2E2 Tutorial sheet 4 Solutions
[Wednesday November 15th, 2000]

1. Find the impulse response for the linear system with response $x(t)$ to an input $g(t)$ given by the differential equation

$$
\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+6 x=g(t)
$$

($t \geq 0$, zero initial conditions).
Solution: The transfer function for this system is

$$
Y(s)=\frac{1}{s^{2}+5 s+6}
$$

and the impulse response is the same as the weight function $W(t)$, which is the function with Laplace transform

$$
\mathcal{L}[W](s)=Y(s)=\frac{1}{s^{2}+5 s+6} .
$$

We can find W by using a partial fractions expansion of Y

$$
\begin{aligned}
\frac{1}{s^{2}+5 s+6} & =\frac{1}{(s+2)(s+3)} \\
& =\frac{A}{s+2}+\frac{B}{s+3} \\
1 & =A(s+3)+B(s+2) \\
\frac{s=-2:}{1} & =A \\
\frac{s=-3:}{1} & =B(-1) \quad B=-1 \\
Y(s) & =\frac{1}{s+2}-\frac{1}{s+3} \\
W(t) & =e^{-2 t}-e^{-3 t}
\end{aligned}
$$

2. Find the Laplace transform of the saw tooth function

$$
f(t)=\left\{\begin{array}{ll}
t & 0 \leq t<c \\
0 & t \geq c
\end{array} \quad(c>0)\right.
$$

Solution: From the definition of the Laplace transform

$$
\begin{aligned}
\mathcal{L}[f](s) & =\int_{0}^{\infty} f(t) e^{-s t} d t \\
& =\int_{0}^{c} f(t) e^{-s t} d t
\end{aligned}
$$

$$
\text { since } f(t)=0 \text { for } t>c
$$

$$
=\int_{0}^{c} t e^{-s t} d t
$$

Use integration by parts with

$$
u=t, \quad d v=e^{-s t} d t
$$

$$
d u=d t, \quad v=-\frac{1}{s} e^{-s t}
$$

$$
=[u v]_{t=0}^{c}-\int_{t=0}^{c} v d u
$$

$$
=\left[-\frac{t}{s} e^{-s t}\right]_{t=0}^{c}+\int_{t=0}^{c} \frac{1}{s} e^{-s t} d t
$$

$$
=-\frac{c}{s} e^{-s c}+0+\left[\frac{1}{-s^{2}} e^{-s t}\right]_{t=0}^{t=c}
$$

$$
=-\frac{c}{s} e^{-s c}+\left(-\frac{1}{s^{2}} e^{-s c}+\frac{1}{s^{2}}\right)
$$

$$
=\frac{1}{s^{2}}-\frac{c}{s} e^{-s c}-\frac{1}{s^{2}} e^{-s c}
$$

3. Find the Laplace transform of the periodic saw tooth function with period $c>0$ given by

$$
\begin{aligned}
f(t) & =t \quad 0 \leq t<c \\
f(t+c) & =f(t)
\end{aligned}
$$

Solution: We know the Laplace transform of this is

$$
\mathcal{L}[f](s)=\frac{1}{1-e^{-c s}} \int_{0}^{c} f(t) e^{-c s} d t
$$

and this integral is identical to the one we just did in the previous question. So the answer for the periodic saw tooth is

$$
\frac{1}{1-e^{-c s}}\left(\frac{1}{s^{2}}-\frac{c}{s} e^{-s c}-\frac{1}{s^{2}} e^{-s c}\right)
$$

Richard M. Timoney

