2E2 Tutorial sheet 8 Solution

[Wednesday January 10th, 2001]

1. Draw a block diagram represeneting the discrete time system

$$
y_{k+2}+0.5 y_{k+1}+0.25 y_{k}=u_{k} .
$$

Solution:

This diagram has

$$
\begin{aligned}
v_{k} & =u_{k}-a w_{k}-b y_{k} \\
v_{k} & =w_{k+1} \\
w_{k} & =y_{k+1}
\end{aligned}
$$

Consequently, we have

$$
\begin{aligned}
v_{k} & =y_{k+2} \\
y_{k+2} & =u_{k}-a y_{k+1}-b y_{k} \\
y_{k+2}+a y_{k+1}+b y_{k} & =u_{k} \\
u_{k} & =y_{k+2}+a y_{k+1}+b y_{k}
\end{aligned}
$$

and this is the right equation if $a=0.5$ and $b=0.25$.
2. Which of the following discrete linear systems are stable (v_{k} represents the input, y_{k} the output at step k).
(a)

$$
2 y_{k+2}+3 y_{k+1}-y_{k}=v_{k}
$$

Solution: The \mathcal{Z} transfer function for this is

$$
\frac{1}{2 z^{2}+3 z-1}
$$

and this has poles (zeroes of the denominator) at

$$
z=\frac{-3 \pm \sqrt{9+8}}{4}=\frac{-3 \pm \sqrt{17}}{4}
$$

These are $z=-1.78$ and $z=.28$ and so one of them has $|z|=1.78>1$. Hence the system is unstable.
(b)

$$
9 y_{k+2}+9 y_{k+1}+2 y_{k}=v_{k}
$$

Solution: The \mathcal{Z} transfer function for this is

$$
\frac{1}{9 z^{2}+9 z+1}
$$

and this has poles (zeroes of the denominator) at

$$
z=-f r a c-9 \pm \sqrt{81-72} 18=\frac{-9 \pm \sqrt{9}}{18}=\frac{-9 \pm 3}{18}=\frac{-3 \pm 1}{6}
$$

which are $z=-1 / 3$ and $z=-2 / 3$. Both of these have $|z|<1$ and so the system is stable.

Richard M. Timoney

