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Chapter 1: Banach Spaces
The main motivation for functional analysis was probably the desire to understand
solutions of differential equations. As with other contexts (such as linear algebra
where the study of systems of linear equations leads us to vector spaces and linear
transformations) it is useful to study the properties of the set or space where we
seek the solutions and then to cast the left hand side of the equation as an operator
or transform (from a space to itself or to another space). In the case of a differential
equation like

dy

dx
− y = 0

we want a solution to be a continuous function y = y(x), or really a differentiable
function y = y(x). For partial differential equations we would be looking for
functions y = y(x1, x2, . . . , xn) on some domain in Rn perhaps.

The ideas involve considering a suitable space of functions, considering the
equation as defining an operator on functions and perhaps using limits of some
kind of ‘approximate solutions’. For instance in the simple example above we
might define an operation y 7→ L(y) on functions where

L(y) =
dy

dx
− y

and try to develop properties of the operator so as to understand solutions of the
equation, or of equations like the original. One of the difficulties is to find a good
space to use. If y is differentiable (which we seem to need to define L(y)) then
L(y) might not be differentiable, maybe not even continuous.

It is not our goal to study differential equations or partial differential equa-
tions in this module (321). We will study functional analysis largely for its own
sake. An analogy might be a module in linear algebra without most of the many
applications. We will touch on some topics like Fourier series that are illuminated
by the theories we consider, and may perhaps be considered as subfields of func-
tional analysis, but can also be viewed as important for themselves and important
for many application areas.

Some of the more difficult problems are nonlinear problems (for example non-
linear partial differential equations) but our considerations will be restricted to
linear operators. This is partly because the nonlinear theory is complicated and
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rather fragmented, maybe you could say it is underdeveloped, but one can argue
that linear approximations are often used for considering nonlinear problems. So,
one relies on the fact that the linear problems are relatively tractable, and on the
theory we will consider.

The main extra ingredients compared to linear algebra will be that we will
have a norm (or length function for vectors) on our vector spaces and we will also
be concerned mainly with infinite dimensional spaces.
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1.1 Normed spaces
1.1.1 Notation. We use K to stand for either one of R or C. In this way we can
develop the theory in parallel for the real and complex scalars.

We mean however, that the choice is made at the start of any discussion and,
for example when we ask that E and F are vector spaces over K we mean that the
same K is in effect for both.

1.1.2 Definition. A norm on a vector space E over the field K is a function x 7→
‖x‖: E → [0,∞) ⊆ R which satisfies the following properties

(i) (Triangle inequality) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (all x, y ∈ E);
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(ii) (scaling property) ‖λx‖ = |λ|‖x‖ for all λ ∈ K, x ∈ E;

(iii) ‖x‖ = 0 ⇒ x = 0 (for x ∈ E).

A vector space E over K together with a chosen norm ‖ · ‖ is called a normed
space (over K) and we write (E, ‖ · ‖).

A seminorm is like a norm except that it does not satisfy the last property
(nonzero elements can have length 0). Rather than use the notation ‖ · ‖ we use
p: E → [0,∞) for a seminorm. Then we insist that a seminorm satisfies the
triangle inequality (p(x + y) ≤ p(x) + p(y) for all x, y ∈ E) and the property
about scaling (p(λx) = |λ|p(x) for x ∈ E and λ ∈ K). We will use seminorms
fairly rarely in this module, though there are contexts in which they are very much
used.

1.1.3 Examples. The most familiar examples of normed spaces are Rn and Cn.
The fact that the norms do in fact satisfy the triangle inequality is not entirely
obvious (usually proved via the Cauchy Schwarz inequality) but we will take that
as known for now. Later we will prove something more general.

• E = Rn with ‖(x1, x2, . . . , xn)‖ =
√∑n

i=1 x2
i is a normed space (over

the field R). We understand the vector space operations to be the standard
(coordinatewise defined) ones.

• E = Cn with ‖(z1, z2, . . . , zn)‖ =
√∑n

j=1 |zj|2 is a normed space (over
the field C).

• In both cases, we may refer to the above norms as ‖ · ‖2, as there are other
possible norms on Kn. An example is given by

‖(x1, x2, . . . , xn)‖1 =
n∑

j=1

|xj|.

Even though it is not as often used as the standard (Euclidean) norm ‖ · ‖2,
it is much easier to verify that ‖ · ‖1 is a norm on Kn than it is to show ‖ · ‖2

is a norm.
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1.2 Metric spaces
This subsection may be largely review of material from module 221 apart from
Lemma 1.2.7 below.

1.2.1 Definition. If X is a set and d: X ×X → [0,∞) ⊂ R is a function with the
properties:

(i) d(x, y) ≥ 0 (for x, y ∈ X);

(ii) d(x, y) = d(y, x) (for x, y ∈ X);

(iii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality) for x, yz, zinX;

(iv) x, y ∈ X and d(x, y) = 0 → x = y,

we say d is a metric, and the combination (X, d) is called a metric space.
If we omit the last condition that d(x, y) = 0 implies x = y, we call d a

pseudometric or semimetric.

1.2.2 Notation. In any metric space (X, d) we define open balls as follows. Fix
any point x0 ∈ X (which we think of as the centre) and any r > 0. Then the open
ball of radius r centre x0 is

B(x0, r) = {x ∈ X : d(x, x0) < r}.

The closed ball with the same centre and radius is

B̄(x0, r) = {x ∈ X : d(x, x0) ≤ r}.

1.2.3 Open and closed subsets. A set G ⊆ X (where we now understand that
(X, d) is a particular metric space) is open if each x ∈ G is an interior point of G.

A point x ∈ G is called an interior point of G if there is a ball B(x, r) ⊂ G
with r > 0.

Picture for an open set: G contains none of its ‘boundary’ points.
Any union G =

⋃
i∈I Gi of open sets Gi ⊆ X is open (I any index set,

arbitrarily large).
F ⊆ X is closed if its complement X \ F is open.
Picture for a closed set: F contains all of its ‘boundary’ points.
Note that open and closed are opposite extremes. There are plenty of sets

which are neither open nor closed. For example {z = x + iy ∈ C : 1 ≤ x, y < 2}
is a square in the plane C = R2 with some of the ‘boundary’ included and some
not. It is neither open nor closed.
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Any intersection F =
⋃

i∈I Fi of closed sets Fi ⊂ X is closed.
Finite intersection G1 ∩G2 ∩ · · · ∩Gn of open sets are open.
Finite unions of closed sets are closed.

1.2.4 Exercise. Show that an open ball B(x0, r) in a metric space (X, d) is an
open set.

1.2.5 Interiors and closures. Fix a metric space (X, d).
For any set E ⊆ X , the interior E◦ is the set of all its interior points.

E◦ = {x ∈ E : ∃r > 0 with B(z, r) ⊆ E}

is the largest open subset of X contained in E. Also

E◦ =
⋃
{G : G ⊆ E, G open in C}

Picture: E◦ is E minus all its ‘boundary’ points.
The closure of E is

Ē =
⋂
{F : F ⊂ X, E ⊂ F and F closed}

and it is the smallest closed subset of X containing E.
Picture: Ē is E with all its ‘boundary’ points added.
Properties: Ē = X \ (X \ E)◦ and E◦ = X \ (X \ E).

1.2.6 Boundary. Again we assume we have a fixed metric space (X, d) in which
we work.

The boundary ∂E of a set E ⊆ X is defined as ∂E = Ē \ E◦.
This formal definition makes the previous informal pictures into facts.

1.2.7 Lemma. On any normed space (E, ‖·‖) we can define a metric via d(x, y) =
‖x− y‖.
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From the metric we also get a topology (notion of open set).
In a similar way a seminorm p on E gives rise to a pseudo metric ρ(x, y) =

p(x − y) (like a metric but ρ(x, y) = 0 is allowed for x 6= y). From a pseudo
metric, we get a (non Hausdorff) topology by saying that a set is open if it contains
a ball Bρ(x0, r) = {x ∈ E : ρ(x, x0) < r} of some positive radius r > 0 about
each of its points.

Proof. It is easy to check that d as defined satisfies the properties for a metric.

• d(x, y) = ‖x− y‖ ∈ [0,∞)

• d(x, y) = ‖x− y‖ = ‖(−1)(y − x)‖ = | − 1|‖y − x‖ = d(y, x)

• d(x, z) = ‖x − z‖ = ‖(x − y) + (y − z)‖ ≤ ‖x − y‖ + ‖y − z‖ =
d(x, y) + d(y, z)

• d(x, y) = 0 ⇒ ‖x− y‖ = 0 ⇒ x− y = 0 ⇒ x = y.

The fact that pseudo metrics give rise to a topology is quite easy to verify.

1.2.8 Continuity. Let (X, dX) and (Y, dY ) be two metric spaces.
If f : X → Y is a function, then f is called continuous at a point x0 ∈ X if for

each ε > 0 it is possible to find δ > 0 so that

x ∈ X, dX(x, x0) < δ ⇒ dY (f(x), f(x0)) < ε

f : X → Y is called continuous if it is continuous at each point x0 ∈ X .

1.2.9 Example. If (X, d) is a metric space and f : X → R is a function, then when
we say f is continuous we mean that it is continuous from the metric space X to
the metric space R = R with the normal absolute value metric.

Similarly for complex valued functions f : X → C, we normally think of con-
tinuity to mean the situation where C has the usual metric.

1.2.10 Proposition. If f : X → Y is a function between two metric spaces X and
Y , then f is continuous if and only if it satisfies the following condition: for each
open set U ⊂ Y , its inverse image f−1(U) = {x ∈ X : f(x) ∈ U} is open in X .

Proof. Exercise.
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1.2.11 Limits. We now define limits of sequences in a metric space (X, d). A
sequence (xn)∞n=1 in X is actually a function x: N → X from the natural numbers
N = {1, 2, . . .} to X where, by convention, we use the notation xn instead of the
usual function notation x(n).

To say limn→∞ xn = ` (with ` ∈ X also) means:

for each ε > 0 it is possible to find N ∈ N so that

n ∈ N, n > N ⇒ d(xn, `) < ε.

An important property of limits of sequences in metric spaces is that a se-
quence can have at most one limit. In a way we have almost implicitly assumed
that by writing limn→∞ xn as though it is one thing. Notice however that there are
sequences with no limit.

1.2.12 Proposition. Let X be a metric space, S ⊂ X and x ∈ X . Then x ∈
S̄ ⇐⇒ there exists a sequence (sn)∞n=1 with sn ∈ S for all n and limn→∞ sn = x
(in X).

Proof. Not given here. (Exercise.)

1.2.13 Proposition. Let X and Y be two metric spaces. If f : X → Y is a function
and x0 ∈ X is a point, then f is continuous at x0 if and only if limn→∞ f(xn) =
f(z0) holds for all sequences (xn)∞n=1 in X with limn→∞ xn = x0.

Proof. Not given here. (Exercise.)

1.2.14 Remark. Consider the case where we have sequences in R, which is not
only a metric space but where we can add and multiply.

One can show that the limit of a sum is the sum of the limits (provided the
individual limits make sense). More symbolically,

lim
n→∞

xn + yn = lim
n→∞

xn + lim
n→∞

yn.

Similarly
lim

n→∞
xnyn =

(
lim

n→∞
xn

)(
lim

n→∞
yn

)
.

if both individual limits exist.
We also have the result on limits of quotients,

lim
n→∞

xn

yn

=
limn→∞ xn

limn→∞ yn
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provided limn→∞ yn 6= 0. In short the limit of a quotient is the quotient of the
limits provided the limit in the denominator is not zero.

One can use these facts to show that sums and products of continuous R-
valued functions on metric spaces are continuous. Quotients also if no division by
0 occurs.

1.2.15 Definition. If X is a set then a topology T on X is a collection of subsets
of X with the following properties

(i) φ ∈ T and X ∈ T ;

(ii) if Ui ∈ T for all i ∈ I = some index set, then
⋃

i∈I Ui ∈ T ;

(iii) if U1, U2 ∈ T , then U1 ∩ U2 ∈ T .

A set X together with a topology T on X is called a topological space (X, T ).

1.2.16 Remark. Normally, when we consider a topological space (X, T ), we refer
to the subsets of X that are in T as open subsets of X .

We should perhaps explain immediately that if we start with a metric space
(X, d) and if we take T to be the open subsets of (X, d) (according to the defini-
tion we gave earlier), then we get a topology T on X .

Notice that at least some of the concepts we had for metric spaces can be
expressed using only open sets without the necessity to refer to distances.

• F ⊂ X is closed ⇐⇒ X \ F is open

• f : X → Y is continuous ⇐⇒ f−1(U) is open in X whenever U is open
in Y .

1.2.17 Example. (i) One example of a topology on any set X is the topology
T = P(X) = the power set of X (all subsets of X are in T , all subsets
declared to be open).

We can also get to this topology from a metric, where we define

d(x1, x2) =

{
0 if x1 = x2

1 if x1 6= x2

In this metric the open ball of radius 1/2 about any point x0 ∈ X is

B(x0, 1/2) = {x0}
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and all one points sets are then open. As unions of open sets are open, it
follows that all subsets are open.

The metric is called the discrete metric and the topology is called the discrete
topology.

All functions f : X → Y will be continuous if X has the discrete topology
(and Y can have any valid topology).

(ii) The other extreme is to take (say when X has at least 2 elements) T =
{∅, X}. This is a valid topology, called the indiscrete topology.

If X has at least two points x1 6= x2, there can be no metric on X that gives
rise to this topology. If we thought for a moment we had such a metric d, we
can take r = d(x1, x2)/2 and get an open ball B(x1, r) in X that contains x1

but not x2. As open balls in metric spaces are in fact open subsets, we must
have B(x1, r) different from the empty set and different from X .

The only functions f : X → R that are continuous are the constant functions
in this example. On the other hand every function g: Y → X is continuous
(no matter what Y is, as long as it is a topological space so that we can say
what continuity means).

This example shows that there are topologies that do not come from metrics,
or topological spaces where there is no metric around that would give the
same idea of open set. Or, in other language, topological spaces that do not
arise from metric spaces (are not metric spaces). Our example is not very
convincing, however. It seems very silly, perhaps. If we studied topological
spaces in a bit more detail we would come across more significant examples
of topological spaces that are not metric spaces (and where the topology
does not arise from any metric).

1.2.18 Compactness. Let (X, d) be a metric space.
Let T ⊆ X . An open cover of T is a family U of open subsets of X such that

T ⊆
⋃
{U : U ∈ U}

A subfamily V ⊆ U is called a subcover of U if V is also a cover of T .
T is called compact if each open cover of T has a finite subcover.
T is called bounded if there exists R ≥ 0 and x0 ∈ X with T ⊆ B̄(x0, R).
One way to state the Heine-Borel theorem is that a subset T ⊆ Rn is compact

if and only if it is both (1) closed and (2) bounded.
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Continuous images of compact sets are compact: T ⊆ X compact, f : T → Y
continuous implies f(T ) compact.

1.2.19 Definition. If (X, d) is a metric space, then a subset T ⊂ X is called
sequentially compact if it has the following property:

Each sequence (tn)∞n=1 has a subsequence (tnj
)∞j=1 with limj→∞ tnj

=
` ∈ T for some ` ∈ T .

In words, every sequence in T has a subsequence with a limit in T .

1.2.20 Theorem. In a metric space (X, d) a subset T ⊂ X is compact if and only
if it is sequentially compact.

Proof. Omitted here.

1.2.21 Remark. We can abstract almost all of the above statements about compact-
ness to general topological spaces rather than a metric space. Metric spaces are
closer to what we are familiar with, points in space or the plane or the line, where
we think we can see geometrically what distance means (straight line distance
between points).

At least in normed spaces, many familiar ideas still work in some form.
One thing to be aware of is that sequences are not as useful in topologi-

cal spaces as they are in metric spaces. Sequences in a topological space may
converge to more than one limit. Compactness (defined via open covers) is not
the same as sequential compactness in every topological space. Sequences do
not always describe closures or continuity as they do in metric spaces (Proposi-
tions 1.2.12 and 1.2.13).

1.3 Examples of normed spaces
1.3.1 Examples. (i) Kn with the standard Euclidean norm is complete.

(ii) If X is a metric space (or a topological space) we can define a norm on
E = BC(X) = {f : X → K : f bounded and continuous} by

‖f‖ = sup
x∈X

|f(x)|.

To be more precise, we have to have a vector space before we can have a
norm. We define the vector space operations on BC(X) in the ‘obvious’
(pointwise) way. Here are the definition of f + g and λf for f, g ∈ BC(X),
λ ∈ K:
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• (f + g)(x) = f(x) + g(x) (for x ∈ X)

• (λf)(x) = λ(f(x)) = λf(x) (for x ∈ X)

We should check that f + g, λf ∈ BC(X) always and that the vector space
rules are satisfied, but we leave this as an exercise if you have not seen it
before.

It is not difficult to check that we have defined a norm on BC(X). It is
known often as the ‘uniform norm’ or the ‘sup norm’ (on X).

(iii) If we replace X by a compact Hausdorff space K in the previous example,
we know that every continuous f : K → K is automatically bounded. The
usual notation then is to use C(K) rather than BC(K).

Otherwise everything is the same (vector space operations, supremum norm).

(iv) If we take for X the discrete space X = N, we can consider the example
BC(N) as a space of functions on N (with values in K). However, it is more
usual to think in terms of this example as a space of sequences. The usual
notation for it is

`∞ = {(xn)∞n=1 : xn ∈ K∀n and sup
n
|xn| < ∞}.

So `∞ is the space of all bounded (infinite) sequences of scalars. The vector
space operations on sequences are defined as for functions (pointwise or
term-by-term)

(xn)∞n=1 + (yn)∞n=1 = (xn + yn)∞n=1

λ(xn)∞n=1 = (λxn)∞n=1

and the uniform or supremum norm on `∞ is typically denoted by a subscript
∞ (to distinguish it from other norms on other sequence spaces that we will
come to soon).

‖(xn)∞n=1‖∞ = sup
n
|xn|.

It will be important for us to deal with complete normed spaces (which are
called Banach spaces). First we will review some facts about complete metric
spaces and completions. A deeper consequence of completeness is the Baire cat-
egory theorem.

Completeness is important if one wants to prove that equations have a solution,
one technique is to produce a sequence of approximate solutions. If the space is
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not complete (like Q, the rationals) the limit of the sequence may not be in the
space we consider. (For instance in Q one could find a sequence approximating
solution of x2 = 2, but the limit

√
2 would not be in Q.)

1.4 Complete metric spaces
This is also largely review.

1.4.1 Definition. If (X, d) is a metric space, then a sequence (xn)∞n=1 in X is
called a Cauchy sequence if for each ε > 0 it is possible to find N so that

n, m ≥ N ⇒ d(xn, xm) < ε.

1.4.2 Remark. The definition of a Cauchy sequence requires a metric and not just
a topology on X .

There is a more abstract setting of a ‘uniformity’ on X where it makes sense
to talk about Cauchy sequences (or Cauchy nets). We will not discuss this gener-
alisation.

1.4.3 Proposition. Every convergent sequence in a metric space (X, d) is a Cauchy
sequence.

Proof. We leave this as an exercise.
The idea is that a Cauchy sequence is one where, eventually, all the remaining

terms are close to one another. A convergent sequence is one where, eventually,
all the remaining terms are close to the limit. If they are close to the same limit
then they are also close to one another.

1.4.4 Definition. A metric space (X, d) is called complete if every Cauchy se-
quence in X converges (to some limit in X).

1.4.5 Example. The rationals Q with the usual (absolute value) metric is not com-
plete. There are sequences in Q that converge to irrational limits (like

√
2). Such

a sequence will be Cauchy in R, hence Cauchy in Q, but will not have a limit in
Q.

1.4.6 Proposition. If (X, d) is a complete metric space and Y ⊆ X is a subset,
let dY be the metric d restricted to Y .

Then the (submetric space) (Y, dY ) is complete if and only if Y is closed in X .
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Proof. Suppose first (Y, dY ) is complete. If x0 is a point of the closure of Y in
X , then there is a sequence (yn)∞n=1 of points yn ∈ Y that converges (in X) to
x0. The sequence (yn)∞n=1 is then Cauchy in (X, d). But the Cauchy condition
involves only distances d(yn, ym) = dY (yn, ym) between the terms and so (yn)∞n=1

is Cauchy in Y . By completeness there is y0 ∈ Y so that yn → y0 as n →∞. That
means limn→∞ dY (yn, y0) = 0 and that is the same as limn→∞ d(yn, y0) = 0 or
yn → yo when we consider the sequence and the limit in X . Since also yn → x0

as n → ∞, and limits in X are unique, we conclude x0 = y0 ∈ Y . Thus Y is
closed in X .

Conversely, suppose Y is closed in X . To show Y is complete, consider a
Cauchy sequence (yn)∞n=1 in Y . It is also Cauchy in X . As X is complete the
sequence has a limit x0 ∈ X . But we must have x0 ∈ Y because Y is closed in
X . So the sequence (yn)∞n=1 converges in (Y, dY ).

1.4.7 Remark. The following lemma is useful in showing that metric spaces are
complete.

1.4.8 Lemma. Let (X, d) be a metric space in which each Cauchy sequence has
a convergent subsequence. Then (X, d) is complete.

Proof. We leave this as an exercise.
The idea is that as the terms of the whole sequence are eventually all close to

one another, and the terms of the convergent subsequence are eventually close to
the limit ` of the subsequence, the terms of the whole sequence must be eventually
close to `.

1.4.9 Corollary. Compact metric spaces are complete.

1.4.10 Definition. If (X, dX) and (Y, dY ) are metric spaces, then a function f : X →
Y is called uniformly continuous if for each ε > 0 it is possible to find δ > 0 so
that

x1, x2 ∈ X, dX(x1, x2) < δ ⇒ dY (f(x1), f(x2)) < ε.

1.4.11 Proposition. Uniformly continuous functions are continuous.

Proof. We leave this as an exercise.
The idea is that in the ε-δ criterion for continuity, we fix one point (say x1) as

well as ε > 0 and then look for δ > 0. In uniform continuity, the same δ > 0 must
work for all x1 ∈ X .
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1.4.12 Definition. If (X, dX) and (Y, dY ) are metric spaces, then a function f : X →
Y is called an isometry if dY (f(x1), f(x2)) = dX(x1, x2) for all x1, x2 ∈ X .

We could call f distance preserving instead of isometric, but the word isomet-
ric is more commonly used. Sometimes we consider isometric bijections (which
then clearly have isometric inverse maps). If there exists an isometric bijection
between two metric spaces X and Y , we can consider them as equivalent metric
spaces (because every property defined only in terms of the metric must be shared
by Y is X has the property).

1.4.13 Example. Isometric maps are injective and uniformly continuous.

Proof. Let f : X → Y be the map. To show injective, let x1, x2 ∈ X with x1 6= x2.
Then dX(x1, x2) > 0 ⇒ dY (f(x1), f(x2)) > 0 ⇒ f(x1) 6= f(x2).

To show uniform continuity, take δ = ε.

1.4.14 Definition. If (X, TX) and (Y, TY ) are topological spaces (or (X, dX) and
(Y, dY ) are metric spaces) then a homeomorphism from X onto Y is a bijection
f : X → Y with f continuous and f−1 continuous.

1.4.15 Remark. If f : X → Y is a homeomorphism of topological spaces, then
V ⊂ Y open implies U = f−1(V ) ⊂ X open (by continuity of f ). On the other
hand U ⊂ X open implies (f−1)−1(U) = f(U) open by continuity of f−1 (since
the inverse image of U under the inverse map f−1 is the same as the forward image
f(U)). In this way we can say that

U ⊂ X is open ⇐⇒ f(U) ⊂ Y is open

and homeomorphic spaces are identical from the point of view of topological
properties.

Note that isometric metric spaces are identical from the point of view of metric
properties. The next next result says that completeness transfers between metric
spaces that are homeomorphic via a homeomorphism that is uniformly continuous
in one direction.

1.4.16 Proposition. If (X, dX) and (Y, dY ) are metric spaces with (X, dX) com-
plete, and f : X → Y is a homeomorphism with f−1 uniformly continuous, then
(Y, dY ) is also complete.

Proof. Let (yn)∞n=1 be a Cauchy sequence in Y . Let xn = f−1(yn). We claim
(xn)∞n=1 is Cauchy in X . Given ε > 0 find δ > 0 by uniform continuity of f−1 so
that

y, y′ ∈ Y, dY (y, y′) < δ ⇒ dX(f−1(y), f−1(y′)) < ε.
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As (yn)∞n=1 is Cauchy in Y , there is N > 0 so that

n, m ≥ N ⇒ dY (yn, ym) < δ.

Combining these, we see

n, m ≥ N ⇒ dX(f−1(yn), f−1(ym)) < ε.

So (xn)∞n=1 is Cauchy in X , and so has a limit x0 ∈ X . By continuity of f at
x0, we get f(xn) = yn → f(x0) as n → ∞. So (yn)∞n=1 converges in Y . This
shows that Y is complete.

1.4.17 Example. There are homeomorphic metric spaces where one is complete
and the other is not. For example, R is homeomorphic to the open unit interval
(0, 1).

One way to see this is to take g: R → (0, 1) as g(x) = (1/2) + (1/π) tan−1 x.
Another is g(x) = (1/2) + x/(2(1 + |x|)).

In the standard absolute value distance R is complete but (0, 1) is not.
One can use a specific homeomorphism g: R → (0, 1) to transfer the distance

from R to (0, 1). Define a new distance on (0, 1) by ρ(x1, x2) = |g−1(x1) −
g−1(x2)|. With this distance ρ on (0, 1), the map g becomes an isometry and so
(0, 1) is complete in the ρ distance.

The two topologies we get on (0, 1), from the standard metric and from the
metric ρ, will be the same. We can see from this example that completeness is not
a topological property.

1.4.18 Theorem ((Banach) contraction mapping theorem). Let (x, d) be a (nonempty)
complete metric space and let f : X → X be a strictly contractive mapping (which
means there exists 0 ≤ r < 1 so that d(f(x1), f(x2)) ≤ rd(x1, x2) holds for all
x1, x2 ∈ X).

Then f has a unique fixed point in X (that is there is a unique x ∈ X with
f(x) = x.

Proof. We omit this proof as we will not use this result. It can be used to show
that certain ordinary differential equations have (local) solutions.

The idea of the proof is to start with x0 ∈ X arbitrary and to define x1 =
f(x0), x2 = f(x1) etc., that is xn+1 = f(xn) for each n. The contractive property
implies that (xn)∞n=1 is a Cauchy sequence. The limit limn→∞ xn is the fixed point
x. Uniqueness of the fixed point follows from the contractive property.
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1.5 Completion of a metric space
1.5.1 Theorem. If (X, d) is a metric space, then there is a complete metric space
(X̂, d̂) that contains [an isometric copy of] (X, d) as a dense subspace.

Proof. Let X̂ denote the set of equivalence classes of Cauchy sequences (xn)n in
X where the equivalence relation is that (xn)n ∼ (yn)n if

lim
n→∞

d(xn, yn) = 0.

Then define the distance d̂(α, β) between the equivalence class α of (xn)n and the
equivalence class β of (yn)n by

d̂(α, β) = lim
n→∞

d(xn, yn). (1)

There are several things to check. First that d̂ is well-defined. To do this we

need first to know that the limit in (1) exists. We show
(
d(xn, yn)

)
n

is Cauchy in
R. Let ε > 0 be given. We can find N so that for n, m > N both

d(xn, xm) < ε/2 and d(yn, ym) < ε/2.

Consequently

d(xn, yn)− d(xm, ym) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn)− d(xm, ym)

= d(xn, xm) + d(ym, yn)

< ε/2 + ε/2

= ε.

The same reasoning with n and m interchanged then shows d(xm, ym)−d(xn, yn) ≤
ε, and so

|d(xn, yn)− d(xm, ym)| < ε

(for n, m > N ). Thus the limit exists (as R is complete).
Next we must show that we get the same limit if we take different representa-

tives (x′n)n for α and (y′n)n for β. This is clear from the inequality

d(x′n, y
′
n) ≤ d(x′n, xn) + d(xn, yn) + d(yn, y

′
n)

Taking limits gives lim d(x′n, y
′
n) ≤ lim d(xn, yn) and of course the reverse in-

equality follows in the same way.
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Next we must check that d̂ is a metric on X̂ . This is quite straightforward.
To show that there is a copy of (X, d) in X̂ is also easy — the (equivalence

classes of the) constant sequences

x, x, x, . . . (x ∈ X)

give the required copy.
To show that this copy is dense in X̂ , take an arbitrary α ∈ X̂ and let the

Cauchy sequence (xn)n be a representative for α. Let αj denote the equivalence
class of the constant sequence xj, xj, xj, . . .. From the Cauchy condition it is easy
to see that d̂(αj, α) → 0 as j →∞.

The final step is to show that (X̂, d̂) is complete. Take a Cauchy sequence
(αj)j in X̂ . Passing to a subsequence (by observation 1.4.8 it is enough to find a
convergent subsequence), we can suppose that

d̂(αj, αj+1) ≤
1

2j
for j = 1, 2, 3, . . .

Let (xjn)n = (xj1, xj2, . . .) represent αj . Choose first Nj so that

n, m ≥ Nj ⇒ d(xjn, xjm) <
1

j

and also choose N ′
j so that

n ≥ N ′
j ⇒ d(xjn, xj+1 n) <

1

2j

Then put nj = max(Nj, N
′
j). By making the nj larger, if necessary, we can

assume that n1 < n2 < n3 < · · ·.
Define yk = xknk

and let α denote the equivalence class of (yn)n. We claim
that αj → α as j →∞, but first we must verify that (yk)k is a Cauchy sequence,
so that we can be sure it made sense to refer to its equivalence class.

For k, ` > 0,

d(yk, yk+`) = d(xknk
, xk+` nk+`

)

≤ d(xknk
, xknk+`

) + d(xknk+`
, xk+` nk+`

)

≤ 1

k
+

k+`−1∑
p=k

1

2p

<
1

k
+

1

2k−1

→ 0 as k →∞.
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This verifies that (yk)k is Cauchy.
Finally, to verify that αj → α, note that for k ≥ nj ,

d(xjk, yk) = d(xjk, xknk
)

≤ d(xjk, xjnk
) + d(xjnk

, xknk
)

≤ 1

j
+

k−1∑
`=j

1

2`

≤ 1

j
+

1

2j−1

Therefore d̂(αj, α) ≤ 1

j
+

1

2j−1

→ 0 as j →∞.

This finishes the proof that every metric space (X, d) has a completion.

1.5.2 Remark. To prove that the completion is unique (up to a distance preserving
bijection that keeps the copy of X ‘fixed’) requires just a little more work.

It relies on the fact that a uniformly continuous function on a dense subset X0

of one metric space X , with values in a complete metric space Y , has a unique
continuous extension to a function : X → Y .
1.5.3 Remark. One can also show that the completion of a normed space can be
turned into a normed space. This requires defining vector space operations on
(equivalence classes) of Cauchy sequences from the normed space. We do this
by adding the sequences term by term, and multiplying each term by the scalar.
There is checking required — to show that the operations are well defined for
equivalence classes. Then we have to define a norm on the completion (which
is the distance to the origin in the completion — need to check it satisfies the
conditions for a norm and that the norm and distance are related by d̂(α, β) =
‖α− β‖. None of the steps are difficult to carry out in detail.

1.6 Baire Category Theorem
1.6.1 Definition. A subset S ⊂ X of a metric space (X, d) is called nowhere
dense if the interior of its closure is empty, (S̄)◦ = ∅.

A subset E ⊂ X is called of first category if it is a countable union of nowhere
dense subsets, that is, the union E =

⋃∞
n=1 Sn of a sequence of nowhere dense

sets Sn) ((S̄n)◦ = ∅∀n).
A subset Y ⊂ X is called of second category if it fails to be of first category.
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1.6.2 Example. (a) If a singleton subset S = {s} ⊂ X (X metric) fails to be
nowhere dense, then the interior of its closure is not empty. The closure S̄ =
S = {s} and if that has any interior it means it contains a ball of some positive
radius r > 0. So

Bd(s, r) = {x ∈ X : d(x, s) < r} = {s}

and this means that s is an isolated point of X (no points closer to it than r).

An example where this is possible would be X = Z with the usual distance
(so B(n, 1) = {n}) and S any singleton subset. Another example is X =
B((2, 0), 1) ∪ {0} ⊂ R2 (with the distance on X being the same as the usual
distance between points in R2) and S = {0}.

(b) In many cases, there are no isolated points in X , and then a one point set is
nowhere dense. So a countable subset is then of first category (S = {s1, s2, . . .}
where the elements can be listed as a finite or infinite sequence).

For example S = Z is of first category as a subset of R, though it of second
category as a subset of itself. S = Q is of first category both in R and in itself
(because it is countable and points are not isolated).

The idea is that first countable means ‘small’ in some sense, while second
category is ‘not small’ in the same sense. While it is often not hard to see that a
set is of first category, it is harder to see that it fails to be of first category. One
has to consider all possible ways of writing the set as a union of a sequence
of subsets.

1.6.3 Theorem (Baire Category). Let (X, d) be a complete metric space which is
not empty. Then the whole space S = X is of second category in itself.

Proof. If not, then X is of first category and that means X =
⋃∞

n=1 Sn where each
Sn is a nowhere dense subset Sn ⊂ X (with (S̄n)◦ = ∅).

Since S̄n has empty interior, its complement is a dense open set. That is

X \ S̄n = X \ (S̄n)◦ = X

Thus if we take any ball Bd(x, r) in X , there is a point y ∈ (X \ S̄n) ∩ Bd(x, r)
and then because X \ S̄n is open there is a (smaller) δ > 0 with Bd(y, δ) ⊂
(X \ S̄n) ∩ Bd(x, r). In fact, making δ > 0 smaller again, there is δ > 0 with
B̄(y, δ) ⊂ (X \ S̄n) ∩Bd(x, r).
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Start with x0 ∈ X any point and r0 = 1. Then, by the above reasoning there
is a ball

B̄d(x1, r1) = {x ∈ X : d(x, x1) ≤ r1} ⊂ (X \ S̄1) ∩Bd(x0, r0)

and r1 < r0/2 ≤ 1/2. We can then find x2 and r2 ≤ r1/2 < 1/22 so that

B̄d(x2, r2) ⊂ (X \ S̄2) ∩Bd(x1, r1)

and we can continue this process to select x1, x2, . . . and r1, r2, . . . with

0 < rn ≤ rn−1/2 <
1

2n
, B̄d(xn, rn) ⊂ (X\S̄n)∩Bd(xn−1, rn−1) (n = 1, 2, . . .)

We claim the sequence (xn)∞n=1 is a Cauchy sequence in X . This is because
m ≥ n ⇒ xm ∈ Bd(xn, rn) ⇒ d(xm, xn) < rn < 1/2n. So, if n, m are both
large

d(xm, xn) < min

(
1

2n
,

1

2m

)
is small.

By completeness, x∞ = limn→∞ xn exists in X . Since the closed ball B̄d(xn, rn)
is a closed set in X and contains all xm for m ≥ n, it follows that x ∈ B̄d(xn, rn)
for each n. But B̄d(xn, rn) ⊂ X \ S̄n and so x /∈ S̄n. This is true for all n and so
we have the contradiction

x /∈
∞⋃

n=1

S̄n = X

Thus X cannot be a union of a sequence of nowhere dense subsets.

1.6.4 Corollary. Let (X, d) be a compact metric space. Then the whole space
S = X is of second category in itself.

Proof. Compact metric spaces are complete. So this follows from the theorem.

1.7 Banach spaces
1.7.1 Definition. A normed space (E, ‖ · ‖) (over K) is called a Banach space
(over K) if E is complete in the metric arising from the norm.
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1.7.2 Examples. (i) Kn with the standard Euclidean norm is complete (that is a
Banach space).

Proof. Consider a Cauchy sequence (xm)∞m=1 in Kn. We write out each term
of the sequence as an n-tuple of scalars

xm = (xm,1, xm,2, . . . , xm,n).

Note that, for a fixed j in the range 1 ≤ j ≤ n, |xm,j − xp,j| ≤ ‖xm − xp‖.
It follows that, for fixed j, the sequence of scalars (xm,j)

∞
m=1 is a Cauchy

sequence in K. Thus
yj = lim

m→∞
xm,j

exists in K. Let y = (y1, y2, . . . , yn) ∈ Kn. We claim that limm→∞ xm = y,
that is we claim limm→∞ ‖xm − y‖2 = 0. But

‖xm − y‖2 =

√√√√ n∑
j=1

|xm,j − yj|2 → 0

as m →∞.

(ii) (`∞, ‖ · ‖∞) is a Banach space (that is complete, since we already know it is
a normed space).

Proof. We will copy the previous proof to a certain extent, but we need some
modifications because the last part will be harder.

Consider a Cauchy sequence (xm)∞m=1 in `∞. We write out each term of the
sequence as an infinite sequence of scalars

xn = (xn,1, xn,2, . . . , xn,j, . . .).

Note that, for a fixed j ≥ 1, |xn,j −xm,j| ≤ ‖xn−xm‖∞. It follows that, for
fixed j, the sequence of scalars (xn,j)

∞
n=1 is a Cauchy sequence in K. Thus

yj = lim
n→∞

xn,j

exists in K. Let y = (y1, y2, . . . , yj, . . .). We claim that limm→∞ xm = y
in `∞, but first we have to know that y ∈ `∞. Once we know that, what we
need to show is that limn→∞ ‖xn − y‖∞ = 0.
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To show y ∈ `∞, we start with the Cauchy condition for ε = 1. It says that
there exists N ≥ 1 so that

n, m ≥ N ⇒ ‖xn − xm‖∞ < 1

Taking n = N we get

m ≥ N ⇒ ‖xN − xm‖∞ < 1

Since |xN,j − xm,j| ≤ ‖xN − xm‖∞ it follows that for each j ≥ 1 we have

m ≥ N ⇒ |xN,j − xm,j| < 1

Letting m →∞, we find that |xN,j − yj| ≤ 1. Thus

|yj| ≤ |xN,j − yj|+ |xN,j| ≤ 1 + ‖xN‖∞

holds for j ≥ 1 and so supj |yj| < ∞. We have verified that y ∈ `∞.

To show that limn→∞ ‖xn − y‖∞ = 0, we start with ε > 0 and apply the
Cauchy criterion to find N = Nε ≥ 1 (not the same N as before) so that

n, m ≥ N ⇒ ‖xn − xm‖∞ <
ε

2

Hence, for any j ≥ 1 we have

n, m ≥ N ⇒ |xn,j − xm,j| ≤ ‖xn − xm‖∞ <
ε

2

Fix any n ≥ N and let m →∞ to get

|xn,j − yj| = lim
m→∞

|xn,j − xm,j| ≤
ε

2

So we have

n ≥ N ⇒ ‖xn − y‖∞ = sup
j≥1

|xn,j − yj| ≤
ε

2
< ε

This shows limn→∞ ‖xn − y‖∞ = 0, as required.

(iii) If X is a topological space then (BC(X), ‖ · ‖∞) is a Banach space.

(Note that this includes `∞ = BC(N) as a special case. The main difference
is that we need to worry about continuity here.)



321 2008–09 23

Convergence of sequences in the supremum norm corresponds to
uniform convergence on X . (See §A.1 for the definition and a
few useful facts about uniform convergence.)

Proof. (of the assertion about uniform convergence).

Suppose (fn)∞n=1 is a sequence of functions in BC(X) and g ∈ BC(X).

First if fn → g as n →∞ (in the metric from the uniform norm on BC(X)),
we claim that fn → g uniformly on X . Given ε > 0 there exists N ≥ 0 so
that

n ≥ N ⇒ d(fn, g) < ε ⇒ ‖fn − g‖ < ε ⇒ sup
x∈X

|fn(x)− g(x)| < ε

From this we see that N satisfies

|fn(x)− g(x)| < ε ∀x ∈ X,∀n ≥ N.

This means we have established uniform convergence fn → g on X .

To prove the converse, assume fn → g uniformly on X . Let ε > 0 be given.
By uniform convergence we can find N > 0 so that

n ≥ N, x ∈ X ⇒ |fn(x)− g(x)| < ε

2
.

It follows that

n ≥ N ⇒ sup
x∈X

|fn(x)− g(x)| ≤ ε

2
< ε,

and so
n ≥ N ⇒ d(fn, g) = ‖fn − g‖ < ε.

Thus fn → g in the metric.

A useful observation is that uniform convergence fn → g on X implies
pointwise convergence. That is if fn → g uniformly, then for each single
x ∈ X

lim
n→∞

fn(x) = g(x)

(limit in K of values at x). Translating that to basics, it means that given one
x ∈ X and ε > 0 there is N > 0 so that

n ≥ N ⇒ |fn(x)− g(x)| < ε.
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Uniform convergence means more, that the rate of convergence fn(x) →
g(x) is ‘uniform’ (or that, given ε > 0, the same N works for different
x ∈ X).

Proof. (that E = BC(X) is complete).

Suppose (fn)∞n=1 is a Cauchy sequence in BC(X). We aim to show that the
sequence has a limit f in BC(X). We start with the observation that the
sequence is ‘pointwise Cauchy’. That is if we fix x0 ∈ X , we have

|fn(x0)− fm(x0)| ≤ sup
x∈X

|fn(x)− fm(x)| = ‖fn − fm‖ = d(fn, fm)

Let ε > 0 be given. We know there is N > 0 so that d(fn, fm) < ε holds for
all n, m ≥ N (because (fn)∞n=1 is a Cauchy sequence in the metric d). For
the same N we have |fn(x0)− fm(x0)| ≤ d(fn, fm) < ε∀n, m ≥ N

Thus (fn(x0))
∞
n=1 is a Cauchy sequence of scalars (in K). Since K is com-

plete limn→∞ fn(x0) exists in K. This allows us to define f : X → K by

f(x) = lim
n→∞

fn(x) (x ∈ X).

We might think we are done now, but all we have now is a pointwise limit
of the sequence (fn)∞n=1. We need to know more, first that f ∈ BC(X) and
next that the sequence converges to f in the metric d arising from the norm.

We show first that f is bounded on X . From the Cauchy condition (with
ε = 1) we know there is N > 0 so that d(fn, fm) < 1∀n, m ≥ N . In
particular if we fix n = N we have

d(fN , fm) = sup
x∈X

|fN(x)− fm(x)| < 1 (∀m ≥ N).

Now fix x ∈ X for a moment. We have |fN(x)−fm(x)| < 1 for all m ≥ N .
Let m →∞ and we get

|fN(x)− f(x)| ≤ 1.

This is true for each x ∈ X and so we have

sup
x∈X

|fN(x)− f(x)| ≤ 1.
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We deduce

sup
x∈X

|f(x)| = sup
x∈X

|fN(x)− f(x)− fN(x)|

≤ sup
x∈X

|fN(x)− f(x)|+ | − fN(x)|

≤ 1 + ‖fN‖ < ∞.

To show that f is continuous, we show that fn → f uniformly on X (and
appeal to Proposition A.1.2) and once we know f ∈ BC(X) we can restate
uniform convergence of the sequence (fn)∞n=1 to f as convergence in the
metric of BC(X).

To show uniform convergence, let ε > 0 be given. From the Cauchy con-
dition we know there is N > 0 so that d(fn, fm) < ε/2∀n, m ≥ N . In
particular if we fix n ≥ N we have

d(fn, fm) = sup
x∈X

|fn(x)− fm(x)| < ε

2
(∀m ≥ N).

Now fix x ∈ X for a moment. We have |fn(x) − fm(x)| < ε/2 for all
m ≥ N . Let m →∞ and we get

|fn(x)− f(x)| ≤ ε/2.

This is true for each x ∈ X and so we have

sup
x∈X

|fn(x)− f(x)| ≤ ε/2 < ε.

As this is true for each n ≥ N , we deduce fn → f uniformly on X . As
a uniform limit of continuous functions, f must be continuous. We already
have f bounded and so f ∈ BC(X). Finally, we can therefore restate fn →
f uniformly on X as limn→∞ d(fn, f) = 0, which means that f is the limit
of the sequence (fn)∞n=1 in the metric of BC(X).

(iv) If we replace X by a compact Hausdorff space K in the previous example,
we see that C(K), ‖ · ‖∞) is a Banach space.

1.7.3 Lemma. If (E, ‖ · ‖E) is a normed space and F ⊆ E is a vector subspace,
then F becomes a normed space if we define ‖ · ‖F (the norm on F ) by restriction

‖x‖F = ‖x‖E for x ∈ F

We call (F, ‖ · ‖F ) a subspace of (E, ‖ · ‖E).
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Proof. Easy exercise.

1.7.4 Proposition. If (E, ‖ · ‖E) is a Banach space and (F, ‖ · ‖F ) a (normed)
subspace, then F is a Banach space (in the subspace norm) if and only if F is
closed in E.

Proof. The issue is completeness of F . It is a general fact about complete metric
spaces that a submetric space is complete if and only if it is closed (Proposi-
tion 1.4.6).

1.7.5 Examples. (i) Let K be a compact Hausdorff space and x0 ∈ K. Then

E = {f ∈ C(K) : f(x0) = 0}

is a closed vector subspace of C(K). Hence E is a Banach space in the
supremum norm.

Proof. One way to organise the proof is to introduce the point evaluation
map δx0 : C(K) → K given by

δx0(f) = f(x0)

One can check that δx0 is a linear transformation (δx0(f+g) = (f+g)(x0) =
f(x0) + g(x0) = δx0(f) + δx0(g); δx0(λf) = λf(x0) = λδx0(f)). It follows
then that

E = ker δx0

is a vector subspace of C(K).

We can also verify that δx0 is continuous. If a sequence (fn)∞n=1 converges
in C(K) to f ∈ C(K), we have seen above that means fn → f uniformly
on K. We have also seen this implies fn → f pointwise on K. In par-
ticular at the point x0 ∈ K, limn→∞ fn(x0) = f(x0), which means that
limn→∞ δx0(fn) = δx0(f). As this holds for all convergent sequences in
C(K), it shows that δx0 is continuous.

From this it follows that

E = ker δx0 = (δx0)
−1({0})

is closed (the inverse image of a closed set {0} ⊆ K under a continuous
function).
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(ii) Let
c0 = {(xn)∞n=1 ∈ `∞ : lim

n→∞
xn = 0}.

We claim that c0 is a closed subspace of `∞ and hence is a Banach space in
the (restriction of) ‖ · ‖∞.

Proof. We can describe c0 as the space of all sequences (xn)∞n=1 of scalars
with limn→∞ xn = 0 (called null sequence sometimes) because convergent
sequences in K are automatically bounded. So the condition we imposed
that (xn)∞n=1 ∈ `∞ is not really needed.

Now it is quite easy to see that c0 is a vector space (under the usual term-
by-term vector space operations). If limn→∞ xn = 0 and limn→∞ yn = 0
then limn→∞(xn + yn) = 0. This shows that (xn)∞n=1 + (yn)∞n=1 ∈ c0 if both
sequences (xn)∞n=1, (yn)∞n=1 ∈ c0. It is no harder to show that λ(xn)∞n=1 ∈ c0

if λ ∈ K, (xn)∞n=1 ∈ c0.

To show directly that c0 is closed in `∞ is a bit tricky because elements of
c0 are themselves sequences of scalars and to show c0 ⊆ `∞ is closed we
show that whenever a sequence (zn)∞n=1 of terms zn ∈ c0 converges in `∞ to
a limit w ∈ `∞, then w ∈ c0.

To organise what we have to do we can write out each zn ∈ c0 as a sequence
of scalars by using a double subscript

zn = (zn,1, zn,2, zn,3, . . .) = (zn,j)
∞
j=1

(where the zn,j ∈ K are scalars). We can write w = (wj)
∞
j=1 and now what

we are assuming is that zn → w in (`∞, ‖ · ‖∞). That means

lim
n→∞

‖zn − w‖∞ = lim
n→∞

(
sup
j≥1

|zn,j − wj|
)

= 0.

To show w ∈ c0, start with ε > 0 given. Then we can find N ≥ 0 so that
‖zn −w‖∞ < ε/2 holds for all n ≥ N . In particular ‖zN −w‖∞ < ε/2. As
zN ∈ c0 we know limj→∞ zNj = 0. Thus there is j0 > 0 so that |zN,j| < ε/2
holds for all j ≥ j0. For j ≥ j0 we have then

|wj| ≤ |wj − zN,j|+ |zN,j| < ε/2 + ε/2 = ε.

This shows limj→∞ wj = 0 and w ∈ c0.

This establishes that c0 is closed in `∞ and completes the proof that c0 is a
Banach space.
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(iii) There is another approach to showing that c0 is a Banach space.

Let N∗ be the one-point compactification of N with one extra point (at ‘infin-
ity’) added on. We will write ∞ for this extra point. Each sequence (xn)∞n=1

defines a function f ∈ C(N∗) via f(n) = xn for n ∈ N and f(∞) = 0.

In fact one may identify C(N∗) with the sequence space

c = {(xn)∞n=1 : xn ∈ K∀n and lim
n→∞

xn exists in K}.

So c is the space of all convergent sequences (also contained in `∞) and
the identification is that the sequence (xn)∞n=1 corresponds to the function
f ∈ C(N∗) via f(n) = xn for n ∈ N and f(∞) = limn→∞ xn. The
supremum norm (on C(N∗)) is ‖f‖∞ = supx∈N∗ |f(x)| = supn∈N |f(n)| =
‖(xn)∞n=1‖∞ (because N is dense in N∗).

In this way we can see that c0 corresponds to the space of functions in C(N∗)
that vanish at ∞. Using the first example, we see again that c0 is a Banach
space.

Being a subspace of `∞ it must be closed in `∞ by Proposition 1.7.4.

1.7.6 Remark. We next give a criterion in terms of series that is sometimes useful
to show that a normed space is complete.

Because a normed space has both a vector space structure (and so addition is
possible) and a metric (means that convergence makes sense) we can talk about
infinite series converging in a normed space.

1.7.7 Definition. If (E, ‖·‖) is a normed space then a series in E is just a sequence
(xn)∞n=1 of terms xn ∈ E.

We define the partial sums of the series to be

sn =
n∑

j=1

xj.

We say that the series converges in E if the sequence of partial sums has a
limit — limn→∞ sn exists in E, or there exists s ∈ E so that

lim
n→∞

∥∥∥∥∥
(

n∑
j=1

xj

)
− s

∥∥∥∥∥ = 0

We write
∑∞

n=1 xn when we mean to describe a series and we also write
∑∞

n=1 xn

to stand for the value s above in case the series does converge. As for scalar series,
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we may write that
∑∞

n=1 xn ‘does not converge’ if the sequence of partial sums
has no limit in E.

We say that a series
∑∞

n=1 xn is absolutely convergent if
∑∞

n=1 ‖xn‖ < ∞.
(Note that

∑∞
n=1 ‖xn‖ is a real series of positive terms and so has a monotone

increasing sequence of partial sums. Therefore the sequence of its partial sums
either converges in R or increases to ∞.)

1.7.8 Proposition. Let (E, ‖ · ‖) be a normed space. Then E is a Banach space
(that is complete) if and only if each absolutely convergent series

∑∞
n=1 xn of

terms xn ∈ E is convergent in E.

Proof. Assume E is complete and
∑∞

n=1 ‖xn‖ < ∞. Then the parial sums of this
series of positive terms

Sn =
n∑

j=1

‖xj‖

must satisfy the Cauchy criterion. That is for ε > 0 given there is N so that
|Sn − Sm| < ε holds for all n, m ≥ N . If we take n > m ≥ N , then

|Sn − Sm| =

∣∣∣∣∣
n∑

j=1

‖xj‖ −
m∑

j=1

‖xj‖

∣∣∣∣∣ =
n∑

j=m+1

‖xj‖ < ε.

Then if we consider the partial sums sn =
∑n

j=1 xj of the series
∑∞

n=1 xn we see
that for n > m ≥ N (same N )

‖sn − sm‖ =

∥∥∥∥∥
n∑

j=1

xj −
m∑

j=1

xj

∥∥∥∥∥ =

∥∥∥∥∥
n∑

j=m+1

xj

∥∥∥∥∥ ≤
n∑

j=m+1

‖xj‖ < ε.

It follows from this that the sequence (sn)∞n=1 is Cauchy in E. As E is complete,
limn→∞ sn exists in E and so

∑∞
n=1 xn converges.

For the converse, assume that all absolutely convergent series in E are conver-
gent. Let (un)∞n=1 be a Cauchy sequence in E. Using the Cauchy condition with
ε = 1/2 we can find n1 > 0 so that

n, m ≥ n1 ⇒ ‖un − um‖ <
1

2
.

Next we can (using the Cauchy condition with ε = 1/22) find n2 > 1 so that

n, m ≥ n2 ⇒ ‖un − um‖ <
1

22
.
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We can further assume (by increasing n2 if necessary) that n2 > n1. Continuing
in this way we can find n1 < n2 < n3 < · · · so that

n, m ≥ nj ⇒ ‖un − um‖ <
1

2j
.

Consider now the series
∑∞

j=1 xj =
∑∞

j=1(unj+1
− unj

). It is absolutely conver-
gent because

∞∑
j=1

‖xj‖ =
∞∑

j=1

‖unj+1
− unj

‖ ≤
∞∑

j=1

1

2j
= 1 < ∞.

By our assumption, it is convergent. Thus its sequence of partial sums

sJ =
J∑

j=1

(unj+1
− unj

) = unJ+1
− un1

has a limit in E (as J →∞). It follows that

lim
J→∞

unJ+1
= un1 + lim

J→∞
(unJ+1

− un1)

exists in E. So the Cauchy sequence (un)∞n=1 has a convergent subsequence. By
Lemma 1.4.8 E is complete.

1.7.9 Definition. For 1 ≤ p < ∞, `p denotes the space of all sequences x =
{xn}∞n=1 which satisfy

∞∑
n=1

|an|p < ∞.

1.7.10 Proposition. `p is a vector space (under the usual term-by-term addition
and scalar multiplication for sequences). It is a Banach space in the norm

‖(an)n‖p =

(
∞∑

n=1

|an|p
)1/p

The proof will require the following three lemmas.

1.7.11 Lemma. Suppose 1 < p < ∞ and q is defined by 1
p

+ 1
q

= 1. Then

ab ≤ ap

p
+

bq

q
for a, b ≥ 0.
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Proof. If either a = 0 or b = 0, then the inequality is clearly true.
The function f(x) = ex is a convex function of x. This means that f ′′(x) ≥ 0,

or geometrically that

f(tα + (1− t)β) ≤ tf(α) + (1− t)f(β) for 0 ≤ t ≤ 1.

Put t = 1
p

and 1− t = 1
q

to get

e
α
p
+β

q ≤ 1

p
eα +

1

q
eβ

or

(eα/p)(eβ/q) ≤ 1

p
eα +

1

q
eβ.

Put a = eα/p and b = eβ/q (or perhaps α = p log a, β = q log b) to get the
result.

1.7.12 Lemma (Hölder’s inequality). Suppose 1 ≤ p < ∞ and 1
p

+ 1
q

= 1 (if
p = 1 this is interpreted to mean q = ∞ and values of p and q satisfying this
relationship are called conjugate exponents). For (an)n ∈ `p and (bn)n ∈ `q,

∞∑
n=1

|anbn| ≤ ‖(an)n‖p ‖(bn)n‖q.

(This means both that the series on the left converges and that the inequality is
true.)
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Proof. This inequality is quite elementary if p = 1 and q = ∞. Suppose p > 1.
Let

A = ‖(an)n‖p =

(
∞∑

n=1

|an|p
)1/p

B = ‖(bn)n‖q =

(
∞∑

n=1

|bn|q
)1/q

If either A = 0 or B = 0, the inequality is trivially true. Otherwise, use
Lemma 1.7.11 with a = |an|/A and b = |bn|/B to get

|anbn|
AB

≤ 1

p

|an|p

Ap
+

1

q

|bn|q

Bq

∞∑
n=1

|anbn|
AB

≤ 1

p

∑ |an|p

Ap
+

1

q

∑ |bn|q

Bq

=
1

p
+

1

q
= 1

Hence ∑
|anbn| ≤ AB

1.7.13 Remark. For p = 2 and q = 2, Hölder’s inequality reduces to an infinite-
dimensional version of the Cauchy-Schwarz inequality

∞∑
n=1

|anbn| ≤

(∑
n

|an|2
)1/2(∑

n

|yn|2
)1/2

.

1.7.14 Lemma (Minkowski’s inequality). If x = (xn)n and y = (yn)n are in `p

(1 ≤ p ≤ ∞) then so is (xn + yn)n and

‖(xn + yn)n‖p ≤ ‖(xn)n‖p + ‖(yn)n‖p

Proof. This is quite trivial to prove for p = 1 and for p = ∞ (we have already
encountered the case p = ∞). So suppose 1 < p < ∞.
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First note that

|xn + yn| ≤ |xn|+ |yn| ≤ 2 max(|xn|, |yn|)
|xn + yn|p ≤ 2p max(|xn|p, |yn|p)

≤ 2p
(
|xn|p + |yn|p

)
∑

n

|xn + yn|p ≤ 2p
(∑

n

|xn|p +
∑

n

|yn|p
)

This shows that (xn + yn)n ∈ `p.
Next, to show the inequality,∑

n

|xn + yn|p =
∑

n

|xn + yn| |xn + yn|p−1

=
∑

n

|xn| |xn + yn|p−1 +
∑

n

|yn| |xn + yn|p−1

Write
∑

n |xn| |xn + yn|p−1 =
∑

n anbn where an = |xn| and bn = |xn + yn|p−1.
Then we have (an)n ∈ `p and (bn)n ∈ `q because∑

n

bq
n =

∑
n

|xn + yn|(p−1)q

=
∑

n

|xn + yn|p < ∞

where we have used the relation 1
p

+ 1
q

= 1 to show (p − 1)q = p. From
Lemma 1.7.12 we deduce

∑
n

|xn||xn + yn|p−1 ≤

(∑
n

|xn|p
)1/p(∑

n

|xn + yn|(p−1)q

)1/q

= ‖(xn)n‖p‖(xn + yn)n‖p/q
p

Similarly ∑
n

|xn||xn + yn|p−1 ≤ ‖(yn)n‖p‖(xn + yn)n‖p/q
p

Adding the two inequalities, we get

‖(xn + yn)n‖p
p ≤ ‖(xn)n‖p‖(xn + yn)n‖p/q

p + ‖(yn)n‖p‖(xn + yn)n‖p/q
p .
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Now, if ‖(xn + yn)n‖p = 0 then the inequality to be proved is clearly satisfied. If
‖(xn + yn)n‖p 6= 0, we can divide across by ‖(xn + yn)n‖p/q

p to obtain

‖(xn + yn)n‖p−p/q
p ≤ ‖(xn)n‖p + ‖(yn)n‖p.

Since p− p
q

= 1, this is the desired inequality.

Proof. (of Proposition 1.7.10): It follows easily from Lemma 1.7.14 that `p is a
vector space and that ‖ · ‖p is a norm on it (in fact Minkowski’s inequality is just
the triangle inequality for the `p-norm).

To show that `p is complete, we show that every absolutely convergent series∑
k xk in `p is convergent. (That is we use Proposition 1.7.8.)
Write xk = (xk,n)n = (xk,1, xk,2, . . .) for each k. Notice that

|xk,n| ≤ ‖xk‖p =

(∑
n

|xk,n|p
)1/p

Therefore
∑

k |xk,n| ≤
∑

k ‖xk‖p < ∞ for each k and it makes sense to write

yn =
∑

k

xk,n

(and yn ∈ K).
Now, for any N ≥ 1,(

N∑
n=1

|yn|p
)1/p

= lim
K→∞

(
N∑

n=1

∣∣∣ K∑
k=1

xk,n

∣∣∣p)1/p

= lim
K→∞

‖ ( x1,1, x1,2, . . . , x1,N , 0, 0, . . . )
+ ( x2,1, x2,2, . . . , x2,N , 0, 0, . . . )
...
+ ( xK,1, xK,2, . . . , xK,N , 0, 0, . . . ) ‖p

≤ lim
K→∞

K∑
k=1

‖(xk,1, xk,2, . . . , xk,N , 0, 0, . . .)‖p

(using Minkowski’s inequality)
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≤ lim
K→∞

K∑
k=1

‖xk‖p

=
∞∑

k=1

‖xk‖p < ∞

Letting N →∞, this shows that y = (yn)n ∈ `p.
Applying similar reasoning to y−

∑K0

k=1 xk (for any given K0 ≥ 0) shows that∥∥∥∥∥y −
K0∑
k=1

xk

∥∥∥∥∥
p

≤
∞∑

K0+1

‖xk‖p

→ 0 as K0 →∞.

In other words the series
∑

k xk converges to y in `p.

1.7.15 Examples. (i) We define, for 1 ≤ p < ∞,

Lp([0, 1]) = {f : [0, 1] → K : f measurable and
∫ 1

0

|f(x)|p dx < ∞}.

On this space we define

‖f‖p =

(∫ 1

0

|f(x)|p dx

)1/p

The idea is that we have replaced sums used in `p by integrals over the unit
interval [0, 1]. It is perhaps natural to then allow measurable functions as
these are the right class to consider in the context of integration. One might
be tempted to be more restrictive and (say) only allow continuous f but this
causes problems we will mention later.

We can use the same ideas exactly as we used in the proofs of Hölder’s
inequality (Lemma 1.7.12) and Minkowski’s inequality (Lemma 1.7.14) to
show integral versions of them. We end up showing that

f, g ∈ Lp([0, 1]) ⇒ ‖f + g‖p ≤ ‖f‖p + ‖g‖p

(the triangle inequality). It is not at all hard to see that ‖λf‖p = |λ‖‖f‖p and
we are well on the way to showing ‖ · ‖p is a norm on Lp([0, 1]). However,
it is not a norm. It is only a seminorm because ‖f‖p = 0 implies only that
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{x ∈ [0, 1] : f(x) 6= 0} has measure 0 (total length 0). When something
is true except for a set of total length 0 we say it is true almost everywhere
[with respect to length measure or Lebesgue measure on R].

There is a standard way to get from a seminormed space to a normed space,
by taking equivalence classes. We define an equivalence relation onLp([0, 1])
by f ∼ g if ‖f−g‖p = 0 (which translates in this case to f(x) = g(x) almost
everywhere). We can then turn the set of equivalence classes

Lp([0, 1]) = {[f ] : f ∈ Lp([0, 1])}

into a vector space by defining

[f ] + [g] = [f + g], λ[f ] = [λf ].

There is quite a bit of checking to do to show this is well-defined. Anytime
we define operations on equivalence classes in terms of representatives of
the equivalence classes, we have to show that the operation is independent
of the choice of representatives.

Next we can define a norm on Lp([0, 1]) by ‖[f ]‖p = ‖f‖p (and again we
have to show this is well defined and actually leads to a norm). Finally we
end up with a normed space (Lp([0, 1]), ‖ · ‖p) and it is in fact a Banach
space. The proof of that needs some facts from measure theory and can be
based on Proposition 1.7.8.

If
∑∞

n=1 ‖fn‖p < ∞, let

g(x) = lim
N→∞

N∑
n=1

|fn(x)| (x ∈ [0, 1])

with the understanding that g(x) ∈ [0, +∞]. By the monotone convergence
theorem ∫ 1

0

g(x)p dx = lim
N→∞

∫ 1

0

(
N∑

n=1

|fn(x)|

)p

dx

From Minkowski’s inequality, we get(∫ 1

0

(
N∑

n=1

|fn(x)|

)p

dx

)1/p

=

∥∥∥∥∥
N∑

n=1

|fn|

∥∥∥∥∥
p

≤
N∑

n=1

‖|fn|‖p

=
N∑

n=1

‖fn‖p ≤
∞∑

n=1

‖fn‖p
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and it follows then that∫ 1

0

g(x)p dx ≤

(
∞∑

n=1

‖fn‖p

)p

< ∞

and so g(x) < ∞ for almost every x ∈ [0, 1].

On the set where g(x) < ∞, we can define

f(x) =
∞∑

n=1

fn(x) = lim
N→∞

N∑
n=1

fn(x)

(and on the set of measure zero where g(x) = ∞ we can define f(x) = 0).
Then f is measurable. From |f(x)| ≤ g(x) and the above, f ∈ Lp([0, 1]).
To show limN→∞

∥∥∥(∑N
n=1 fn

)
− f

∥∥∥
p

= 0, use the fact that

∣∣∣∣∣
(

N∑
n=1

fn(x)

)
− f(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

fn(x)

∣∣∣∣∣ ≤ g(x)

(for almost every x ∈ [0, 1]). Since we know
∫ 1

0
g(x)p dx < ∞, the Lebesgue

dominated convergence theorem allows us to conclude

lim
N→∞

∥∥∥∥∥
(

N∑
n=1

fn

)
− f

∥∥∥∥∥
p

p

= lim
N→∞

∫ 1

0

∣∣∣∣∣
(

N∑
n=1

fn(x)

)
− f(x)

∣∣∣∣∣
p

dx

=

∫ 1

0

∣∣∣∣∣ lim
N→∞

(
N∑

n=1

fn(x)

)
− f(x)

∣∣∣∣∣
p

dx = 0

Thus we have proved
∑∞

n=1 fn converges to f in Lp([0, 1]).

We can never quite forget that Lp([0, 1]) is not actually a space of (measur-
able) functions but really a space of (almost everywhere) equivalence classes
of functions. However, it is usual not to dwell on this point. What it does
mean is that if you find yourself discussing f(1/2) or any specific single
value of f ∈ Lp([0, 1]), you are doing something wrong. The reason is that
as f ∈ Lp([0, 1]) is actually an equivalence class it is then possible to change
the value f(1/2) arbitrarily without changing the element of Lp([0, 1]) we
are considering.
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(ii) There are further variations on Lp([0, 1]) which are useful in different con-
texts. We could replace [0, 1] by another interval [a, b] (a < b) and replace∫ 1

0
by
∫ b

a
. For what we have discussed so far, everything will go through as

before. We get (Lp([a, b]), ‖ · ‖p).

(iii) We can also define Lp(R) where Lp(R) consists of measurable functions
f : R → K with

∫∞
−∞ |f(x)|p dx < ∞. Then we take (as before) almost-

everywhere equivalence classes of f ∈ Lp(R) to be Lp(R) and we take the
norm ‖f‖p =

(∫
R |f(x)|p dx

)1/p. Again we get a Banach space (Lp(R), ‖ ·
‖p) for 1 ≤ p < ∞.

(iv) In fact we can define Lp in a more general context that includes all the
examples `p, Lp([a, b]) and Lp(R) as special cases. Let (X, Σ, µ) be a
measure space. This means X is a set, Σ is a collection of subsets of
X with certain properties, and µ is a function that assigns a measure (or
mass or length or volume) in the range [0,∞] to each set in Σ. More pre-
cisely Σ should be a σ-algebra of subsets of X — contains the empty set
and X itself, closed under taking complements and countable unions. And
µ: Σ → [0,∞] should have µ(∅) = 0 and be countably additive (which
means that µ (

⋃∞
n=1 En) =

∑∞
n=1 µ(En) if E1, E2, . . . ∈ Σ are disjoint).

Then

Lp(X, Σ, µ) =

{
f : X → K : f measurable,

∫
X

|f(x)|p dµ(x) < ∞
}

,

Lp(X, Σ, µ) consists of equivalence classes of elements inLp(X, Σ, µ) where
f ∼ g means that µ({x ∈ X : f(x) 6= g(x)}) = 0. We say that f = g almost
everywhere with respect to µ if f ∼ g (and sometimes write f = g a.e. [µ]).
On Lp(X, Σ, µ) we take the norm

‖f‖p =

(∫
X

|f(x)|p dµ(x)

)1/p

.

Then (Lp(X, Σ, µ), ‖ · ‖p) is a Banach space (1 ≤ p < ∞).

To see why the examples Lp([0, 1]), Lp([a, b]) and Lp(R) are special cases
of Lp(X, Σ, µ) we take µ to be Lebesgue (length) measure on the line. The
need for Σ is then significant — we cannot assign a length to every subset
of R and keep the countable additivity property. So Σ has to be Lebesgue-
measurable subsets of [0, 1], [a, b] or R (or Borel measurable subsets). There
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is one reason why Lp([0, 1]) is a little different from the rest. In that case
we are dealing with a probability space (X, Σ, µ), meaning a measure space
where µ(X) = 1.

To see why `p is also an Lp(X, Σ, µ), we take X = N, Σ to be all subsets
of N and µ to be counting measure. This means that for E ⊂ N finite µ(E)
is the number of elements in E and for E infinite, µ(E) = ∞. In this case
we can also think of functions f : N → K as sequences (f(n))∞n=1 of scalars
and

∫
X
|f(n)|p dµ(n) =

∑∞
n=1 |f(n)|p for counting measure µ. Moreover,

the only set of measure 0 for counting measure is the empty set. Thus there
is no need to take almost everywhere equivalence classes when dealing with
this special case.

(v) We have avoided dealing with L∞ so far, because the formulae are slightly
different. Looking back to the comparison between `∞ and `p, we want to
replace the condition on the integral of |f |p being finite by a supremum. We
might like to describe L∞(X, Σ, µ) as measurable f : X → K with

sup
x∈X

|f(x)| < ∞,

but in keeping with the case of Lp we also want to take a.e [µ] equivalence
classes of such f . The problem is that while changing a function on a set of
measure 0 does not change its integral, it can change its supremum. Hence
we need a variation of the supremum that ignores sets of measure 0. This is
known as the essential supremum and it can be defined as

ess-sup(f) = inf

{
sup

x∈X\E
|f(x)| : E ⊂ X, µ(E) = 0

}
or

ess-sup(f) = inf

{
sup
x∈X

|g(x)| : g ∼ f

}
(using g ∼ f to mean that g is a measurable function equal to f almost
everywhere). We then define

L∞(X, Σ, µ) = {f : X → K : f measurable, ess-sup(f) < ∞}

and L∞(X, Σ, µ) to be the almost everywhere equivalence classes of f ∈
L∞(X, Σ, µ). With the norm

‖f‖∞ = ess-sup(f)
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we get a Banach space (L∞(X, Σ, µ), ‖ · ‖∞).

In the case (X, Σ, µ) is X = N with counting measure, we can verify that
L∞ is just `∞ again. For X = [0, 1] we get L∞([0, 1]) (using µ = Lebesgue
measure) and we also have L∞([a, b]) and L∞(R).

Of course there are many details omitted here, to verify that everything is as
claimed, that the norms are well defined, that the spaces are complete, and
so on.

(vi) We can further consider Lp (1 ≤ p ≤ ∞) in other cases, like Lp(Rn) where
we take n-dimensional Lebesgue measure for µ (on X = Rn).

1.8 Linear operators
1.8.1 Theorem. Let (E, ‖·‖E) and (F, ‖·‖F ) be normed spaces and let T : E → F
be a linear transformation. Then the following are equivalent statements about T .

(i) T is continuous.

(ii) T is continuous at 0 ∈ E.

(iii) There exists M ≥ 0 so that ‖Tx‖F ≤ M‖x‖E holds for all x ∈ E.

(iv) T is a Lipschitz mapping, that is there exists M ≥ 0 so that ‖Tx− Ty‖F ≤
M‖x− y‖E holds for all x, y ∈ E.

(v) T is uniformly continuous.

Proof. Our strategy for the proof is to show (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (i).

(i) ⇒ (ii) Obvious

(ii) ⇒ (iii) By continuity at 0 (with ε = 1), there is δ > 0 so that

‖x‖E = ‖x− 0‖E < δ ⇒ ‖Tx− T0‖F = ‖Tx‖F < 1

Then for any y ∈ E with y 6= 0 we can take for example x = (δ/2)y/‖y‖E

to get ‖x‖ = δ/2 < δ and so conclude

‖Tx‖F =

∥∥∥∥T ( δ

2‖y‖E

y

)∥∥∥∥
F

=

∥∥∥∥ δ

2‖y‖E

T (y)

∥∥∥∥
F

=
δ

2‖y‖E

‖Ty‖F < 1.

Thus ‖Ty‖F ≤ (2/δ)‖y‖E for all y ∈ E apart from y = 0. But for y = 0
this inequality is also true and so we get (iii) with M = 2/δ > 0.
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(iii) ⇒ (iv) We have

‖Tx− Ty‖F = ‖T (x− y)‖F ≤ M‖x− y‖E

by linearity of T and (iii).

(iv) ⇒ (v) Given ε > 0, take δ = ε/(M + 1) > 0, then

‖x− y‖E < δ ⇒ ‖Tx− Ty‖F ≤ M‖x− y‖E < Mδ =
εM

M + 1
< ε.

Thus we have uniform continuity of T (see 1.4.10).

(v) ⇒ (i) Obvious (by Proposition 1.4.11).

1.8.2 Definition. We usually refer to a linear transformation T : E → F be-
tween normed spaces that satisfies the condition (iii) of Theorem 1.8.1 above as a
bounded linear operator (or sometimes just as a linear operator).

1.8.3 Remark. From Theorem 1.8.1 we see that bounded is the same as continuous
for a linear operator between normed spaces. There are very few occasions in
functional analysis when we want to consider linear transformation that fail to
be continuous. At least that is so in the elementary theory. When we encounter
discontinuous linear transformations in this course it will be in the context of
unpleasant phenomena or counterexamples.

1.8.4 Definition. If T : E → F is a bounded linear operator between normed
spaces (E, ‖ · ‖E) and (F, ‖ · ‖F ), then we define the operator norm of T to be

‖T‖op = inf{M ≥ 0 : ‖Tx‖F ≤ M‖x‖E∀x ∈ E}

1.8.5 Proposition. If T : E → F is a bounded linear operator between normed
spaces (E, ‖ · ‖E) and (F, ‖ · ‖F ), then

(a) ‖T‖op = inf{M ≥ 0 : ‖Tx − Ty‖F ≤ M‖x − y‖E∀x, y ∈ E} (thus ‖T‖op

is the smallest possible Lipschitz constant for T );

(b) ‖T‖op = sup{‖Tx‖F : x ∈ E, ‖x‖E = 1} (provided E 6= {0} or if we
interpret the right hand side as 0 in case we have the supremum of the empty
set);
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(c) ‖T‖op = sup{‖Tx‖F : x ∈ E, ‖x‖E ≤ 1};

(d) ‖T‖op = sup
{
‖Tx‖F

‖x‖E
: x ∈ E, x 6= 0

}
(again provided E 6= {0} or if we

interpret the right hand side as 0 in case we have the supremum of the empty
set).

Proof. Exercise.

1.8.6 Examples. (i) We claim that if 1 ≤ p1 < p2 ≤ ∞, then `p1 ⊆ `p2 and the
inclusion operator

T : `p1 → `p2

Tx = x

has ‖T‖op = 1.

Notice that this is nearly obvious for `1 ⊆ `∞ as
∑∞

n=1 |xn| < ∞ implies
limn→∞ xn = 0 and so the sequence (xn)∞n=1 ∈ c0 ⊆ `∞.

In fact we can dispense with the case p2 = ∞ first because it is a little
different from the other cases. If (xn)∞n=1 ∈ `p1 , then

∑∞
n=1 |xn|p < ∞

and so limn→∞ xn = 0. Thus, again, we have (xn)∞n=1 ∈ c0 ⊆ `∞. We
also see that for any fixed m, |xm|p ≤

∑∞
n=1 |xn|p = ‖(xn)∞n=1‖p1

p1
and so

|xm| ≤ ‖x‖p1 for x = (xn)∞n=1. Thus

‖x‖∞ = sup
m
|xm| ≤ ‖x‖p1

and this means ‖Tx‖∞ ≤ M‖x‖p1 with M = 1. So ‖T‖op ≤ 1. To show
‖T‖op ≥ 1 consider the sequence (1, 0, 0, . . .) which has ‖Tx‖∞ = ‖x‖∞ =
1 = ‖x‖p1 .

Now consider 1 ≤ p1 ≤ p2 < ∞. If x = (xn)∞n=1 ∈ `p1 and ‖x‖p1 ≤ 1, then
we have

∞∑
n=1

|xn|p1 = ‖x‖p1
p1
≤ 1

and so |xn| ≤ 1 for all n. It follows that

∞∑
n=1

|xn|p2 =
∞∑

n=1

|xn|p1|xn|p2−p1 ≤
∞∑

n=1

|xn|p1 ≤ 1
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and so x ∈ `p2 (if ‖x‖p1 ≤ 1). For the remaining x ∈ `p1 with ‖x‖p1 ≥ 1, we
have y = x/‖x‖p1 of norm ‖y‖p1 = 1. Hence y ∈ `p2 and so x = ‖x‖p1y ∈
`p2 . This shows `p1 ⊂ `p2 .

We saw above that ‖x‖p1 ≤ 1 ⇒ ‖Tx‖p2 = ‖x‖p2 ≤ 1 and this tells us
‖T‖op ≤ 1. To show that the norm is not smaller than 1, consider the case
x = (1, 0, 0, . . .) which has ‖Tx‖p2 = ‖x‖p2 = 1 = ‖x‖p1 .

(ii) If 1 ≤ p1 < p2 ≤ ∞, then Lp2([0, 1]) ⊆ Lp1([0, 1]) and the inclusion
operator

T : Lp2([0, 1]) → Lp1([0, 1])

Tf = f

has ‖T‖op = 1.

This means that the inclusions are in the reverse direction compared to the
inclusions among `p spaces. One easy case is to see that L∞([0, 1]) ⊆
L1([0, 1]) because ∫ 1

0

|f(x)| dx

will clearly be finite if the integrand is bounded.

The general case Lp2([0, 1]) ⊆ Lp1([0, 1]) (and the fact that the inclusion
operator has norm at most 1) follows from Hölders inequality by taking one
of the functions to be the constant 1 and a suitable value of p. At least this
works if p2 < ∞.

‖f‖p1
p1

=

∫ 1

0

|f(x)|p1 dx

=

∫ 1

0

|f(x)|p11 dx

≤
(∫ 1

0

(|f(x)|p1)p dx

)1/p(∫ 1

0

1q dx

)1/q

(with
1

p
+

1

q
= 1)

=

(∫ 1

0

|f(x)|p1p dx

)1/p

= ‖f‖p1
p1p
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To make p1p = p2 we take p = p2/p1, which is allowed as p2 > p1. We get

‖f‖p1
p1
≤ ‖f‖p1

p2

and so we have ‖f‖p1 ≤ ‖f‖p2 .

If f ∈ Lp2([0, 1]), which means that ‖f‖p2 < ∞, we see that f ∈ Lp1([0, 1]).
So we have inclusion as claimed, but also the inequality ‖f‖p1 ≤ ‖f‖p2 tells
us that ‖T‖op ≤ 1. Taking f to be the constant function 1, we see that
‖f‖p1 = 1 = ‖f‖p2 and so ‖T‖op cannot be smaller than 1.

When p2 = ∞ there is a simpler argument based on∫ 1

0

|f(x)|p1 dx ≤
∫ 1

0

‖f‖p1
∞ dx = ‖f‖p1

∞

to show L∞([0, 1]) ⊆ Lp1([0, 1]) and the inclusion has norm at most 1.
Again the constant function 1 shows that ‖T‖op = 1 in this case.

(iii) If (X, Σ, µ) is a finite measure space (that is if µ(X) < ∞) then we have
a somewhat similar result to what we have for Lp([0, 1]). The inclusions go
the same way, but the inclusion operators can gave norm different from 1.
If 1 ≤ p1 < p2 ≤ ∞, then Lp2(X, Σ, µ) ⊆ Lp1(X, Σ, µ) and the inclusion
operator

T : Lp2(X, Σ, µ) → Lp1(X, Σ, µ)

Tf = f

has
‖T‖op = µ(X)(1/p1)−(1/p2).

The proof is quite similar to the previous case, but the difference comes
from the fact that

∫
X

1 dµ(x) = µ(X) and this is not necessarily 1. (When
µ(X) = 1 we are in a probability space.) So when we use Hölders in-
equality, a constant will come out and the resulting estimate for ‖T‖op is
the value above. Again if you look at the constant function 1, you see that
‖T‖op ≥ µ(X)(1/p1)−(1/p2).

(iv) When we look at the different Lp(R) spaces, we find that the arguments
above don’t work. The argument with Hölders inequality breaks down be-
cause the constant function 1 has integral ∞ and the argument that worked
for `p does not go anywhere either.
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Looking at the extreme cases of p = 1 and p = ∞, there is no reason to
conclude that |f(x)| bounded implies

∫∞
−∞ |f(x)| dx should be finite. And

on the other hand functions where the integral is finite can be unbounded.

This actually turns out to be the case. We can find examples of function in
Lp1(R) but not in Lp2(R) for any values of 1 ≤ p1, p2 ≤ ∞ where p1 6= p2.

To see this we consider two examples of function fα, gα: R → K, given as

fα(x) =
e−x2

|x|α
, gα(x) =

1

1 + |x|α

(where α > 0).

When checking to see if fα ∈ Lp(R) (for p < ∞) or not we end up checking
if ∫ 1

0

1

xpα
dx < ∞.

The reason is that
∫∞
−∞ |fα(x)|p dx = 2

∫∞
0
|fα(x)|p dx (even function) and

the e−x2 guarantees
∫∞

1
|fα(x)|p dx < ∞. In the range 0 < x < 1 the

exponential term is neither big nor small and does not affect convergence of
the integral. The condition comes down to pα < 1 or α < 1/p. The case
p = ∞ (and 1/p = 0) fits into this because (when α > 0) fα(x) → ∞ as
x → 0 and so fα /∈ L∞(R).

For gα ∈ Lp(R) to hold we end up with the condition∫ ∞

1

1

xpα
dx < ∞

(as gα(x) is within a constant factor of 1/xpα when x ≥ 1) which is true if
pα > 1 or α > 1/p.

Thus if 1 ≤ p1 < p2 ≤ ∞ and we choose α in the range

1

p2

< α <
1

p1

we find

fα ∈ Lp1(R), fα /∈ Lp2(R), gα ∈ Lp2(R), gα /∈ Lp1(R),

which shows that neither Lp1(R) ⊆ Lp2(R) nor Lp2(R) ⊆ Lp1(R) is valid.
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(v) You might wonder why in the case of (X, Σ, µ) being X = N with counting
measure, and so µ(X) = ∞, we do get `p1 ⊆ `p2 but that this does not work
with X = R (where also µ(X) = ∞).

The difference can be explained by the fact that N is what is called as an
atomic measure space. The singleton sets are of strictly positive measure
and cannot be subdivided. On the other hand R is what is called ‘purely
nonatomic’. There are no ‘atoms’ (sets of positive measure which cannot be
written as the union of two disjoint parts each of positive measure).

1.8.7 Definition. Two normed spaces (E, ‖ · ‖E) and (F, ‖ · ‖F ) are isomorphic
if there exists a vector space isomorphism T : E → F which is also a homeomor-
phism.

We say that (E, ‖ · ‖E) and (F, ‖ · ‖F ) are called isometrically isomorphic
if there exists a vector space isomorphism T : E → F which is also isometric
(‖Tx‖F = ‖x‖E for all x ∈ E).

1.8.8 Remark. From Theorem 1.8.1, we can see that both T and T−1 are bounded
if T : E → F is both a vector space isomorphism and a homeomorphism. Thus
there exist constants M1 = ‖T‖op and M2 = ‖T−1‖op so that

1

M2

‖x‖E ≤ ‖Tx‖F ≤ M1‖x‖E (∀x ∈ E)

This means that an isomorphism almost preserves distances (preserves them within
fixed ratios)

1

M2

‖x− y‖E ≤ ‖Tx− Ty‖F ≤ M1‖x− y‖E

as well as being a homeomorphism (which means more or less preserving the
topology).

Another way to think about it is that if we transfer the norm from F to E via
the map T to get a new norm on E given by

|||x||| = ‖Tx‖F

then we have
1

M2

‖x‖E ≤ |||x||| ≤ M1‖x‖E.

1.8.9 Theorem. If (E, ‖ · ‖E) is a finite dimensional normed space of dimension
n, then E is isomorphic to Kn (with the standard Euclidean norm).
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Proof. Let v1, v2, . . . , vn be a vector space basis for E and define T : Kn → E by

T (x1, x2, . . . , xn) =
n∑

i=1

xivi.

From standard linear algebra we know that T is a vector space isomorphism, and
what we have to show is that T is also a homeomorphism.

To show first that T is continuous (or bounded) consider (for fixed 1 ≤ j ≤ n)
the map Tj: Kn → E given by

Tj(x1, x2, . . . , xn) = xjvj.

We have ‖Tj(x)‖E = |xj|‖vj‖E ≤ ‖vj‖E‖x‖2 since ‖x‖2 = (
∑n

i=1 |xi|2)1/2 ≥
|xj|. From the triangle inequality we can deduce

‖Tx‖E =

∥∥∥∥∥
n∑

j=1

Tj(x)

∥∥∥∥∥
E

≤
n∑

j=1

‖Tj(x)‖E ≤

(
n∑

j=1

‖vj‖E

)
‖x‖E

establishing that T is bounded (with operator norm at most
∑n

j=1 ‖vj‖E).
Now consider the unit sphere

S = {x ∈ Kn : ‖x‖2 = 1},

which we know to be a compact subset of Kn (as it is closed and bounded). Since
T is continuous, T (S) is a compact subset of E. Thus T (S) is closed in E (be-
cause E is Hausdorff). Since T is bijective (and 0 /∈ S) we have 0 = T (0) /∈
T (S). Thus there exists r > 0 so that

{y ∈ E : ‖y − 0‖E = ‖y‖E < r} ⊂ E \ S.

Another way to express this is

x ∈ Kn, ‖x‖2 = 1 ⇒ ‖Tx‖E ≥ r.

Scaling arbitrary x ∈ Kn \ {0} to get a unit vector x/‖x‖2 we find that∥∥∥∥T ( 1

‖x‖2

x

)∥∥∥∥
E

=

∥∥∥∥ 1

‖x‖2

Tx

∥∥∥∥
E

=
1

‖x‖2

‖Tx‖E ≥ r

and so ‖Tx‖E ≥ r‖x‖2. This holds for x = 0 also. So for y ∈ E, we can take
x = T−1y to get ‖y‖E ≥ r‖T−1y‖2, or

‖T−1y‖2 ≤
1

r
‖y‖E (∀y ∈ E).

Thus T−1 is bounded.
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1.8.10 Corollary. If (E, ‖ · ‖E) is a finite dimensional normed space and T : E →
F is any linear transformation with values in any normed space (F, ‖ · ‖F ), then
T is continuous.

Proof. Chose an isomorphism S: Kn → E (which exists by Theorem 1.8.9).
Let e1, e2, . . . , en be the standard basis of Kn (so that e1 = (1, 0, . . . , 0), e2 =
(0, 1, 0, . . . , o), etc.) and wi = (T ◦ S)(ei). Then

(T ◦ S)(x1, x2, . . . , xn) = (T ◦ S)

(
n∑

i=1

xiei

)
=

n∑
i=1

xiwi

and as in the proof of Theorem 1.8.9 we can show that T ◦ S is bounded (in fact
‖T ◦ S‖op ≤

∑n
i=1 ‖wi‖F ). So T = (T ◦ S) ◦ S−1 is a composition of two

continuous linear operators, and is therefore continuous.

1.8.11 Example. The Corollary means that for finite dimensional normed spaces,
continuity or boundedness of linear transformations is automatic. For that reason
we concentrate most on infinite dimensional situations and we always restrict our
(main) attention to bounded linear operators.

Although in finite dimensions boundedness is not in question, that only means
that there exists some finite bound. There are still questions (which have been
considered in much detail by now in research) about what the best bounds are.
These questions can be very difficult in finite dimensions. Part of the motivation
for this study is that a good understanding of the constants that arise in finite
dimensions, and how they depend on increasing dimension, can reveal insights
about infinite dimensional situations.

Consider the finite dimensional version of `p, that is Kn with the norm ‖ · ‖p

given by

‖(x1, x2, . . . , xn)‖p =

(
n∑

i=1

|xi|p
)1/p

for 1 ≤ p < ∞ and ‖(x1, x2, . . . , xn)‖∞ = max1≤i≤n |xi|. We denote this space
by `p

n, with the n for dimension.
Now, all the norms ‖ · ‖p are equivalent on Kn, that is given p1 and p2 there

are constants m, M > 0 so that

m‖x‖p1 ≤ ‖x‖p2 ≤ M‖x‖p1

holds for all x ∈ Kn. We can identify the constants more precisely. Say 1 ≤ p1 <
p2 ≤ ∞. Then we know from the infinite dimensional inequality for `p spaces
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(applied to the finitely nonzero sequence (x1, x2, . . . , xn, 0, 0, . . .)) that ‖x‖p2 ≤
‖x‖p1 .

We could also think of `p
n as a Lp space where we take X = {1, 2, . . . , n}

with counting measure µ. From Examples 1.8.6 (iii) we know also ‖x‖p1 ≤
n(1/p1)−(1/p2)‖x‖p2 . In summary

‖x‖p2 ≤ ‖x‖p1 ≤ n(1/p1)−(1/p2)‖x‖p2

One can visualise this geometrically (say in R2 to make things easy) in terms
of the shapes of the open unit balls

B`p
n

= {x ∈ `p
n : ‖x‖p < 1}

The inequality above means

B`
p1
n
⊆ B`

p2
n
⊆ n(1/p1)−(1/p2)B`

p1
n

.

For p = 2 we get a familiar round ball or circular disc, but for other p the
shapes are different. For p = 1 we get a diamond (or square) with corners (1, 0),
(0, 1), (−1, 0) and (0,−1). This is because the unit ball is specified by |x1| +
|x2| < 1. So in the positive quadrant this comes to x1 + x2 < 1, or (x1, x2) below
the line joining (1, 0) and (0, 1).

The ball of (real) `∞2 on the other hand is given by max(|x1|, |x2|) < 1 or
−1 ≤ xi ≤ 1. So its unit ball is a square with the 4 corners (±1,±1). Here is an
attempt at drawing the unit balls for `2

2, `1
2 and `∞2 on the one picture.
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For example the fact that

B`1n
⊆ B`2n

⊆ n(1/1)−(1/2)B`1n
=
√

nB`1n

means for n = 2 that the diamond is contained in the circle and the circle is
contained in the diamond expanded by a factor

√
2.

1.8.12 Corollary. Finite dimensional normed spaces are complete.

Proof. If E is an n-dimensional normed space, then there is an isomorphism
T : Kn → E. As Kn is complete and T−1 is uniformly continuous, it follows
from Proposition 1.4.16 that E is complete.

1.9 Open mapping, closed graph and uniform boundedness the-
orems

1.9.1 Theorem (Open Mapping Theorem). Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be
Banach spaces and T : E → F a surjective bounded linear operator. Then there
exists δ > 0 so that

T (BE) ⊇ δBF

where BE = {x ∈ E : ‖x‖E < 1} and BF = {y ∈ F : ‖y‖F < 1} are the open
unit balls of E and F .

Moreover, if U ⊆ E is open, then T (U) is open (in F ).

Proof. First we show that the second statement (the ‘open mapping’ part) follows
from the first.

It is handy to note that all (open) balls B(x0, r) = {x ∈ E : ‖x−x0‖E < r} in
a normed space (or Banach space) E can be related to the unit ball BE as follows

B(x0, r) = x0 + rBE

(where rBE = {rx : x ∈ BE} is a stretching of BE be the factor r and x0+rBE =
{x0 + rx : x ∈ BE} is the translate of rBE by x0).

So if U ⊆ E is open and y0 ∈ T (U) then we know y0 = T (x0) for some
x0 ∈ U . Since U is open, there is r > 0 with x0 + rBE = B(x0, r) ⊆ U . It
follows from T (BE) ⊇ δBF and linearity of T that

T (U) ⊇ T (x0 + rBE) = T (x0) + rT (BE) ⊇ y0 + rδBF = B(y0, rδ).
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Thus y0 is an interior point of T (U). As this is true of all y0 ∈ T (U), we have
shown that T (U) is open.

Now to prove the first assertion, let Vr = T (rBE) = rT (BE) for r > 0.
Because T is surjective and E =

⋃∞
n=1 nBE , we have

F =
∞⋃

n=1

T (nBE) =
∞⋃

n=1

Vn.

By the Baire category theorem (and this is where we use the assumption that F is
complete) we cannot have Vn nowhere dense for all n. (See §1.6 for an explanation
of what the Baire category theorem says, and its proof.) That means there is n so
that the closure V̄n has nonempty interior, or in other words there is y0 ∈ V̄n and
r > 0 with B(y0, r) = y0 + rBF ⊆ V̄n.

By changing y0 and reducing r we can assume y0 ∈ Vn (and not just y0

in the closure). The idea is that there must be y1 ∈ Vn ∩ B(y0, r/2) and then
B(y1, r/2) ⊆ B(y0, r) ⊆ V̄n. Write y1 = T (x0) for x0 ∈ nBE . Then we claim
that V̄2n ⊇ (r/2)BF . The argument is that x0 ∈ nBE implies

2nBE ⊇ nBE − x0

and so
V2n ⊇ T (nBE − x0) = T (nBE)− T (x0) = Vn − y1

Taking closures, we get

V̄2n ⊇ V̄n − y1 ⊇ (y1 + (r/2)BF )− y1 = (r/2)BF .

The fact that the closure of Vn − y1 is the same as V̄n − y1 follows from the
fact that the translation map y 7→ y − y1: F → F is distance preserving (and so
a homeomorphism) of F onto itself (with inverse the translation y 7→ y + y1).
Homeomorphisms preserve all topological things, and map closures to closures.

For k ∈ N we have V̄kn = (kVn) = kV̄n (one can check that because y 7→ ky
is a homeomorphism with inverse y 7→ (1/k)y). Thus, if k big enough so that
kr/2 > 1 we have

V̄kn = kV̄n ⊇ k
r

2
BF ⊇ BF

Let N = kn. Thus we have V̄N ⊇ BF . What we claim is that V3N ⊇ BF (no
closure now on the V3N ).
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From V̄N ⊇ BF we deduce, for j ∈ N,

V̄N/j =
1

j
VN =

1

j
V̄N ⊇ 1

j
BF

Starting with any y ∈ BF we must have x1 ∈ NBE (so T (x1) ∈ VN ) with

‖y − T (x1)‖F <
1

2

or
y − T (x1) ∈

1

2
BF ⊆ V̄N/2.

We can then find x2 ∈ (N/2)BE (so T (x2) ∈ VN/2) with

‖(y − T (x1))− T (x2)‖F <
1

22

or
y − T (x1)− T (x2) = y − (T (x1) + T (x2)) ∈

1

22
BF ⊆ V̄N/22 .

By induction, we can find x1, x2, . . . with xj ∈ (N/2j−1)BE and

y −
j∑

i=1

T (xi) ∈
1

2j
BF ⊆ V̄N/2j .

With this construction we have an absolutely convergent series
∑∞

j=1 xj in E,
because

∞∑
j=1

‖xj‖E ≤
∞∑

j=1

N

2j−1
= 2N < 3N.

Now using completeness of E (remember we used completeness of F earlier) we
know from Proposition 1.7.8 that

∑∞
j=1 xj converges in E. That says there is

x ∈ E with x = limj→∞
∑j

i=1 xi and in fact we know

‖x‖E ≤ lim
j→∞

∥∥∥∥∥
j∑

i=1

xi

∥∥∥∥∥
E

≤ lim
j→∞

j∑
i=1

‖xi‖E ≤ 2N < 3N

because the closed ball B̄(0, 2N) is closed in E and all the partial sums
∑j

i=1 xi

are inside B̄(0, 2N).
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As T is linear and continuous, we also have

Tx = lim
j→∞

T

(
j∑

i=1

xi

)
= lim

j→∞

j∑
i=1

T (xi) = y

because ∥∥∥∥∥y −
j∑

i=1

T (xi)

∥∥∥∥∥
F

≤ 1

2j
→ 0

as j →∞.
So we have y = T (x) ∈ V3N = T (3NBE). Since this is so for all y ∈ BF , we

have BF ⊆ V3N as claimed. It follows that

T (BE) ⊆ 1

3N
BF ,

which is the result with δ = 1/(3N) > 0.

1.9.2 Corollary. If E, F are Banach spaces and T : E → F is a bounded linear
operator that is also bijective, then T is an isomorphism.

Proof. By the Open Mapping theorem T is automatically an open map, that is
U ⊆ E open implies T (U) ⊆ F open. But, since T is a bijection the forward
image T (U) is the same as the inverse image (T−1)−1(U) of U under the inverse
map T−1.

Thus the open mapping condition says that T−1 is continuous.

1.9.3 Theorem (Closed graph theorem). If E, F are Banach spaces and T : E →
F is a linear transformation, then T is bounded if and only if its ‘graph’

{(x, y) ∈ E × F : y = Tx}

is a closed subset of E × F in the product topology.

Proof. It is quite easy to check that the graph must be closed if T is bounded
(continuous). The product topology is a metric space topology as E and F are
metric spaces, and in fact arises from a norm on E⊕F . (See §A.2 and §A.3.) For
definiteness we take the norm

‖(x, y)‖1 = ‖x‖+ ‖y‖
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on E ⊕ F , or we could write E ⊕1 F . So to show the graph is closed, suppose
we have a sequence (xn, yn) in the graph that converges in E × F to some limit
(x, y). We claim that (x, y) must be in the graph, that is that y = Tx.

What we know is that yn = Txn for each n (since (xn, yn) is in the graph).
As (xn, yn) → (x, y) in the product topology, it follows that xn → x and yn → y
(as n → ∞). (This is rather easy as ‖xn − x‖ ≤ ‖(xn, yn) − (x, y)‖1 = ‖(xn −
x, yn − y)‖n → 0 as n →∞.) But T is continuous and so T (xn) → T (x). Since
T (xn) = yn, that means yn → T (x). As yn → y also (because ‖yn − y‖ ≤
‖(xn, yn) − (x, y)‖1) and in metric spaces sequences can have at most one limit,
we have T (x) = y and (x, y) is in the graph — as we wanted to show.

Now assume that the graph is closed. Our proof that T must be continuous
relies on the open mapping theorem. We introduce a new norm on E by

|||x||| = ‖x‖E + ‖Tx‖F .

It is not at all difficult to check that this is indeed a norm:

|||x1 + x2||| = ‖x1 + x2‖E + ‖T (x1 + x2)‖F

= ‖x1 + x2‖E + ‖T (x1) + T (x2)‖F

≤ ‖x1‖E + ‖x2‖E + ‖T (x1)‖F + ‖T (x2)‖F

= |||x1|||+ |||x2|||
|||λx||| = ‖λx‖E + ‖T (λx)‖F

= ‖λx‖E + ‖λTx‖F

= |λ|‖x‖E + |λ|‖Tx‖F

= |λ||||x|||
|||x||| = 0 ⇒ ‖x‖E = 0

⇒ x = 0

We consider the identity mapping id: (E, ||| · |||) → (E, ‖ · ‖E) which is clearly
linear, bijective and bounded since

‖id(x)‖E = ‖x‖E ≤ |||x|||.

In order to apply the open mapping theorem we need to know that (E, ||| · |||) is
a Banach space (that is complete) and in doing that the hypothesis that the graph
is closed will be used. Once we have verified completeness, the open mapping
theorem guarantees that the inverse map id−1: (E, ‖·‖E) → (E, |||·|||) is continuous.
Therefore its is bounded, or there exists M ≥ 0 so that

|||x||| ≤ M‖x‖E
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holds for all x ∈ E. That implies ‖Tx‖F ≤ |||x||| ≤ M‖x‖E and so T bounded as
we need.

It remains to verify the completeness of (E, ||| · |||). Take a Cauchy sequence
(xn)∞n=1 in E with respect to the metric arising from ||| · |||. Then for ε > 0 given
and n, m large enough

|||xn − xm||| < ε.

But that implies both ‖xn − xm‖E < ε and ‖T (xn)− T (xm)‖F < ε. This means
(xn)∞n=1 is a Cauchy sequence in (E, ‖ ·‖E) and (T (xn))∞n=1 is a Cauchy sequence
in (F, ‖ · ‖F ). As both E and F are complete there exists x = limn→∞ xn ∈ E
and y = limn→∞ T (xn) ∈ F . Using 3.39 (ii) we see that

(xn, T (xn)) → (x, y)

in the product topology of E × F . But each (xn, T (xn)) is in the graph of T and
we are assuming that the graph is closed. So the limit (x, y) is also in the graph,
or y = Tx. It follows that

lim
n→∞

|||xn−x||| = lim
n→∞

‖xn−x‖E+‖T (xn)−Tx‖F = lim
n→∞

‖xn−x‖E+‖yn−y‖F = 0

and that means xn → x in (E, ||| · |||). WE have shown that each Cauchy sequence
in (E, ||| · |||) converges. So (E, ||| · |||) is complete.

As noted above, the result follows then from the open mapping theorem.

1.9.4 Theorem (Uniform boundedness principle). Let E be a Banach space and
F a normed space. Let Ti: E → F be bounded linear operators for i ∈ I = some
index set. Assume

sup
i∈I

‖Ti(x)‖ < ∞ for each x ∈ E

(which can be stated as the family of operators being pointwise uniformly bounded).
Then

sup
i∈I

‖Ti‖ < ∞

(uniform boundedness in norm).

Proof. The proof relies on the Baire category theorem in E.
Let

Wn = {x ∈ E : sup
i∈I

‖Tix‖ ≤ n}

=
⋂
i∈I

{x ∈ E : ‖Tix‖ ≤ n}.
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Then Wn is closed as it is the intersection of closed sets. ({x ∈ E : ‖Tix‖ ≤ n}
is the inverse image under Ti of the closed ball {y ∈ F : ‖y‖ ≤ n}, and Ti is
continuous. So the inverse image is closed.)

The hypothesis implies that each x ∈ E belongs in Wn for some n, or that⋃∞
n=1 Wn = E. By the Baire category theorem, there is some n where Wn is not

nowhere dense. Fix this n. As Wn is closed, Wn not nowhere dense means that
Wn has nonempty interior. So there is x0 and r > 0 so that

B(x0, r) = x0 + rBE ⊆ Wn.

Thus
‖Ti(x0 + rx)‖ = ‖Ti(x0) + rTi(x)‖ ≤ n

holds for all x ∈ BE . It follows that

r‖Ti(x)‖ − ‖Ti(x0)‖ ≤ n (∀x ∈ BE)

and so
‖Ti(x)‖ ≤ 1

r
‖Ti(x0)‖+

n

r
≤ 2n

r
(∀x ∈ BE)

since x0 ∈ Wn ⇒ ‖Ti(x0)‖ ≤ n for all i ∈ I . Take supx∈BE
to get

‖Ti‖ ≤
2n

r

and as this is true for each i ∈ I , we have supi∈I ‖Ti‖ ≤ 2n/r < ∞ as required.

1.9.5 Remark. The open mapping, closed graph and uniform boundedness princi-
ple are all considered to be fundamental theorems in functional analysis. We will
postpone giving examples of their use until we discuss Fourier series later.

There is at least one more theorem of central importance, the Hahn Banach
theorem, and again we leave that for a while.
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A Appendix

A.1 Uniform convergence
We recall here some facts about unform convergence of sequences of functions
(with values in a metric space).

A.1.1 Definition. Let X be a topological space and (Y, d) a metric space. Let
fn: X → Y be functions (n = 1, 2, 3, . . .) and f0: X → Y another function.

Then we say that the sequence (fn)∞n=1 converges uniformly on X to f0 if the
following is true

for each ε > 0 there exists N > 0 so that

n ≥ N, x ∈ X ⇒ d(fn(x), f0(x)) < ε.

A.1.2 Proposition. (‘uniform limits of continuous functions are continuous’) Let
X be a topological space and (Y, d) a metric space. If (fn)∞n=1 is a sequence of
continuous functions fn: X → Y that converges uniformly on X to f0: X → Y ,
then f0 is continuous.

Proof. Fix x0 ∈ X and our aim will be to show that f is continuous at x0. So take
a neighbourhood NY of y0 = f(x0) ∈ Y , and our aim is to show f−1(NY ) is a
neighbourhood of x0 ∈ X .

There is ε > 0 so that B(y0, ε) ⊆ NY . By uniform convergence we can find
n0 so that

n ≥ n0, x ∈ X ⇒ d(fn(x), f(x)) <
ε

3
.

Fix n = n0. By continuity of fn at x0,

NX = f−1
n

(
B(fn(x0),

ε

3

)
=
{

x ∈ X : d(fn(x), fn(x0)) <
ε

3

}
is a neighbourhood of x0 ∈ X . For x ∈ NX we have

d(f(x), f(x0)) ≤ d(f(x), fn(x)) + d(fn(x), fn(x0)) + d(fn(x0), f(x0))

<
ε

3
+

ε

3
+

ε

3
= ε

This implies f(x) ∈ B(f(x0), ε) ⊆ NY ∀x ∈ NX or that NX ⊆ f−1(NY ). So
f−1(NY ) is a neighbourhood of x0 ∈ X .

This shows f continuous at x0 ∈ X . As x0 is arbitrary, f is continuous.
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A.2 Products of two metric spaces
Given two metric space (X, dX) and (Y, dY ), we can make the cartesian product
X × Y = {(x, y) : x ∈ X, y ∈ Y } into a metric space in a number of ways. For
example we can define a metric

d∞ on X × Y by the rule

d∞((x1, y1), (x2, y2)) = max(dX(x1, x2), dY (y1, y2)).

It is not very difficult to check that his does define a metric. For example the
triangle inequality

d∞((x1, y1), (x3, y3)) ≤ d∞((x1, y1), (x2, y2)) + d∞((x2, y2), (x3, y3)),

we start by

d∞((x1, y1), (x3, y3)) = max(dX(x1, x3), dY (y1, y3))

≤ max(dX(x1, x2) + dX(x2, x3), dY (y1, y2) + dX(y2, y3))

(since dX(x1, x3) ≤ dX(x1, x2) + dX(x2, x3) and dY (y1, y3) ≤ dY (y1, y2) +
dX(y2, y3) by the triangle inequalities for dX and Dy). Then use the triangle in-
equality for the norm ‖ · ‖∞ on R2.

However, the most familiar example of a product is perhaps R2 = R × R
and the familiar Euclidean metric on R2 is not the one we get by using d∞ with
dR(x1, x2) = dX(x1, x2) = |x1 − x2|, dY = dX . Motivated by that example, we
might prefer to think of a different metric d2 on the product of two metric spaces
(X, dX) and (Y, dY ) where we take

d2((x1, y1), (x2, y2)) =
√

(dX(x1, x2))2 + (dY (y1, y2))2 = ‖(dX(x1, x2), dY (y1, y2))‖2.

The proof that d2 is a metric is not that different from the proof that d∞ is a metric
on X × Y .

More generally we might take p in the range 1 ≤ p < ∞ and define dp on
X × Y by

dp((x1, y1), (x2, y2)) = ((dX(x1, x2))
p + (dY (y1, y2))

p)1/p = ‖(dX(x1, x2), dY (y1, y2))‖p.

Again it is not that hard to show that dp is a metric.
We have now an embarrassment of definitions in that we have infinitely many

choices (X × Y, dp) with 1 ≤ p ≤ ∞. However, all these metrics are somewhat
comparable because if 1 ≤ p1 ≤ p2 ≤ ∞, then

‖a‖p2 ≤ ‖a‖p1 ≤ 2‖a‖p2 (a ∈ R2)
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(see Example 1.8.11 with n = 2, where a more precise constant is given). It
follows that

dp2((x1, y1), (x2, y2)) ≤ dp1((x1, y1), (x2, y2)) ≤ 2dp2((x1, y1), (x2, y2))

and as a consequence the open sets in (X × Y, dp) are the same for every p. So
the continuous functions with domains X × Y and values in some topological
space Z are the same no matter what matric we use. The same is true of functions
f : Z → X × Y with values in X × Y . Moreover the sequences ((xn, yn))∞n=1 that
converge in (X × Y, dp) do not depend on the value of p we use.

It is possible to describe the topology on X × Y arising from any one of these
metrics dp in a way that uses only topology (open sets). We will not do that at this
stage. The topology on X×Y arising from any one of the dp is called the product
topology.

A.3 Direct sum of two normed spaces
If we start with normed spaces (E, ‖·‖E) and (F, ‖·‖F ), then we can make E×F
into a vector space by defining vector space operations as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) (for (x1, y1), (x2, y2) ∈ E × F )

λ(x, y) = (λx, λy) (for λ ∈ K, (x, y) ∈ E × F ).

One can check in a straightforward way that this make E ×F into a vector space,
and the usual notation for this is E ⊕ F (called the direct sum of E and F ).

Inside E ⊕ F there is a subspace

E ⊕ {0} = {(x, 0) : x ∈ E}

that behaves just like E (is isomorphic as a vector space to E) and another sub-
space {0} ⊕ F = {(0, y) : y ∈ F} that is a copy of F . Every (x, y) ∈ E ⊕ F can
be expressed in a unique way as

(x, y) = (x, 0) + (0, y)

as a sum of an element of E ⊕ {0} and an element of {0} ⊕ F .
So far this is about vector spaces and so belongs to linear algebra. To make

E ⊕ F a normed space, we have at least the same sort of choices for norms as we
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discussed for metrics in a product metric space. For 1 ≤ p ≤ ∞ we can define a
norm on E ⊕ F by

‖(x, y)‖p = ‖(‖x‖E, ‖y‖F )‖p = (‖x‖p
E + ‖y‖p

F )1/p

(in terms of the p-norm of R2). It is not hard to check that this is a norm and that
the distance arising from this norm is the same as the metric dp arising from the
metrics dE and dF given by the norms on E and F .

It is common to write E ⊕p F for E ⊕ F with the norm ‖ · ‖p.

Richard M. Timoney (January 18, 2009)
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