These questions on the Mathematics paper of the Foundation Scholarship Examination for Engineering 2001 were set by R. Timoney.

10 (a) State and prove the formula expressing the Laplace transform $\mathcal{L}\left[f^{(n)}\right](s)$ (of the $n^{\text {th }}$ derivative of a function $f(t)(t>0)$) in terms of $\mathcal{L}[f](s)$.
(b) Compute (from the definition) the Laplace transform of the step function

$$
H_{a}(t)= \begin{cases}0, & t<a \\ 1, & t \geq a\end{cases}
$$

where $a>0$.
(c) Use Laplace transform methods and complex numbers to solve the differential equation

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+2 x= \begin{cases}1, & 0 \leq t<c \\ 0, & t \geq c\end{cases}
$$

with initial conditions $x(0)=\frac{d x}{d t}(0)=0$.
11 (a) Define the \mathcal{Z} transform of a sequence $\left(x_{k}\right)_{k=0}^{\infty}$. Define the convolution of two sequences $\left(x_{k}\right)_{k=0}^{\infty}$ and $\left(y_{k}\right)_{k=0}^{\infty}$ and show that the \mathcal{Z} transform of the convolution is the product of the \mathcal{Z} transforms.
(b) Find the \mathcal{Z} transform of

$$
\left(\sum_{j=1}^{k} j \sin \frac{(k-j) \pi}{3}\right)_{k=0}^{\infty}
$$

(c) Which of the following discrete linear systems are stable (v_{k} represents the input, x_{k} the output at step k).
i.

$$
2 y_{k+2}+3 y_{k+1}+y_{k}=v_{k}
$$

ii.

$$
3 y_{k+2}+9 y_{k+1}+2 y_{k}=v_{k}
$$

