2E2 Tutorial sheet 7 Solution

[Wednesday December 6th, 2000]

1. Find the \mathcal{Z} transfer function and impulse response for the difference equation

$$x_{k+2} + 3x_{k+1} - 4x_k = v_k$$

(with zero initial conditions).

Solution: Taking \mathcal{Z} transforms of both sides gives

$$(z^2 + 3z - 4)\mathcal{Z}[(x_k)_{k=0}^{\infty}](z) = \mathcal{Z}[(v_k)_{k=0}^{\infty}](z)$$

or

$$\mathcal{Z}[(x_k)_{k=0}^{\infty}](z) = \frac{1}{z^2 + 3z - 4} \mathcal{Z}[(v_k)_{k=0}^{\infty}](z)$$

and the Z transfer function is

$$Y(z) = \frac{1}{z^2 + 3z - 4}$$

the impulse response if the sequence with \mathcal{Z} transform equal to Y(z) and we can find this via partial fractions.

$$\frac{1}{z^2 + 3z - 4} = \frac{1}{(z+4)(z-1)}$$

$$= \frac{A}{z+4} + \frac{B}{z-1}$$

$$1 = A(z-1) + B(z+4)$$

$$\frac{z = -4:}{1}$$

$$1 = -5A$$

$$A = -\frac{1}{5}$$

$$\frac{z = 1:}{1} = 5B$$

$$B = \frac{1}{5}$$

$$\frac{1}{z^2 + 3z - 4} = -\frac{1}{5}\frac{1}{z+4} + \frac{1}{5}\frac{1}{z-1}$$

z times this would be the ${\cal Z}$ transform of the sequence with $k^{\mbox{th}}$ term

$$-\frac{1}{5}(-4)^k + \frac{1}{5}1^k = -\frac{1}{5}(-4)^k + \frac{1}{5}$$

Without the z factor, we must delay this by one. So the impulse repsonse has $k^{\mbox{th}}$ term

$$x_k = \begin{cases} 0 & \text{for } k = 0\\ -\frac{1}{5}(-4)^{k-1} + \frac{1}{5} & \text{for } k > 0 \end{cases}$$

2. Find the convolution of the sequence $(1)_{k=0}^{\infty} = (1,1,1,1,\ldots)$ with itself.

Solution: We could work directly with the definition of convolutions of two sequences. The convolution of sequences $(x_k)_{k=0}^{\infty}$ and $(y_k)_{k=0}^{\infty}$ has k^{th} term

$$\sum_{j=0}^{k} x_j y_{k-j}$$

and when both $x_j = 1$ and $y_{k-j} = 1$ this turns out to be

$$\sum_{j=0}^{k} 1 = k + 1$$

So the answer is the sequence $(k+1)_{k=0}^{\infty} = (1,2,3,\ldots)$.

Another possible solution would make use of the fact that the \mathcal{Z} transform of the convolution is the product of the \mathcal{Z} transforms, that is

$$\frac{z}{z-1} \times \frac{z}{z-1} = z \frac{z}{(z-1)^2}$$

Now $\frac{z}{(z-1)^2}$ is the $\mathcal Z$ transform of the sequence $(k)_{k=0}^\infty$ and the z factor advances it by one, resulting in the same answer again.