2E2 Tutorial sheet 7 Solution

[Wednesday December 6th, 2000]

1. Find the \mathcal{Z} transfer function and impulse response for the difference equation

$$
x_{k+2}+3 x_{k+1}-4 x_{k}=v_{k}
$$

(with zero initial conditions).
Solution: Taking \mathcal{Z} transforms of both sides gives

$$
\left(z^{2}+3 z-4\right) \mathcal{Z}\left[\left(x_{k}\right)_{k=0}^{\infty}\right](z)=\mathcal{Z}\left[\left(v_{k}\right)_{k=0}^{\infty}\right](z)
$$

or

$$
\mathcal{Z}\left[\left(x_{k}\right)_{k=0}^{\infty}\right](z)=\frac{1}{z^{2}+3 z-4} \mathcal{Z}\left[\left(v_{k}\right)_{k=0}^{\infty}\right](z)
$$

and the \mathcal{Z} transfer function is

$$
Y(z)=\frac{1}{z^{2}+3 z-4}
$$

the impulse response if the sequence with \mathcal{Z} transform equal to $Y(z)$ and we can find this via partial fractions.

$$
\begin{aligned}
\frac{1}{z^{2}+3 z-4}= & \frac{1}{(z+4)(z-1)} \\
= & \frac{A}{z+4}+\frac{B}{z-1} \\
1= & A(z-1)+B(z+4) \\
\frac{z=-4:}{1}= & -5 A \\
& A=-\frac{1}{5} \\
\frac{z=1:}{1}= & 5 B \\
& B=\frac{1}{5} \\
\frac{1}{z^{2}+3 z-4}= & -\frac{1}{5} \frac{1}{z+4}+\frac{1}{5} \frac{1}{z-1}
\end{aligned}
$$

z times this would be the \mathcal{Z} transform of the sequence with $k^{\text {th }}$ term

$$
-\frac{1}{5}(-4)^{k}+\frac{1}{5} 1^{k}=-\frac{1}{5}(-4)^{k}+\frac{1}{5}
$$

Without the z factor, we must delay this by one. So the impulse repsonse has $k^{\text {th }}$ term

$$
x_{k}= \begin{cases}0 & \text { for } k=0 \\ -\frac{1}{5}(-4)^{k-1}+\frac{1}{5} & \text { for } k>0\end{cases}
$$

2. Find the convolution of the sequence $(1)_{k=0}^{\infty}=(1,1,1,1, \ldots)$ with itself.

Solution: We could work directly with the definition of convolutions of two sequences. The convolution of sequences $\left(x_{k}\right)_{k=0}^{\infty}$ and $\left(y_{k}\right)_{k=0}^{\infty}$ has $k^{\text {th }}$ term

$$
\sum_{j=0}^{k} x_{j} y_{k-j}
$$

and when both $x_{j}=1$ and $y_{k-j}=1$ this turns out to be

$$
\sum_{j=0}^{k} 1=k+1
$$

So the answer is the sequence $(k+1)_{k=0}^{\infty}=(1,2,3, \ldots)$.
Another possible solution would make use of the fact that the \mathcal{Z} transform of the convolution is the product of the \mathcal{Z} transforms, that is

$$
\frac{z}{z-1} \times \frac{z}{z-1}=z \frac{z}{(z-1)^{2}}
$$

Now $\frac{z}{(z-1)^{2}}$ is the \mathcal{Z} transform of the sequence $(k)_{k=0}^{\infty}$ and the z factor advances it by one, resulting in the same answer again.

