
2E2 Tutorial sheet 7 Solution
[Wednesday December 6th, 2000]

1. Find theZ transfer function and impulse response for the difference equation

xk+2 + 3xk+1 − 4xk = vk

(with zero initial conditions).

Solution:TakingZ transforms of both sides gives
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and theZ transfer function is
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the impulse response if the sequence withZ transform equal toY (z) and we can find this
via partial fractions.
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z times this would be theZ transform of the sequence withkth term
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Without thez factor, we must delay this by one. So the impulse repsonse haskth term
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2. Find the convolution of the sequence(1)∞k=0 = (1, 1, 1, 1, . . .) with itself.

Solution: We could work directly with the definition of convolutions of two sequences.
The convolution of sequences(xk)

∞
k=0 and(yk)

∞
k=0 haskth term

k∑
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xjyk−j

and when bothxj = 1 andyk−j = 1 this turns out to be

k∑
j=0

1 = k + 1

So the answer is the sequence(k + 1)∞k=0 = (1, 2, 3, . . .).

Another possible solution would make use of the fact that theZ transform of the convolu-
tion is the product of theZ transforms, that is

z
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Now z
(z−1)2 is theZ transform of the sequence(k)∞k=0 and thez factor advances it by one,

resulting in the same answer again.
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