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Chapter 3: Dual Spaces and the Hahn-Banach Theo-
rem
Definition 3.1. If E is a normed space, the dual space of E is

E∗ = B(E, K) = {T : E → K : T continuous and linear}.

Elements of E∗ are called (continuous) linear functionals on E.
The notation E ′ is sometimes used for E∗.
The letter L (for ‘linear’) is used by some people rather than B (for ‘bounded’,

but really ‘bounded linear’).

Proposition 3.2. If E is a normed space, then E∗ is a Banach space.

Proof. This follows from the following more general result (by taking F = K).

The following result should also be familiar from Exercises 4, question 3.

Theorem 3.3. Let E be a normed space and F a Banach space. Let B(E, F ) de-
note the space of all bounded linear operators T : E → F . We can make B(E, F )
a vector space by defining T + S and λT (T, S ∈ B(E, F ), λ ∈ K) as follows:
(T + S)(x) = T (x) + S(x), (λT )(x) = λ(T (x)) for x ∈ E.

Then the operator norm is a norm on B(E, F ) and makes it a Banach space.

Proof. The facts that B(E, F ) is a vector space and that the operator ‘norm’ is
actually a norm on the space are rather straightforward to check. The main point
is to show that the space is complete.

Take a Cauchy sequence {Tn}∞n=1 in (B(E, F ), ‖ · ‖op). For any fixed x ∈ E
{Tn(x)}∞n=1 is a Cauchy sequence in F because

‖Tn(x)− Tm(x)‖F ≤ ‖Tn − Tm‖op‖x‖E

is small if n and m are both large. Since F is complete, it follows that

lim
n→∞

Tn(x)

1
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exists in F (for each x ∈ E). This allows us to define a map T : E → F by

T (x) = lim
n→∞

Tn(x).

We will be finished if we show that T ∈ B(E, F ) and limn→∞ ‖Tn−T‖op = 0
(so that Tn → T in the norm of B(E, F )).

By the Cauchy condition, we know that we can find N so that ‖Tn−Tm‖op < 1
for all n, m ≥ N . Now take x ∈ E, ‖x‖E ≤ 1. Then for n, m ≥ N we have

‖Tn(x)− Tm(x)‖F = ‖(Tn − Tm)(x)‖F ≤ ‖Tn − Tm‖op < 1.

Fix n = N and let m →∞ and use continuity of the norm on F to conclude

‖TN(x)− T (x)‖F ≤ 1.

This is true for all x ∈ E of norm ‖x‖E ≤ 1 and we can use that to conclude that

sup
x ∈ E
‖x‖ ≤ 1

‖T (x)‖F ≤ sup
x ∈ E
‖x‖ ≤ 1

‖TN(x)‖F + sup
x ∈ E
‖x‖ ≤ 1

‖T (x)− TN(x)‖F

≤ ‖TN‖op + 1.

We see now that T is bounded. So T ∈ B(E, F ).
We now repeat the last few steps with an arbitrary ε > 0 where we had 1

before. By the Cauchy condition we can find N so that ‖Tn − Tm‖op < ε for all
n, m ≥ N . Now take x ∈ E, ‖x‖E ≤ 1. As before we get

‖Tn(x)− Tm(x)‖F = ‖(Tn − Tm)(x)‖F ≤ ‖Tn − Tm‖op < ε

as long as n, m ≥ N , ‖x‖ ≤ 1. Fix any n ≥ N for the moment and let m → ∞
to get

‖Tn(x)− T (x)‖F ≤ ε.

We have this for all x of norm at most 1 and all n ≥ N . So

‖Tn − T‖ = sup
x∈E,‖x‖≤1

‖T (x)− Tn(x)‖F ≤ ε

as long as n ≥ N . This shows that Tn → T in B(E, F ).
Thus every Cauchy sequence in the space converges in the space and soB(E, F )

is a Banach space.
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It is worth pointing out that the strategy of the above proof is a bit similar to
the proof that (for a topological space X) (BC(X), ‖ · ‖∞) is complete (which we
did in 1.7.2 (iii)).
Examples 3.4. (i) If E = `p and 1 ≤ p < ∞, then its dual space

(`p)∗ = `q

(
1

p
+

1

q
= 1

)
.

More exactly, `q is isometrically isomorphic to (`p)∗ by the following isom-
etry

T : `q → (`p)∗,

where for (bn)n ∈ `q

T ((bn)n): `p → K

: (an)n 7→
∞∑

n=1

anbn

Proof. The first thing to do is to show that the map T makes sense. If we
fix b = (bn)n ∈ `q then Hölders inequality tells us that∣∣∣∣∣

∞∑
n=1

anbn

∣∣∣∣∣ ≤ ‖a‖p‖b‖q

for each a = (an)n ∈ `p. This implies that the series for (T (b))(a) is always
convergent and so T (b): `p → K is a sensibly defined function. It is quite
easy to see that it is a linear map.

The inequality we got from Hölders inequality |T (b)(a)| ≤ ‖a‖p‖b‖q now
implies that T (b) is a bounded linear map and that T (b) has (operator) norm
at most ‖b‖q. So T (b) is in the dual space of `p and ‖T (b)‖(`p)∗ ≤ ‖b‖q.

Our next aim is to show that equality holds in this inequality. So we aim
to show ‖T (b)‖(`p)∗ ≥ ‖b‖q. If b = 0 then we certainly have that. So we
assume b 6= 0 (which means there is some n with bn 6= 0). The proof is a
bit different for p = 1, q = ∞. So we consider the case 1 < p < ∞ first.

If we take an = |bn|q(bn)−1 (interpreted as 0 if bn = 0), then a = (an)n ∈ `p

and

‖a‖p =

(
∞∑

n=1

|an|p
)1/p

=

(
∞∑

n=1

|bn|qp−p

)1/p

=

(
∞∑

n=1

|bn|q
)1/p

= ‖b‖q/p
q



4 Chapter 3: Dual Spaces and the Hahn-Banach Theorem

because (q − 1)p = q. Now T (b)(a) =
∑∞

n=1 anbn =
∑∞

n=1 |bn|q = ‖b‖q
q.

Thus (if b 6= 0)

‖T (b)‖(`p)∗ ≥
|T (b)(a)|
‖a‖p

=
‖b‖q

q

‖b‖q/p
q

= ‖b‖q−q/p
q = ‖b‖q.

From this we see that ‖T (b)‖(`p)∗ = ‖b‖q (in the case p > 1).

If p = 1, take any n0 with bn0 6= 0 and define a = (an)∞n=1 by an = |bn|/bn

for n = n0 and an = 0 otherwise. So ‖a‖1 =
∑

n |an| = |an0| = 1 and

|T (b)(a)| =

∣∣∣∣∣
∞∑

n=1

anbn

∣∣∣∣∣ = |an0bn0| = |bn0|.

So

‖T (b)‖(`p)∗ ≥
|T (b)(a)|
‖a‖1

=
|bn0|
1

= |bn0|,

and that is true for and all choices of n0 with bn0 6= 0. Thus

‖T (b)‖(`1)∗ ≥ sup
n0,bn0 6=0

|bn0| = sup
n
|bn| = ‖b‖∞.

This deals with the case p = 1, q = ∞.

So T is a norm-preserving map from `q to a subset of (`p)∗. In fact T is also
linear (and so is a linear isometry onto a vector subspace of (`p)∗) because
it is quite straightforward to check that for b, b̃ ∈ `q and λ ∈ K, we have
T (λb + b̃) = λT (b) + T (b̃). (Apply both sides to an arbitrary a ∈ `p to see
that this is true.)

To show it is surjective, take α ∈ (`p)∗. Then define b = (bn)n by bn =
α(en) where by en we mean the sequence (0, 0, . . . , 0, 1, 0, . . .) of all zeros
except for a 1 in position n. We now show that b ∈ `q and that T (b) = α.

Notice first that for any finitely nonzero sequence a = (a1, a2, . . . , an, 0, 0, . . .)
of scalars, a ∈ `p and a is a finite linear combination

a = a1e1 + a2e2 + · · ·+ anen

of the ej’s. We can then apply α to both sides of this equation and use
linearity of α to see that

α(a) = a1b1 + a2b2 + · · ·+ anbn.
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We will deal now with the case 1 < p < ∞ only (as the case p = 1 would
be a little different). Take aj = |bj|q(bj)

−1 for j = 1, 2, . . . , n (and aj = 0
for j > n). We can calculate as we did little earlier that

‖a‖p =

(
n∑

j=1

|bj|q
)1/p

and

α(a) =
n∑

j=1

ajbj =
n∑

j=1

|bj|q

so that

‖α‖(`p)∗ ≥
|α(a)|
‖a‖p

=

∑n
j=1 |bj|q(∑n

j=1 |bj|q
) 1

p

=

(
n∑

j=1

|bj|q
)1− 1

p

=

(
n∑

j=1

|bj|q
)1/q

(as long as there is some nonzero bj in the range 1 ≤ j ≤ n).

If we now let n → ∞ in this inequality, we find that b ∈ `q (and that
‖b‖q ≤ ‖α‖(`p)∗). This part of the argument was for p > 1. When p = 1,
we can say ‖en‖1 = 1 and so

|bn| = |α(en)| ≤ ‖α‖(`1)∗‖en‖1 = ‖α‖(`1)∗ .

Thus ‖b‖q = ‖b‖∞ = supn |bn| ≤ ‖α‖(`1)∗ and b ∈ `q also holds in the case
p = 1.

So now we can talk about T (b) ∈ (`p)∗ and it is easy to see that T (b)(en) =
bn = α(en). It follows by linearity that for any finitely nonzero sequence
a =

∑n
j=1 ajej ∈ `p we have T (b)(a) = α(a).

Finally, these finitely nonzero sequences are dense in `p because for any
x = (xn)n ∈ `p it is rather clear that

‖x− (x1, x2, . . . , xn, 0, 0, . . .)‖p =

(
∞∑

j=n+1

|xj|p
)1/p

→ 0

as n →∞. Since T (b) and α are continuous on `p and equal on a dense set,
it must be that T (b) = α. Thus T is surjective.
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(ii) (c0)
∗ = `1 — similar proof to the proof of (i).

(iii) Lp[0, 1]∗ = Lq[0, 1] and Lp(R)∗ = Lq(R) for 1/p + 1/q = 1, 1 ≤ p < ∞.

The precise meaning of “equality” here is that g ∈ Lq corresponds to the
linear functional

Lp → K

f 7→
∫

f(x)g(x) dx.

The proofs of the equalities here are somewhat similar to the proof of (i),
but require some measure theory — proofs omitted).

Theorem 3.5 (Hahn-Banach Theorem for R). Let E be a vector space over R and
M a vector subspace. Suppose p: E → [0,∞) is a seminorm on E and suppose

α: M → R

is a linear functional satisfying

|α(x)| ≤ p(x) for all x ∈ M.

Then there exists an extension β: E → R of α which is linear and satisfies

(i) β(x) = α(x) for all x ∈ M (i.e. β extends α)

(ii) |β(x)| ≤ p(x) for all x ∈ E.

[The most frequently used case is where E is a normed space and α is a contin-
uous linear functional on a vector subspace M — so that α ∈ M∗ and |α(x)| ≤
‖α‖ ‖x‖ (x ∈ M ). To apply the theorem, we take p(x) = ‖α‖ ‖x‖.

The conclusion of the theorem is that there is a linear extension β: E → R of
α that satisfies

|β(x)| ≤ p(x) = ‖α‖ ‖x‖ (x ∈ E),

or, in other terms, an extension β ∈ E∗ with norm ‖β‖ ≤ ‖α‖.
In fact the extension β cannot have a smaller norm than α and so ‖β‖ = ‖α‖.]

Proof. The proof is rather nice, being a combination of an application of Zorn’s
Lemma and a clever argument.

With Zorn’s lemma, we show we can find a maximal extension of α satisfying
the inequality. What we do is consider all possible linear extensions γ: Mγ → R
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of α to linear subspaces Mγ of E containing M . To be more precise we demand
that M ⊆ Mγ ⊆ E, that γ is linear, that γ(x) = α(x) for all x ∈ M and that
|γ(x)| ≤ p(x) for all x ∈ Mγ . We partially order this collection of extensions by
saying that γ: Mγ → R is less that δ: Mδ → R if Mγ ⊂ Mδ and δ(x) = γ(x) for
all x ∈ Mγ (that is δ extends γ). We write γ ≤ δ when this happens.

Let S denote the set of all these linear extensions γ: Mγ → R and it is not
difficult to see that (S,≤) is partially ordered. Note that S 6= as α: M → R
belongs to S. Take a chain C in S. If C = ∅, then α is an upper bound for C. If
C 6= ∅, then we can take Mδ =

⋃
γ∈C Mγ and define δ: Mγ → R as follows. If

x ∈ Mδ, then x ∈ Mγ for some γ ∈ C. We define δ(x) = γ(x). Before we can do
that we need to show that this makes δ a well-defined function. For x ∈ Mδ we
could well have several γ ∈ C where x ∈ Mγ and then we might have ambiguous
definitions of δ(x). If x ∈ Mγ1 and x ∈ Mγ2 for γ1, γ2 ∈ C, then we must gave
γ1 ≤ γ2 or else γ2 ≤ γ1 (since C is a chain). We consider only the case γ1 ≤ γ2

because the other case is similar (or even the same if we re-number γ1 and γ2).
Then Mγ1 ⊂ Mγ2 and γ1(x) = γ2(x). So δ(x) is well-defined.

To show that δ ∈ S, we first need to know that Mδ is a subspace, then that
δ is linear. If x, y ∈ Mδ and λ ∈ R, then there are γ1, γ2 ∈ C with x ∈ Mγ1 ,
y ∈ Mγ2 . As C is a chain, γ1 ≤ γ2 or γ2 ≤ γ1. If γ1 ≤ γ2 let γ = γ2, but
if γ2 ≤ γ1 let γ = γ1. Then x, y ∈ Mγ . As we know Mγ is linear, we have
λx + y ∈ Mγ ⊂ Mδ. So Mδ a subspace. Moreover we can say that δ(λx + y) =
γ(λx + y) = λγ(x) + γ(y) = λδ(x) + δ(y) (because γ is linear). So δ is linear.

To complete the verification that δ ∈ S, we take x ∈ M . as C is not empty,
there is γ ∈ C and then we have α(x) = γ(x) = δ(x). So δ: Mδ → R is a linear
extension of α. Finally |δ(x)| ≤ p(x) (∀x ∈ Mδ) because

x ∈ Mδ ⇒ ∃γ ∈ C with x ∈ Mγ ⇒ |δ(x)| = |γ(x)| ≤ p(x)

and so δ ∈ S.
Now δ is an upper bound for C since γ ∈ C implies Mγ ⊂ Mδ and for x ∈ Mγ

we do have γ(x) = δ(x).
By Zorn’s lemma, we conclude that there must be a maximal element γ: Mγ →

R in S.
If Mγ = E for this maximal γ then we take β = γ. If not, there is a point

x0 ∈ E \Mγ and what we do is show that we can extend γ to the space spanned
by x0 and γ while keeping the extension linear and still obeying the inequality. In
other words, we can get a contradiction to the maximality of γ if Mγ 6= E.
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The linear span of Mγ and x0 is

N = {x + λx0 : x ∈ Mγ, λ ∈ R}.

Also each element of y ∈ N can be uniquely expressed as y = x + λx0 (with
x ∈ Mγ , λ ∈ R) because if

y = x + λx0 = x′ + λ′x0 (x, x′ ∈ Mγ, λ, λ′ ∈ R)

then x − x′ = (λ′ − λ)x0. So λ′ − λ = 0 must hold. Otherwise x0 = (1/(λ′ −
λ))(x− x′) ∈ Mγ , which is false. Thus λ = λ′ and x = x′.

We define δ: N → R by δ(x + λx0) = γ(x) + λc where we still have to say
how to choose c ∈ R. No matter how we choose c, δ will be linear on N and will
extend γ, but the issue is to choose c so that we have

|γ(x) + λc| ≤ p(x + λx0) (x ∈ Mγ, λ ∈ R).

In fact it is enough to choose c so that this works for λ = 1. If λ = 0, we already
know |γ(x)| ≤ p(x), while if λ 6= 0 we can write

|γ(x) + λc| = |λ|
∣∣∣∣γ (1

λ
x

)
+ x0

∣∣∣∣ , p(x + λx0) = |λ|p
(

1

λ
x + x0

)
,

with (1/λ)x ∈ Mγ . Thus we want to choose c so that |γ(x) + c| ≤ p(x + x0)
holds for x ∈ Mγ , which is the same as

−p(x + x0) ≤ γ(x) + c ≤ p(x + x0)

or
c ≤ p(x + x0)− γ(x) and − p(x + x0)− γ(x) ≤ c (∀x ∈ Mγ) (1)

Notice that for x, x1 ∈ Mγ we have

γ(x)− γ(x1) = γ(x− x1)

≤ p(x− x1) = p((x + x0) + (−x1 − x0))

≤ p(x + x0) + p(−x1 − x0)

= p(x + x0) + p(x1 + x0)

Thus
−p(x1 + x0)− γ(x1) ≤ p(x + x0)− γ(x) (∀x, x1 ∈ Mγ).
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For fixed x ∈ Mγ , we then have

sup
x1∈Mγ

−p(x1 + x0)− γ(x1) ≤ p(x + x0)− γ(x).

Hence
sup

x1∈Mγ

−p(x1 + x0)− γ(x1) ≤ inf
x∈Mγ

p(x + x0)− γ(x).

We choose c so that

sup
x1∈Mγ

−p(x1 + x0)− γ(x1) ≤ c ≤ inf
x∈Mγ

p(x + x0)− γ(x).

Then c satisfies the requirement (1).
With this choice of c, we have δ: N → R in S, γ ≤ δ but δ 6= γ (because

N 6= Mγ). This is a contradiction to the maximality of γ. So we must have
Mγ = E.

Theorem 3.6 (Hahn-Banach Theorem for C). Let E be a vector space over C and
M a vector subspace. Suppose p: E → [0,∞) is a seminorm on E and suppose

α: M → C

is a linear functional satisfying

|α(x)| ≤ p(x) for all x ∈ M.

Then there exists an extension β: E → C of α which is linear and satisfies

(i) β(x) = α(x) for all x ∈ M

(ii) |β(x)| ≤ p(x) for all x ∈ E.

Proof. Observe that the statement is the same as for the case of R (and it is usually
applied in exactly the same way). This is one of the few theorems where separate
proofs are needed for the two cases. In fact the complex case follows from the
real case.

We have α: M → C. Write

α(x) = α1(x) + iα2(x),

where α1: M → R, α2: M → R are the real and imaginary parts of α.
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Note that α1 is R-linear and |α1(x)| ≤ |α(x)| ≤ p(x). So, by Theorem 3.5,
we can extend α1 to get an R-linear β1: E → R satisfying |β1(x)| ≤ p(x) for all
x ∈ E.

The key observation is that there is a relationship between the real and imagi-
nary parts of a C-linear functional, found as follows:

α(ix) = iα(x)

α1(ix) + iα2(ix) = i(α1(x) + iα2(x))

= iα1(x)− α2(x)

We deduce that α2(x) = −α1(ix) for all x ∈ M .
Since a similar analysis could be applied to a C-linear functional on E (such

as the extension we are seeking), this leads us to define

β: E → C
β(x) = β1(x)− iβ1(ix)

Then β is easily seen to be R-linear on E and, by our observation, it extends α.
To show β is C-linear, we need

β(ix) = β1(ix)− iβ1(i
2x)

= β1(ix)− iβ1(−x)

= β1(ix) + iβ1(x)

= i(β1(x)− iβ1(ix))

= iβ(x).

It remains to show that |β(x)| ≤ p(x) for x ∈ E. To do this, fix x ∈ E and
choose eiθβ(x) ∈ R. Then

|β(x)| = |eiθβ(x)| = |β(eiθx)|
= |β1(e

iθx)|
≤ p(eiθx) = p(x).

Corollary 3.7. If E is a normed space and x ∈ E is a nonzero element, then there
exists α ∈ E∗ with

‖α‖ = 1 and α(x) = ‖x‖.
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Proof. Let M = {λx : λ ∈ K}, a one-dimensional subspace of E. Define
α: M → K by α(λx) = λ‖x‖. Then α is linear, and

‖α‖ = sup
λ6=0

|α(λx)|
‖λx‖

= 1.

Also α(x) = ‖x‖. By the Hahn-Banach theorem, we can extend α to a linear
functional on the whole space E of norm 1.

Corollary 3.8. Let E be a normed space and x, y ∈ E two distinct elements
(x 6= y). Then there exists α ∈ E∗ with α(x) 6= α(y).

Proof. Apply Corollary 3.7 to x − y and observe that α(x − y) 6= 0 ⇒ α(x) 6=
α(y).

Corollary 3.9. If E is any normed space, then there is a natural linear map

J : E → E∗∗ = (E∗)∗

given by
J(x) = point evaluation at x.

In other words, for each x ∈ E

J(x): E∗ → K
J(x)(α) = α(x).

The map J is injective and

‖J(x)‖E∗∗ = ‖x‖E.

In short, J is a natural isometric isomorphism from E onto its range J(E) ⊂
E∗∗.

Proof. The map J(x): E∗ → K is clearly linear, and

|J(x)(α)| = |α(x)| ≤ ‖α‖ ‖x‖

shows that J(x) is bounded on E∗. Thus J(x) ∈ (E∗)∗ and, in fact,

‖J(x)‖(E∗)∗ ≤ ‖x‖.

By Corollary 3.7, given x ∈ E, there exists α ∈ E∗, with ‖α‖ = 1 and
|α(x)| = ‖x‖ = ‖α‖ ‖x‖. This shows that ‖J(x)‖ ≥ ‖x‖. Therefore ‖J(x)‖ =
‖x‖ and J is an isometry onto its range. It follows that J must be injective.
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Definition 3.10. A normed space E is called reflexive if the natural map J : E →
E∗∗ is surjective (and is then an isometric isomorphism because of Corollary 3.9).

Example 3.11. (i) If 1 < p < ∞, then `p, Lp[0, 1] and Lp(R) are all reflexive.

Proof. The idea is basically that

(`p)∗ = `q, (`q)∗ = `p

(
1

p
+

1

q
= 1

)
.

This shows that (`p)∗∗ = `p but is not quite a proof that `p is reflexive,
because we still must check that the identification of (`p)∗∗ with `p is the
natural one.

(ii) Every finite-dimensional normed space is reflexive (because E∗ is the alge-
braic dual space by Corollary 1.8.10; so dim E∗∗ = dim E∗ = dim E and
so the injective J : E → E∗∗ must be surjective).

(iii) If a normed space E is reflexive, then E must be a Banach space (because
dual spaces are complete — see Proposition 3.2).

Theorem 3.12. If E is a normed space and M ⊂ E is a closed subspace and if
x0 ∈ E, x0 6∈ M , then there exists α ∈ E∗ with α(x0) = 1 and α(x) = 0 for all
x ∈ M .

Proof. Let
d = dist(x0, M) = inf{‖x− x0‖ : x ∈ M}.

Since M is closed and x0 6∈ M , d > 0. Next let

M1 = {x + λx0 : x ∈ M, λ ∈ K}

and define a linear functional on M1 by

α: M1 → K
α(x + λx0) = λ.

Observe that (for λ 6= 0)

‖x + λx0‖ = |λ|
∥∥∥x

λ
+ x0

∥∥∥ ≥ |λ|d
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and consequently

|α(x + λx0)| = |λ| ≤ 1

d
‖x + λx0‖

(true for all x + λx0 ∈ M1, even when λ = 0). This shows that α is a continuous
linear functional on M1, that is α ∈ M∗

1 . By the Hahn-Banach theorem, we can
extend α to get an element of E∗ with the required properties.

Corollary 3.13. (`∞)∗ 6= `1.
More precisely, it is not possible to identify (`∞)∗ with `1 in the same way as

we identified (`p)∗ with `q and (c0)
∗ with `1 in Examples 3.4.

Proof. We know that (c0)
∗ = `1, c0 a closed subspace of `∞ and c0 6= `∞.

In more detail, there is a map T : `1 → (c0)
∗ given by

(T (b))(a) = (T ((bn)∞n=1)) ((an)∞n=1) =
∞∑

n=1

anbn

for b = (bn)∞n=1 ∈ `1, a = (an)∞n=1 ∈ c0. This map is an isometric isomorphism
from `1 onto (c0)

∗. By the same argument (using Hölders inequality) used in
Examples 3.4 to show that T is a bounded linear operator, we can see that it makes
sense to define T : `1 → (`∞)∗ by the same formula. Also ‖T (b)‖(`∞)∗ ≤ ‖b‖1.
Since c0 ⊂ `∞ we know that this new variant of T satisfies ‖T (b)‖(`∞)∗ = ‖b‖1

also. Our result is that T does not map `1 onto (`∞)∗.
By Theorem 3.12, there exists α ∈ (`∞)∗, α 6= 0 with α = 0 on c0. This α

cannot be represented by an element of `1 — that is there is no choice of (bn)n ∈ `1

so that
α((an)n) =

∑
n

anbn for all (an)n ∈ `∞.

Theorem 3.14. If E is any infinite dimensional Banach space, then there exists a
discontinuous linear transformation

α: E → K.

Proof. Since E is a vector space over K, it must have an algebraic basis (or Hamel
basis) — see Theorem 2.19. Let {ei : i ∈ I} be such a basis and recall that each
x ∈ E can be expressed (in a unique way) as a finite linear combination

x = xi1ei1 + xi2ei2 + · · ·+ xinein
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of basis elements. Write this as

x =
∑
i∈I

xiei

where xi = 0 if i 6= ij for some j.
Consider now the coefficient functionals

αi: E → K
: x 7→ xi

We claim that at least one of the linear transformations αi (i ∈ I) must be discon-
tinuous.

If all the αi are continuous we take an infinite sequence (in)n of distinct ele-
ments of I . Let

xn =
n∑

j=1

1

2j

eij

‖eij‖
.

It is easy to check that (xn)n is a Cauchy sequence in E, and hence there exists
limn→∞ xn = x ∈ E. If each αij is continuous

αij(x) = lim
n

αij(xn) =
1

2j‖eij‖

is nonzero for infinitely many ij . This is a contradiction because

x =
∑
i∈I

αi(x)ei

is a finite sum.

Richard M. Timoney (February 19, 2009)


