2E1 (Timoney) Tutorial sheet 12
[Tutorials January 24 — 25, 2007]

Name: Solutions

1. Evaluate

3 y=+3z 1
. dydw
/o /y=0 Va2 +y?

by making a change of variables to polar coordinates. [Hint: Sketch the region first. Then
do the dr integral first, before df.]

Solution: This iterated integral is the same (by Fubini’s theorem) as the double integral

dx dy

e

where R is the triangle in the plane bounded by the x-axis, the line x = 3 and the line

y = /3.

The limit x = 3 is rcosf = 3 or r = 3/ cos 6 and the angle is 7/3 (because tan(w/3) =

V3).



Changing this integral to polar coordinates, and remembering that dx dy = r dr df, we get
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2. Find the mass of a solid object occupying the region in space bounded by the coordinate

planes and the plane x + y + 2z = 2 if its density function is d(z,y,2) = 2. [Hint:

Caluculations are easier if you leave the dz integral to last.]

Solution: We know that the answer is

Mass = /// dm = ///6(x,y,z)dxdydz
with the triple integral extending over the object.
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That gives
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