows that Sn is finite and so
S =

⋃
n Sn must be countable.

As every x ∈ I can be written

x =
∑
i∈I

〈x, φi〉φi =
∑
i∈S

〈x, φi〉φi +
∑

i∈S\I

〈x, φi〉φi
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(using Bessels inequality to show that the [countably nonzero] sums converge), it
follows that H = H1 ⊕2 H2 where H1 is the closed linear span of {φi : i ∈ S}
and H2 is the closed linear span of {φi : i ∈ I \ S}. It takes just a little checking
to see this.

Some details filled in here.

One can check that H1 and H2 are Hilbert spaces (complete since
closed, and linear subspaces of H). Also {φi : i ∈ S} is an orthonor-
mal basis for H1 and {φi : i ∈ I \ S} is an orthonormal basis for
H2.

If y is a finite linear combination of elements of {φi : i ∈ S} and z is
a finite linear combination of elements of {φi : i ∈ I \ S}, then it is
easy to see that 〈x, y〉 = 0. Taking limits, one sees that 〈x, y〉 = 0 for
y ∈ H1 and z ∈ H2.

Now it follows thatH1∩H2 = {0} and ‖y+z‖ =
√
〈y + z, y + z〉 =√

‖y‖2 + ‖z‖2 (for y ∈ H1, z ∈ H2).

As α(φi) = 0 for i ∈ I \ S, it follows that α(z) = 0 for finite linear combi-
nations of {φi : i ∈ I \ S}. Taking limits (using continuity of α) it follows that
α(z) = 0 for all z ∈ H2.

So for x ∈ H , we have x = y + z for (unique) y ∈ H1, z ∈ H2, and
α(x) = α(y). Applying the separable case to the restriction of α to H1, there is
y1 ∈ H − 1 with α(y) = 〈y, y1〉 for all y ∈ H1. It then follows that α(x) =
α(y) = 〈y, y1〉 = 〈x, y1〉 for all x ∈ H .

It is usual to state this theorem as H∗ = H for H Hilbert, but that is not quite
accurate. Here is a more precise statement

4.15 Corollary. If H is a Hilbert space (over K = R or K = C) then there is an
R-linear isometric identification T : H → H∗ given by

T (y)(x) = 〈x, y〉.

In the case K = C, we also have that T is conjugate-linear, that is T (λy) =
λ̄T (y).

Proof. By the Riesz representation theorem, T is a bijection. It is easy to see
that T is R-linear and by the Riesz representation theorem, we also know that
‖T (y)‖ = ‖y‖. The fact that T is conjugate linear is also easy to check.
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4.16 Corollary. Hilbert spaces are reflexive Banach spaces.

Proof. This follows from the Riesz representation theorem.

4.17 Theorem (Parallelogram Identity). Let E be a normed space. Then there is
an inner product onE which gives rise to the norm if and only if the parallelogram
identity

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

is satisfied by all x, y ∈ E.

Proof. ⇒: This is a simple calculation with inner products.

‖x+ y‖2 + ‖x− y‖2 = 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈x, x〉+

〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈x, x〉
= 2〈x, x〉+ 2〈y, y〉

⇐: The idea is that the inner product must be related to the norm by

〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2)

in the case of real scalars K = R, or in the case K = C by

〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2).

What remains to be done is to check that (assuming that the parallelogram identity
is true for the norm) these formulae do define inner products on E.

For example, in the case K = R we see easily that 〈x, y〉 = 〈y, x〉. Then we
have

4〈x, y + z〉 = ‖x+ y + z‖2 − ‖x− y − z‖2

= 2(‖x+ y‖2 + ‖z‖2)− ‖x+ y − z‖2

−
(
2(‖x− y‖2 + ‖z‖2)− ‖x− y + z‖2

)
= 2(‖x+ y‖2 − ‖x− y‖2) + ‖x− y + z‖2 − ‖x+ y − z‖2

= 8〈x, y〉+ 2(‖x+ z‖2 + ‖y‖2)− ‖x+ z + y‖2

−2(‖x− z‖2 + ‖y‖2) + ‖x− z − y‖2

= 8〈x, y〉+ 2(‖x+ z‖2 − ‖x− z‖2)− ‖x+ y + z‖2 + ‖x− y − z‖2

= 8〈x, y〉+ 8〈x, z〉 − 4〈x, y + z〉
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It follows that 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.
By symmetry of the inner product, 〈y + z, x〉 = 〈y, x〉+ 〈z, x〉.
It follows that 〈nx, y〉 = n〈x, y〉 = 〈x, ny〉. (By induction on n it follows

easily for n ∈ N and it also follows for n = 0 and n ∈ Z by simple algebraic
manipulations. For n 6= 0 we deduce n〈 1

n
x, y〉 = 〈x, y〉 = n〈x, 1

n
y〉 and so

〈 1
n
x, y〉 = 1

n
〈x, y〉 = 〈x, 1

n
y〉. It follows that for r = p/q ∈ Q rational we have

r〈x, y〉 = 〈rx, y〉 = 〈x, ry〉. By continuity of the inner product it follows that
λ〈x, y〉 = 〈λx, y〉 = 〈x, λy〉 for all λ ∈ R.

The case K = C is similar but longer.

4.18 Remark. A commonly studied object related to a Hilbert space H is the
space of all bounded operators T : H → H . We denote this space by B(H). (The
notation L(H) is also used frequently).

This is the same as the space B(H,H) in the notation of Theorem 3.3.
By Theorem 3.3, for H a Hilbert space B(H) is a Banach space (in the norm

‖ · ‖op).
It also has an algebra structure, where we define multiplication of two op-

erators via composition. If S, T ∈ B(H), then ST : H → H is defined by
(ST )(x) = S(T (x)) for x ∈ H . ST is continuous as it is the composition of
two continuous maps. We can easily check the algebra properties: associativity
of the product S(TU) = (ST )U , λ(ST ) = (λS)T = S(λT ) and the distributive
laws. As we know from finite dimensions (where composition of linear transfor-
mations on Kn corresponds to matrix multiplication of n×nmatrices) the algebra
B(H) is not usually commutative. The identity operator on H is a multiplicative
identity for this algebra.

We can estimate the norm of the product

‖ST‖op = sup
x∈H,‖x‖H≤1

‖S(T (x)‖H ≤ sup
y∈H,‖y‖H≤‖T‖

‖Sy‖H ≤ ‖S‖op‖T‖op.

This inequality ‖ST‖ ≤ ‖S‖ ‖T‖ together with the fact that the identity operator
has norm 1 makes B(H) a Banach algebra.

There is one further piece of structure on B(H). Every T ∈ B(H) has an
adjoint operator T ∗ ∈ B(H) which is uniquely determined by the property

〈Tx, y〉 = 〈x, T ∗y〉

for x, y ∈ H . To prove that such a T ∗ exists and to prove that ‖T ∗‖op = ‖T‖op we
use the Riesz representation theorem and the Hahn-Banach theorem.
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To define T ∗y, fix y ∈ H and consider the map α : H → K given by α(x) =
〈Tx, y〉. This is a bounded (same as continuous) linear map and so there is some
unique w ∈ H with α(x) = 〈x,w〉. Define T ∗(y) = w, and then we have

〈Tx, y〉 = α(x) = 〈x,w〉 = 〈x, T ∗(y)〉

(for all x ∈ H). Since y ∈ H was arbitrary, we also have this for all y ∈ H . Now
it is quite easy to check that T ∗ is a linear transformation from H to H .

We know ‖T‖ = supx∈H,‖x‖=1 ‖T (x)‖. From the Hahn-Banach theorem (re-
call Corollary 3.7) ‖z‖ = supα∈H∗,‖α‖=1 |α(z)| holds for z ∈ H . By the Riesz-
representation theorem, every α ∈ H∗ with ‖α‖ = 1 has the form α(z) = 〈z, y〉
for y ∈ H with ‖y‖ = 1 (and conversely every α which can be represented in this
way has ‖α‖ = 1. So

‖T‖ = sup
x∈H,‖x‖=1

‖T (x)‖

= sup
x∈H,‖x‖=1

sup
α∈H∗,‖α‖=1

|α(T (x))|

= sup
x∈H,‖x‖=1

sup
y∈H,‖y‖=1

|〈T (x), y〉|

= sup
x,y∈H,‖x‖=‖y‖=1

|〈T (x), y〉|

= sup
x,y∈H,‖x‖=‖y‖=1

|〈x, T ∗(y)〉|

= sup
x,y∈H,‖x‖=‖y‖=1

|〈T ∗(y), x〉|

By reversing the steps we used to write ‖T‖ as supx,y∈H,‖x‖=‖y‖=1 |〈T (x), y〉|, this
last expression if the same as ‖T ∗‖.

This adjoint operation makes B(H) a Banach *-algebra: we have (T ∗)∗ = T ,
(λT )∗ = λT ∗, (ST )∗ = T ∗S∗ and (S + T )∗ = S∗ + T ∗ for S, T ∈ B(H) and
λ ∈ C. Moreover the important property ‖T‖2 = ‖T ∗T‖ follows easily:

‖T‖2 = sup
x∈H,‖x‖≤1

‖Tx‖2

= sup
x∈H,‖x‖≤1

〈Tx, Tx〉

= sup
x∈H,‖x‖≤1

〈x, T ∗Tx〉

≤ sup
x∈H,‖x‖≤1

‖x‖‖T ∗Tx‖

= ‖TT ∗‖ ≤ ‖T‖‖T ∗‖ = ‖T‖2
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Closed *-subalgebras of B(H) are known asC*-algebras. (A *-subalgebras is
a subalgebra that contains T ∗ whenever it contains T . By closed we mean closed
with respect to the norm topology, or contains limits of convergent sequences with
all terms in the subalgebra. All C*-algebras are then Banach *-algebra, but they
also satisfy the property ‖T‖2 = ‖T ∗T‖.)

Richard M. Timoney (March 6, 2009)


