2E2 Tutorial sheet 1 Solutions

[Wednesday October 25th, 2000]

1. Find the Laplace transform of the step function

$$
H_{a}(t)= \begin{cases}0, & t<a \\ 1, & t \geq a\end{cases}
$$

where $a>0$.
Solution: From the definition of the Laplace transform, we have

$$
\mathcal{L}\left[H_{a}\right](s)=\int_{0}^{\infty} H_{a}(t) e^{-s t} d t
$$

and since $H_{a}(t)=0$ for $t<a$, this is

$$
\begin{aligned}
\mathcal{L}\left[H_{a}\right](s) & =\int_{a}^{\infty} H_{a}(t) e^{-s t} d t \\
& =\int_{a}^{\infty} 1 e^{-s t} d t \\
& =\lim _{b \rightarrow \infty} \int_{a}^{b} e^{-s t} d t
\end{aligned}
$$

(using the definition of an improper integral of this type)
$=\lim _{b \rightarrow \infty}\left[\frac{-1}{s} e^{-s t}\right]_{t=a}^{t=b}$
$=\lim _{b \rightarrow \infty}\left(\frac{-1}{s} e^{-s b}-\left(\frac{-1}{s} e^{-s a}\right)\right)$
$=0+\frac{1}{s} e^{-s a} \quad$ (if $s>0$)
2. Find the Laplace transform of $1-H_{a}(t)$.

Solution: We could do this in the same way as the first question, or we could use linearity of the Laplace transform plus the earlier calculation we did that $\mathcal{L}[1](s)=1 / s(s>0)$ and the result of the previous question:

$$
\mathcal{L}\left[1-H_{a}\right](s)=\mathcal{L}[1](s)-\mathcal{L}\left[H_{a}\right](s)=\frac{1}{s}-\frac{1}{s} e^{-s a}=\frac{1-e^{-s a}}{s}
$$

(for $s>0$).
In fact, if we did it directly we could show that

$$
\mathcal{L}\left[1-H_{a}\right](s)=\int_{0}^{a} e^{-s t} d t= \begin{cases}\frac{1-e^{-s a}}{s} & s \neq 0 \\ a^{s} & s=0\end{cases}
$$

3. Find the Laplace transform of the function

$$
f(t)= \begin{cases}0, & t<a \\ 1, & a \leq t<b \\ 0, & t \geq b\end{cases}
$$

where $0<a<b$.
Solution: Again we could use previous results and linearity, because $f(t)=H_{a}(t)-H_{b}(t)$ and so

$$
\mathcal{L}[f](s)=\mathcal{L}\left[H_{a}-H_{b}\right](s)=\frac{1}{s} e^{-s a}-\frac{1}{s} e^{-s b}
$$

(for $s>0$).
Or, we could apply the definition of the Laplace transform to show directly that

$$
\mathcal{L}[f](s)=\int_{a}^{b} 1 e^{-s t} d t=\frac{-1}{s} e^{-s b}-\left(\frac{-1}{s} e^{-s a}\right)
$$

(as calculated in question 1) without any restriction on s except $s \neq 0$. For $s=0$ we get the value $b-a$.
4. Find the Laplace transform of both sides of the differential equation

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+2 x=1
$$

with initial conditions $x(0)=\frac{d x}{d t}(0)=0$.
Solution: Using linearity of \mathcal{L}, plus the property of Laplace transforms of derivatives (simpler with zero initial conditions), we get

$$
\begin{aligned}
\mathcal{L}\left[\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+2 x\right](s) & =\mathcal{L}[1](s) \\
\mathcal{L}\left[\frac{d^{2} x}{d t^{2}}\right](s)+2 \mathcal{L}\left[\frac{d x}{d t}\right](s)+2 \mathcal{L}[x](s) & =\frac{1}{s} \\
s^{2} \mathcal{L}[x](s)+2 s \mathcal{L}[x](s)+2 \mathcal{L}[x](s) & =\frac{1}{s} \\
\left(s^{2}+2 s+2\right) \mathcal{L}[x](s) & =\frac{1}{s}
\end{aligned}
$$

Richard M. Timoney

