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Chapter 2: Fundamentals
The objective in this chapter is to convey a very naive idea of Mathematical Logic
(not even page 1 of course 371), and then to explain what the ‘Axiom of Choice’
is and why it is useful (by giving some example applications). Later we will use
it for the Hahn-Banach theorem.

In this course, as in most others at this level, we need to pay close attention
to details. It helps to keep in mind the structure of logical arguments. There are
certain rules (called Axioms) which we follow, or take to be self-evident truths,
and we often prove theorem which say

hypothesis A ⇒ conclusion B.

The ⇒ means ‘implies’ and the meaning of the theorem (the assertion we intend
to prove) is that

Under our usual axiom system, any time we are in a situation where
A is valid, we can be sure that B will also hold.

We have to be sure we have an incontrovertible proof of any theorem, or we run
the risk of ending up with nonsensical conclusions.

The codification of what a proof is belongs to the Logic course, but there are
genuine concerns. These include

(i) Russels paradox: the set of all sets A with the property that A /∈ A, or

S = {A : A /∈ A}

causes a problem. Is S ∈ S? or not?

The solution to this is to make restrictions on the things one is allowed to
write down. First order logic is one system (a very restrictive one) that avoids
this paradox.

(ii) Nevertheless, we can never prove that a set of rules is consistent (will not
lead to contradictions).

(iii) There are ‘theorems’ (or assertions) which can neither be proved not dis-
proved in any given system of axioms.
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One motivation to be ultra careful about all these rules would be to build an
automated theorem-prover or proof-checker. Though there is a lot of work in
this direction, it seems to have limited success and the kind of proof that can be
mechanically validated usually cannot be easily read by a human. For example,
conventions that we often have such as that x ∈ R, z ∈ C or n ∈ N, can make
things easier to follow. But for a mechanical proof, we have to spell out all such
things in every line.

The axiom of choice is known not to be provable, but also assuming it to be
true does not introduce any inconsistency. The axiom seems harmless enough
when we see it, and it is usual to take it to be true. However, it does lead to
proofs of remarkable results and so it is perhaps not so harmless. Many of the
remarkable results proved using the axiom of choice cannot be proved without it
(because knowing them one could prove the axiom of choice).

Before stating the axiom, some further reinforcement to make sure you re-
member the rules. The symbol ∀ is translated as “for all”, the symbols ∃ as “there
exists” and the symbol ⇐⇒ as “if and only if”. This last one is really important
to digest. If we claim a theorem

statement A ⇐⇒ statement B

then we always have two independent things to establish. One is A ⇒ B (so
starting from the knowledge that A holds in some situation, we have to show B).
The other part is B ⇒ A (starting from a maybe quite different scenario where
we know B is valid, we have to establish A).

So a proof of A ⇐⇒ B should always be divided into a proof of A ⇒ B and
a second proof that B ⇒ A. Without this structure, the proof cannot even start to
be right. Another thing to keep in mind is that the steps in the proof of the A ⇒ B
will be (usually) valid because we are supposing A to be true. We cannot re-use
those steps in the B ⇒ A argument because the assumption is now that B holds
(and A is what we have to prove, not what we know).

The relationship between the A ⇐⇒ B notation and the wording “A if and
only if B” is that A ⇒ B (A implies B) can be phrased “A only if B”. The other
direction A ⇐ B (alternatively written B ⇒ A) can be phrased “A if B”.

Definition 2.1. If I is any set (which we take as an index set) and {Ai : i ∈ I} is
a family of sets indexed by I , then a choice function for the family is a function

f : I →
⋃
i∈I

Ai
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with the property that f(i) ∈ Ai holds for all i ∈ I .

Axiom 2.2 (Axiom of Choice). If {Ai : i ∈ I} is a family of sets with the property
that Ai 6= ∅ holds for all i ∈ I , then there is a choice function for the family.

Remarks 2.3. (i) It is clear that if we have a family of sets {Ai : i ∈ I} where
there is just one i0 ∈ I so that the corresponding set Ai0 is empty, then
we cannot have any choice function. Clearly the requirement f(i0) ∈ Ai0

cannot be satisfied if Ai0 = ∅.

(ii) If I = {i0} has just one element and we have a family of one nonempty set
{Ai0}, then we can prove there is a choice function. Simply use the fact that
Ai0 6= ∅ to deduce that there must be at least one element x0 ∈ Ai0 . Pick
one such element and define f(i0) = x0. Then we have a choice function

f : I →
⋃
i∈I

Ai = Ai0

(iii) If I = {1, 2, . . . , n} or if I is any finite set, we can also prove that the
conclusion of the axiom of choice is valid. The reason is basically that we
have only to make a finite number of choices xj ∈ Aj for j = 1, 2, . . . , n
and to define the choice function f by f(j) = xj .

To organise this proof better, we could make it into a proof by induction that
the assertion about n is true:

If I = {1, 2, . . . , n} and {Ai : i ∈ I} is a family of nonempty
sets indexed by I , then there is a choice function for the family.

We proved the initial induction step (n = 1) already. The idea to go from
assuming true for n to establishing it for n + 1 is to make a choice xn+1 ∈
An+1. Then use the induction hypothesis to get a choice function when
An+1 is omitted from the family, that is f : {1, 2, . . . , n} →

⋃n
i=1 Ai so that

f(i) ∈ Ai (1 ≤ i ≤ n). And finally define the desired choice function to be
the same as this f on {1, 2, . . . , n} and to take the value xn+1 at n + 1.

(iv) We could even start this induction at n = 0 if we wanted. If I has 0 elements,
it is the empty set, and there are no sets in the family {Ai : i ∈ I}. Since
there are no sets Ai it is vacuously true they are all nonempty. But it is also
true that there is a choice function!
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A function with domain I = ∅ can’t have any values. If we think of a
function f : X → Y between two sets as a set of ordered pairs in X × Y
satisfying certain rules, then the empty function will satisfy the rules when
X = ∅. In the case I = ∅, the empty function works as a choice function.
So technically (and rather bizarrely) this case is ok.

(v) The difficulty with proving the axiom of choice is in trying to write down
the fact that there are (if I is a big set) very many choices to be made so as
to pick f(i) ∈ Ai for each i ∈ I . For any one i ∈ I , we have the assumption
Ai 6= ∅ and so there is some element xi ∈ Ai. We could say “pick such an xi

and we will put f(i) = xi”. The problem is that there are so many choices
to be made that we would never be done making the choices.

The rules of logic (which we have not gone into) prevent you from formally
writing down a proof that this should be possible. That is where the axiom
of choice comes in.

Definition 2.4. If I is an index set, and {Ai : i ∈ I} is a family of sets, then their
Cartesian product, which we denote by∏

i∈I

Ai,

is the set of all choice functions for the family.

Remarks 2.5. (i) The Axiom of Choice (2.2) can be restated∏
i∈I

Ai 6= ∅ if Ai 6= ∅∀i ∈ I.

(ii) When we have just two sets, say I = {1, 2} and sets A1, A2, there are only
two values f(1) and f(2) needed to specify any choice function.

So choice functions f can be specified by listing the two values (f(1), f(2))
as an ordered pair. We get then the more familiar view of the Cartesian
product of two sets as a set of ordered pairs

A1 × A2 = {(x1, x2) : x1 ∈ A1, x2 ∈ A2}.

(iii) From this perspective, the Axiom of Choice seems innocuous. Our next
goal is to state Zorn’s lemma, something equivalent that is quite often used
as part of an argument. To do that we need some terminology about partially
ordered sets.
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Definition 2.6. A partial order ≤ on a set S is a relation on S satisfying the
following properties

(i) x ≤ x is true for all x ∈ S

(ii) x, y ∈ S, x ≤ y and y ≤ x ⇒ x = y

(iii) (transitivity) x, y, z ∈ S, x ≤ y, y ≤ z ⇒ x ≤ z

The set S together with some chosen partial order is called a partially ordered
set (S,≤).

Examples 2.7. (i) The most familiar example of ≤ is the one for numbers (real
numbers S = R, rational numbers S = Q, integers S = Z, natural numbers
S = N). In fact we can take S ⊆ R to be any subset and keep the usual
interpretation of ≤ to get a partially ordered set (S,≤).

These examples are rather too special to get a general feel for what a partial
order might be like.

(ii) A fairly general kind of example comes by taking ≤ to be set inclusion ⊆.

Start with any set T and take S = P(T ) = the power set of T , by which we
mean the set of all subsets of T ,

P(T ) = {R : R ⊆ T}.

Declare R1 ≤ R2 to mean R1 ⊆ R2.

It is not hard to see that the rules for a partial order are satisfied.

(iii) If we take small sets for T , we can picture what is going on.

If T = {1, 2} has 2 elements, then P(T ) has 22 = 4 elements

P({1, 2}) = {∅, {1}, {2}, {1, 2}}.
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What the picture represents is the inclusion ordering between the sets. A ⊆
B means we can get from A to B traveling upwards always. The picture
shows that A = {1} and B = {2} are not related by inclusion. Neither is
contained in the other. This is why the word ‘partial’ is used.

If we go to a set with 3 elements and 23 = 8 subsets, the picture will become
a little trickier to draw. Some paths cross.
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You can see now that the single element subsets {1}, {2}, {3} are not com-
parable one to another, and neither are the 2 element subsets. There are sets
like {1} and {2, 3} with different numbers of elements which are also not
comparable.

(iv) One way to get new partially ordered sets from old ones is to take subsets.
If (S,≤) is any partially ordered set nd S0 ≤ S is any subset we can use the
same ≤ on S0, or restricted to S0, to get a partial order on S0.

If we want to make it more formal, we define the relation ≤0 on S0 by the
rule

x ≤0 y ⇐⇒ x ≤ y.
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So x ≤0 y for x, y ∈ S0 means that x ≤ y holds in S. The difference
between≤0 and≤ is that≤0 forgets whatever relations there were involving
elements of S \ S0.

It is not hard to verify that ≤0 is a partial order on S0.

We call it the induced order on S0. Looking at the picture above where
S = P({1, 2, 3}) we could take

S0 = {∅, {1}, {2}, {1, 2, 3}}

and we would get the picture for (S0,≤0) by erasing all nodes in the picture
corresponding to the other 4 subsets. In fact, if we do this, we will end up
with a picture that is really similar to the picture for a power set of a set with
2 elements.

We can end up with other pictures by taking different S0.

Definition 2.8. A linear ordering≤ on a set S is a partial order with the additional
property

x, y ∈ S ⇒ x ≤ y or y ≤ x.

(In other words, every pair of elements are comparable.)
A linearly ordered set is a set S with a linear ordering ≤ specified.

Definition 2.9. If (S,≤) is a partially ordered set, then a chain in S is a subset
C ⊆ S that becomes linearly ordered in the induced order.

Example 2.10. In the case S = P({1, 2, 3}), one possible chain is

C = {∅, {1, 3}, {1, 2, 3}}.

Definition 2.11. If (S,≤) is a partially ordered set, and R ⊆ S is any subset, then
an element u ∈ S is called an upper bound for R if it is true that

x ≤ u∀x ∈ R.

Example 2.12. In R, with the usual order, there is no upper bound for the subset
N.

In S = P({1, 2, 3}) (with set inclusion ⊆ as our ≤), if we take

R = {∅, {1, 3}, {2, 3}}

then we do have an upper bound u = {1, 2, 3} in S for R.
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Notice however, in the same setting, that {1, 3} is not an upper bound for R.
For example {2, 3} 6⊆ {1, 3} So {1, 3} fails to be an upper bound because it is not
larger than everything in R.

But, there is a little difference that comes because we have only a partial order
and not a linear order. In the case of R, if something is not an upper bound for
a subset, then there is something larger in the subset. In our example, there is
nothing in R strictly bigger than {1, 3}. There are elements in R that are not
comparable to {1, 3}.

Definition 2.13. If (S,≤) is a partially ordered set, then m ∈ S is called a maxi-
mal element of S if

x ∈ S, m ≤ x ⇒ m = x.

(There is nothing in S strictly larger than m.)

Example 2.14. This is not the same as an element of S that is an upper bound for
S. If we take a subset of the example drawn above where S0 = {∅, {1}, {2}, {3}} ⊆
P({1, 2, 3}), we can see that each of {1}, {2} and {3} is maximal inside S0.
(There is nothing in S0 strictly larger.)

Theorem 2.15 (Zorn’s lemma). If (S,≤) is a (nonempty) partially ordered set,
with the property that every chain C ⊂ S has an upper bound in S, then S has a
maximal element.

Proof. We postpone the proof (which uses the Axiom of Choice) and in fact we
will leave the hard parts to an appendix. It is interesting that the proof uses the
axiom of choice, but the details are somewhat tedious.

We will show some examples of using Zorn’s lemma before saying anything
about the proof.

Proposition 2.16. A (nonzero) unital ring contains a maximal proper ideal.

Recall that a ring R is an abelian group under an operation + and has a multi-
plication satisfying reasonable properties (distributivity x(y + z) = xy + xz and
(x+y)z = xz+yz). Associativity ((xy)z = x(yz)) is usually assumed but it is not
really necessary for us. A unital ring is one where there is a multiplicative identity
1R ∈ R (satisfying 1Rx = x = x1R, x ∈ R). It is common to assume 1R 6= 0 but
if 1R = 0 then for each x ∈ R we have x = 1Rx = 0x = 0, and so R = {0}. An
ideal I ⊆ R is a subgroup under addition that satisfies rx, xr ∈ I∀x ∈ I, r ∈ R.

By a maximal (proper) ideal M ⊆ R we mean an ideal with M 6= R and the
maximality property that if M ⊆ I ( R for any (proper) ideal I , then M = I .
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Proof. The idea is to apply Corns lemma 2.15 where the the partially ordered set S
is the set of all proper ideals I ( R and the relation≤ is⊆. The proposition states
exactly that (S,≤) must have a maximal element and this is also the conclusion of
Corns lemma. So what we need to do is establish the hypotheses of Corns lemma
(that every chain in S has an upper bound).

Let C ⊆ S be a chain. If C = ∅ then we can take I = {0} as the upper bound.
Since 1 6= 0, I ∈ S (that is it is a proper ideal). I is vacuously an upper bound
for the empty chain.

If C is nonempty, we put I =
⋃

I∈C I . Clearly I ⊆ I∀I ∈ C and the issue in
proving that I is an upper bound for C (in S) is to show I ∈ S. Now 0 ∈ I since
C 6= ∅, so ∃I ∈ C and thus 0 ∈ I ⇒ 0 ∈ I. Next to establish that I is an additive
subgroup of R we need to show that x, y ∈ I ⇒ x− y ∈ I.

Now x, y ∈ I implies ∃I1, I2 ∈ C with x ∈ I1 and y ∈ I2. As C is a chain we
have either I1 ⊆ I2 or I2 ⊆ I1. Say I1 ⊆ I2 as the other case is similar. Then we
have x, y ∈ I2 and so x− y ∈ I2 ⊆ I (because I2 is an ideal).

Next to show I has the ideal property, pick x ∈ I and r ∈ R. Then x ∈ I for
some I ∈ C and so rx, xr ∈ I ⊆ I. Thus rx, xr ∈ I.

Finally, we must show I 6= R (that is that I is a proper ideal and so I ∈ S).
To do this we note that 1R /∈ I. If 1R ∈ I, then 1R ∈ I for some I ∈ C and so
r = r1R ∈ I∀r ∈ R (by the ideal property of I) and this would mean R = I ,
I /∈ S.

The above is a fairly typical application of Corns lemma, but other applications
can require more technicalities.

Definition 2.17. Let V be an arbitrary vector space over any field F .
A subset E ⊆ V is called linearly independent if whenever n ≥ 1, e1, e2, . . . , en ∈

E distinct elements, λ1, λ2, . . . , λn ∈ F and λ1e1 + λ2e2 + · · · + λnen = 0, then
it must be that λ1 = λ2 = · · · = λn = 0.

A subset E ⊆ V is said to span V if v ∈ V implies there is n ≥ 0,
e1, e2, . . . , en ∈ E and λ1, λ2, . . . , λn ∈ F so that v = λ1e1 + λ2e2 + · · ·+ λnen.
Here we interpret the empty sum (the case of n = 0) to be the zero vector 0 ∈ V .

A subset E ⊆ V is called a basis for V if it is both linearly independent and a
spans V .

Observe that the empty set is linearly independent and forms a basis for the
zero vector space.

Lemma 2.18. Let V be a vector space over a field F . Then a subset E ⊆ V is a
basis for V ⇐⇒ it is a maximal linearly independent subset of V .
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Here by maximal we mean maximal with respect to ⊆. So taking S to be the
set (or collection) of all linearly independent subsets of V and the relation⊆ on S
we are considering a maximal element of (S,⊆).

Proof. ⇒: We start with E ⊆ V a basis.
Let E ⊆ E1 ⊆ V with E1 linearly independent. If E1 6= E, then there exists

v ∈ E1 \E. As E spans V , there are e1, e2, . . . , en ∈ E and scalars λ1, λ2, . . . , λn

with v = λ1e1 +λ2e2 + · · ·+λnen. We can suppose that e1, e2, . . . , en are distinct
elements of E because if (say) e1 = e2 we can rewrite v = λ1e1 + λ2e2 + · · · +
λnen = (λ1 + λ2)e2 + λ3e3 + · · · + λnen as shorter linear combination. We can
continue to do this to eliminate repetitions among the ej ∈ E. Suppose then that
this has been done, that the value of n has been suitably adjusted and the elements
of E renumbered to get e1, e2, . . . , en ∈ E distinct.

Now we can rearrange v = λ1e1 + λ2e2 + · · ·+ λnen as

(−1)v + λ1e1 + λ2e2 + · · ·+ λnen = 0.

As v, e1, e2, . . . , en ∈ E1 are distinct and the scalar coefficients are not all 0 (be-
cause −1 6= 0 in all fields), we see that E1 cannot be linearly independent. this
contradiction forces E = E1 and shows that E is a maximal linearly independent
subset of V .

⇐: We start with E ⊆ V a maximal linearly independent subset of V .
To show it spans V , pick v ∈ V . If v ∈ E, then we can write v = 1.v as

a linear combination of elements of E. If v /∈ E, then E ( E ∪ {v} ⊆ V
means that E ∪ {v} cannot be linearly independent by maximality of E. So there
are distinct vectors e1, e2, . . . , en ∈ E∪{v} and scalars λ1, λ2, . . . , λn not all zero
with λ1e1+λ2e2+· · ·+λnen = 0. We must have v ∈ {e1, e2, . . . , en} as otherwise
we would contradict linear independence of E. So we may as well assume e1 = v
(by renumbering if necessary). Also then λ1 6= 0 (as otherwise we would again
contradict linear independence of E). Thus

v = (−λ2/λ1)e2 + (−λ3/λ1)e3 + · · ·+ (−λn/λ1)en

is a linear combination of elements of E. (If n = 1 it is the empty sum and v = 0
but that is ok.) This shows that E spans V . Hence E is a basis for V .

Theorem 2.19. Every vector space has a basis.

Proof. Let V be a vector space.
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The idea is to apply Zorn’s lemma 2.15 to S = {E : E ⊆ V linearly independent}
ordered by ⊆.

S is not empty since the empty set E = ∅ ∈ S. Thus the empty chain in S has
an upper bound in S.

For any (empty or not) chain C ∈ S, we can find an upper bound for C by
taking E0 =

⋃
{E : E ∈ C}. What we have to show is that E0 ∈ S (that is that

E0 is linearly independent) as E ⊆ E0 is clearly true ∀E ∈ C.
Let n ≥ 1 and e1, e2, . . . , en ∈ E0 distinct elements. Suppose λ1, λ2, . . . , λn

are scalars (elements of the base field) with λ1e1 + λ2e2 + · · · + λnen = 0. For
each 1 ≤ j ≤ n there is Ej ∈ C with ej ∈ Ej .

By induction on n we can find E ′
n ∈ {E1, E2, . . . , En} with e1, e2, . . . , en ∈

E ′
n. To show this consider E1 and E2. Both are in the chain C and so E1 ⊆ E2

or E2 ⊆ E1. In the first case let E ′
2 = E2 and in the second let E ′

2 = E1. Then
e1, e2 ∈ E ′

2.
Next E ′

2 ⊆ E3 or E3 ⊆ E ′
2. Taking E ′

3 to be the larger of the two sets, we get
e1, e2, e3 ∈ E ′

3. Continuing in this way (or, more formally, using induction on n)
we can show the existence of E ′

n.
By linear independence of E ′

n we can conclude λ1 = λ2 = · · · = λn.
Thus E0 is linearly independent. E0 ∈ S is an upper bound for the chain C.
We have shown that every chain in S has an upper bound. By Zorn’s lemma,

S has a maximal element. By the previous lemma, such a maximal element of S
is a basis for V .

Proposition 2.20. Let V be a vector space (over any field) and I ⊂ V a linearly
independent set. Then there is a basis E of V with I ⊂ E.

Proof. This proposition is a generalisation of Theorem 2.19. The reason is that
we can take I = set as a linearly independent subset of V and then the conclusion
that there is a basis E with ∅ ⊂ E just amounts to the statement that there is a
basis E for V .

The proof is a modification of the proof of Theorem 2.19.
The idea is to apply Zorn’s lemma 2.15 to S = {E : E ⊆ V linearly independent and I ⊂

E} ordered by⊆. The proof is no different except the fact that S 6= ∅ now follows
from I ∈ S.

We then have an upper bounded E = I for the empty chain in S. The exact
same proof as above shows that a non-empty chain C in S has a linearly inde-
pendent union E0 =

⋃
E∈C E. To show E0 ∈ S, note that I ⊂ E0 because C is

nonempty.
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Examples 2.21. (i) R is a vector space over Q. For instance,
√

2 is irrational and
it follows that I = {1,

√
2} is linearly independent over the rationals. From

the proposition, it follows that R has a basis B over Q with {1,
√

2} ⊂ B.

Because R is uncountable, any basis B has to be uncountable. The reason
is that, if B was countable, the collection of finite subsets of B would also
be countable. For each finite subset {b1, b2, . . . , bn} ⊂ B, there are just
countably many rational linear combinations

n∑
j=1

qjbj

with rational coefficients (q1, q2, . . . , qn) ∈ Qn.

(ii) Every Banach space E over K (where K = R or K = C as usual) has a
basis over K. Here we mean an algebraic basis, which involves only finite
sums. This kind of basis is sometimes called a Hamel basis, because in
Banach spaces one can consider infinite linear combinations. The kind of
basis where infinite linear combinations are allowed is called a Schauder
basis. A special case arses in Hilbert spaces (which we will come to soon)
and are called an orthonormal basis. Please take note that these concepts are
quite different from the algebraic bases we have discussed above.

We have not said anything about the proof of Zorn’s lemma (using the axiom
of choice). Just one hint. It is quite easy to prove it from something else, which
we now state. Unfortunately the proof of this theorem is not easy. All will go in
the appendix in case you are curious.

Theorem 2.22 (Hausdorff’s maximality principle). If (S,≤) is a partially ordered
set, then S contains a maximal chain.

By this we mean that the set (or collection) of all chains in S, ordered by set
inclusion ⊆, has a maximal element.



321 2008–09 13

A Proof of Hausdorff’s maximality principle
The first ingredient in the proof will be the following rather technical lemma.

Lemma A.1. Let F be a nonempty collection of subsets of a set X and g:F → F
a function. Suppose

(i) F contains the union of every nonempty chain in F (i.e. the union of any
nonempty subcollection of F which is linearly ordered by set inclusion).

(ii) ∀A ∈ F , A ⊆ g(A) and g(A) \ A has at most one element.

Then there exists some A ∈ F with g(A) = A.

Proof. Fix A0 ∈ F . Call a subcollection F ′ ⊂ F a tower if

(a) A0 ∈ F ′

(b) A ∈ F ′ ⇒ g(A) ∈ F ′, and

(c) F ′ satisfies (i) above.

The family of all towers is nonempty. To see this look at

F1 = {A ∈ F : A0 ⊆ A}

(or even F2 = F). F1 is a tower (and so is F2).
Now let F0 denote the intersection of all towers. Then F0 is a tower (check).
We next show that F0 is a chain in F . We achieve this by a rather indirect

approach.
Consider

Γ = {D ∈ F0 : every A ∈ F0 satisfies either A ⊆ D or D ⊆ A}
= {D ∈ F0 : every A ∈ F0 is comparable to D}.

(Aside: Maybe Γ is not too mysterious. We want to prove that F0 is a chain,
which is the same as F0 = Γ.)

For each D ∈ Γ, let

ΦD = {A ∈ F0 : either A ⊆ D or g(D) ⊆ A}.

Now A0 ∈ F0 because F0 is a tower. F0 ⊆ F1 and hence A0 ∈ Γ. Also
A0 ∈ ΦD for all D ∈ Γ since A0 ⊆ D. Therefore Γ and each ΦD satisfies (a).
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If C is a chain in Γ, consider

E =
⋃
D∈C

D.

For any A ∈ F0, we have either A ⊆ D or D ⊆ A, for each D ∈ C. If A ⊆ D for
one D ∈ C, then A ⊆ E. Otherwise, D ⊆ A for all D ∈ C and so E ⊆ A. Thus
E ∈ Γ. This shows that Γ satisfies (c).

Consider now a chain C in ΦD (some D) and let B =
⋃

A∈C A. Since each
A ∈ C is in ΦD, we have either A ⊆ D or g(D) ⊆ A for A ∈ C.

If A ⊆ D for each A ∈ C, then B ⊆ D. Otherwise g(D) ⊆ A for some A and
then g(D) ⊆ B. Thus we have B ∈ ΦD. This shows that ΦD satisfies (c).

Next we prove that ΦD satisfies (b) (for fixed D ∈ Γ). Let A ∈ ΦD and our
aim now is to check that g(A) ∈ ΦD.

We know A ⊆ D or g(D) ⊆ A. We consider three separate cases:

A ( D, A = D, g(D) ⊆ A.

we know g(A) ∈ F0 and therefore either D ⊆ g(A) or g(A) ⊆ D.
If A ( D, then we cannot have D ( g(A), because that would mean

g(A) \ A = (g(A) \D) ∪ (D \ A)

would be a union of two nonempty sets, and so have at least two elements —
contradicting assumption (ii). Hence g(A) ⊆ D if A ( D.

If A = D or g(D) ⊆ A, we have g(D) ⊆ g(A).
Altogether then, we have g(A) ⊆ D or g(D) ⊆ g(A), so that g(A) ∈ ΦD.

Thus φD satisfies (b).
Now we know that φD is a tower. Since ΦD ⊆ F0 and F0 is the smallest

possible tower, we must have
ΦD = F0

and this is true of all D ∈ Γ.
Thus, for D ∈ Γ,

A ∈ F0 ⇒ A ⊆ D or g(D) ⊆ A

⇒ A ⊆ g(D) or g(D) ⊆ A

Thus g(D) ∈ Γ.
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Therefore Γ satisfies (b). So Γ is a tower. Just as for ΦD, this means Γ = F0

(because Γ is a tower inside the smallest possible tower). So, finally, we know
that F0 is linearly ordered (every two elements A, D ∈ F0 are comparable).

Let B =
⋃

A∈F0
A. By (b), B ∈ F0 (because F0 is a chain in itself). By (c),

g(B) ∈ F0. Thus
B ⊆ g(B) ⊆

⋃
A∈F0

A = B.

Therefore B = g(B).

Proof. (of 2.22): Let (S,≤) be a nonempty partially ordered set. Let F be the
collection of all linearly ordered subsets of S. Since singleton subsets of S are
linearly ordered (and S 6= ∅), F is not empty.

Notice that the union of any chain of linearly ordered subsets of S is again
linearly ordered (check this). So F satisfies condition (i) of Lemma A.1.

For each A ∈ F , let A∗ denote the set of all x ∈ S \ A such that A ∪ {x}
is linearly ordered (i.e. A ∪ {x} ∈ F). If A∗ = ∅ for any A ∈ F , then A is a
maximal chain in S and we are done.

Otherwise, let f be a choice function for the family

{A∗ : A ∈ F}.

(This is where we use the axiom of choice!) This means that A∪{f(A)} is linearly
ordered for each A ∈ F . Put

g(A) = A ∪ {f(A)}

for A ∈ F .
Then Lemma A.1 tells us that there is some A ∈ F with g(A) = A. This

contradicts the construction of g. To avoid the contradiction, we must have some
A ∈ F with A∗ = ∅, i.e a maximal chain in S. This proves Theorem 2.22.

Proof. (of Zorn’s Lemma 2.15 using 2.22) Let (S,≤) be a partially ordered set
with the property that each chain in S has an upper bound in S.

Applying Hausdorff’s maximality principle 2.22, we know there is a maximal
chain C in S.

By hypothesis C has an upper bound u ∈ S. We claim that any such upper
bound must be in C.

To show this we notice first that C ∪ {u} is a chain in S. This is simple to
check, but here are the details.
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Let x, y ∈ C ∪ {u}. We have to show that either x ≤ y or y ≤ x. There are
two cases to consider

(i) x, y ∈ C.

In this case we know x ≤ y or y ≤ x because C is a chain.

(ii) x or y (or both) is u. If (say) x = u then y ≤ u = x because u is an upper
bound for C (or because u ≤ u in case y = u also). Similarly, if y = u we
can conclude x ≤ y.

Now C∪{u} is a chain that contains the (maximal) chain C and so C∪{u} =
C ⇒ u ∈ C.

Finally we claim that u is a maximal element of S. If u ≤ a ∈ S then a is
also an upper bound for C (because x ∈ C ⇒ x ≤ u ⇒ x ≤ a by transitivity
of ≤). By the previous part of the argument the upper bound a ∈ C. So a ≤ u.
Combining with u ≤ a we conclude that u = a. Thus u is maximal in S.

Richard M. Timoney (February 12, 2009)


