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Faculty of Engineering, Mathematics and Science

School of Mathematics

SF Mathematics
SF & JS Two Subject Moderatorship

Trinity Term 2016

MA2224 — Lebesgue integral (with solutions)

Wednesday, May 18 ? 9.30 — 11.30

Professor R. M. Timoney

Instructions to Candidates:

Credit will be given for the best THREE questions answered.

All questions have equal weight.

‘Formulae & tables’ are available from the invigilators, if required.

Non-programmable calculators are permitted for this examination,—please indi-
cate the make and model of your calculator on each answer book used.
Apologies for any errors in these solutions!

You may not start this examination until you are instructed to do so by the Invigi-
lator.
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1. (a) [5 points] If S and T are countably infinite sets, show that S × T is countable.

Solution: (This was on Tutorial sheet 1 in 2015-16 for N× N).

List the elements of S and T as S = {s1, s2, . . .}, T = {t1, t2, . . .} (without

repetitions).

We can tabulate the elements of S×T , where the tuples (s1, t1), (s1, t2), (s1, t3), . . .

with first entry s1 form the first row, those with first entry s2 the second row and

so on.

S × T = { (s1, t1), (s1, t2), (s1, t3), (s1, t4) . . .

(s2, t1), (s2, t2), (s2, t3), (s2, t4) . . .

...

}

and then list those in a single list by using a zig-zag type pattern

S × T = {(s1, t1), (s2, t1), (s1, t2), (s1, t3), (s2, t2), (s3, t1), (s4, t1), (s3, t2), . . .}

Could S × T be countable if T is uncountable? (Explain briefly.)

Solution: Yes, if S = ∅, then S × T = ∅ is countable (even if T is uncountable).

(b) [5 points] Let f : A→ B be a function and E ⊆ B. Show that

χf−1(E) = χE ◦ f.

In the case A = B = R, f(x) = x2 and E = (−3, 0], work out both sides of the

above equality.

Solution: (The first part was on Tutorial sheet 2 in 2015-16.)

For a ∈ A we have either a ∈ f−1(E) or a /∈ f−1(E). If a ∈ f−1(E), then

f(a) ∈ E and so χE(f(a)) = 1 = χf−1(E)(a). If a /∈ f−1(E), then f(a) /∈ E and

so χE(f(a)) = 0 = χf−1(E)(a).

Thus χf−1(E)(a) = χE(f(a)) = (χE ◦ f)(a) in both cases.

In the case f(x) = x2, E = (−3, 0]

f−1(E) = {x ∈ R : f(x) ∈ E} = {x ∈ R : x2 ∈ (−3, 0]} = {x ∈ R : x2 = {0}} = {0}
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So

χf−1(E)(x) = χ{0}(x) =

1 if x = 0

0 if x 6= 0

χE ◦ f(x) = χE(f(x)) = χ(−3,0](x
2) =

1 if x2 ∈ (−3, 0]

0 if x /∈ (−3, 0]

(c) [5 points] Define what is meant by an algebra of subsets of R and by a σ-algebra

of subsets of R.

Solution: (From the notes)

Definition 1. A collection A of subsets of R is called an algebra of subsets of

R if

(a) ∅ ∈ A

(b) E ∈ A ⇒ Ec ∈ A

(c) E1, E2 ∈ A ⇒ E1 ∪ E2 ∈ A

(In words, A contains the empty set, is closed under taking complements and

under unions (of two members).)

Definition 2. An algebra A (of subsets of R) is called a σ-algebra (‘sigma-

algebra’) if whenever E1, E2, . . . ∈ A, then
⋃∞
n=1 En ∈ A. [In words: A is

closed under the operation of taking countable unions.]

Fix E0 ⊆ R and let A = {E ⊂ R : either E0 ⊆ E or E ∩E0 = ∅}. Show that A

is a σ-algebra of subsets of R.

Solution:

(i) E = ∅ ∈ A since E ∩ E0 = ∅ ∩ E0 = ∅

(ii) (Complements) E ∈ A implies either

E0 ⊆ E ⇒ Ec ∩ E0 = ∅ ⇒ Ec ∈ A

or

E ∩ E0 = ∅ ⇒ E0 ⊆ Ec ⇒ Ec ∈ A
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(iii) (Unions) E1, E2 ∈ A implies either both E1 ∩ E0 = ∅ and E2 ∩ E0 = ∅ or

at least one of E0 ⊆ E1 and E0 ⊆ E2.

If E1 ∩ E0 = ∅ and E2 ∩ E0 = ∅, then

(E1 ∪ E2) ∩ E0 = ∅ ⇒ E1 ∪ E2 ∈ A

On the other hand, if at least one of E0 ⊆ E1 and E0 ⊆ E2 holds, then

E0 ⊆ E1 ∪ E2 ⇒ E1 ∪ E2 ∈ A

(iv) (countable unions) If E1, E2, . . . ∈ A, then either En ∩ E0 = ∅ for each

n ≥ 1 or there is at least one n with E0 ⊆ En.

If En ∩ E0 = ∅ for each n ≥ 1 then(
∞⋃
n=1

En

)
∩ E0 = ∅ ⇒

∞⋃
n=1

En ∈ A.

On the other hand, if there is at least one n with E0 ⊆ En, then

E0 ⊆
∞⋃
n=1

En ⇒
∞⋃
n=1

En ∈ A.

(d) [5 points] For an arbitrary collection S of subsets of R, show that there is a unique

smallest σ-algebra ΣS of subsets of R with S ⊆ ΣS .

If S = {E0} contains just one subset E0 ⊆ R, what is ΣS? (Explain succinctly.)

Solution: (First part in notes.)

Proof. This is sort of easy, but in an abstract way. There is certainly one

possible σ-algebra containing S, that is P(R).

What we do is look at all possible σ-algebra, the set

S = {Σ : Σ ⊆ P(R) a σ-algebra and S ⊂ Σ}.

Then we take their intersection

ΣS =
⋂

Σ∈S

Σ

and argue that ΣS is still a σ-algebra. In fact that ΣS ∈ S and is the contained

in every Σ ∈ S by the way we defined it.

We check
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(i) ∅ ∈ ΣS

because ∅ ∈ Σ for each Σ ∈ S (and S is not empty — there is at least

one Σ in it).

(ii) E ∈ ΣS ⇒ Ec ∈ ΣS

because E ∈ ΣS ⇒ E ∈ Σ for each Σ ∈ S , and so Ec ∈ Σ for each

Σ ∈ S . Thus Ec ∈ ΣS .

(iii) E1, E2, . . . ∈ ΣS ⇒
⋃∞
n=1En ∈ ΣS

If En ∈ ΣS for n = 1, 2, . . ., then we have E1, E2, . . . ∈ Σ for each Σ ∈ S .

So
⋃∞
n=1 En ∈ Σ for each Σ ∈ S , and hence

⋃∞
n=1 En ∈ ΣS .

Finally S ⊂ ΣS holds because S ⊂ Σ for each Σ ∈ S .

If S = {E0}, we could have E0 = ∅ or E0 = R and in those cases ΣS = {∅,R}.

Otherwise ΣS = {∅,R, E0, E
c
0}.

(Clearly any σ-algebra that contains E0 must contain Ec
0 too, and all σ-algebras

must contain ∅ and ∅c = R. So we have to have all of ∅,R, E0, E
c
0.

It is easy to see that {∅,R, E0, E
c
0} contains the empty set and complements. For

unions E1 ∪ E2, if E1 = E2, there is no issue. Also no problem if one is ∅. If one

set is R, so is E1 ∪ E2. Then there remains the case E0 ∪ Ec
0 = R. Finite unions

follow by induction and infinite unions are actually finite unions as there are only

finitely many sets to consider.)
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2. (a) [5 points] The ‘interval algebra’ I is defined to be those subsets of R that are finite

unions of finite half-open intervals (a, b] and certain other types of sets. What are

those other types?

Explain what the standard form of a set in I is and define the standard length

function m : I → [0,∞].

Solution: (In the notes.)

The oher types are

(−∞, b], (a,∞), (−∞,∞)

(where a, b ∈ R).

We can write every set in I uniquely as one of the following

∅,R,

(a1, b1] ∪ (a2, b2] ∪ · · · ∪ (an, bn],

(−∞, b1] ∪ (a2, b2] ∪ · · · ∪ (an, bn],

(a1, b1] ∪ (a2, b2] ∪ · · · ∪ (an,∞), or

(−∞, b1] ∪ (a2, b2] ∪ · · · ∪ (an,∞),

where

a1 < b1 < a2 < b2 < · · · an < bn.

(This is called the “standard form”.)

Definition 1. We define a length function (or ‘measure’) m : I → [0,∞] by

taking

m((a, b]) = b− a, m((−∞, b]) = m((a,∞)) = m((−∞,∞)) =∞

and defining m(E) for general E ∈ I as the sum of the lengths of the intervals

in the unique representation mentioned above (standard form).

(b) [5 points] Define Lebesgue outer measure m∗ : P(R) → [0,∞] and give a direct

proof (from the definition) that m∗({x0}) = 0 for each singleton subset {x0} ⊂ R.

Solution:
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Definition 2 (Outer measure). We now define the outer measure of an arbi-

trary subset S ⊆ R to be

m∗(S) = inf

{
∞∑
n=1

m(En) : E1, E2, . . . ∈ I with S ⊆
∞⋃
n=1

En

}

(with the understanding that if
∑∞

n=1m(En) =∞ always, then m∗(S) =∞).

Proof. For S = {x0} we can choose ε > 0 and define E1 = (x0− ε, x0], En = ∅

for n > 1. Then En ∈ I and S = {x0} ⊂
⋃∞
n=1En = E1 = (x0 − ε, x0], while

m∗(S) = m∗({x0}) ≤
∞∑
n=1

m(En) = m(E − 1) + 0 = ε.

As ε > 0, we must have m∗({x0}) = 0.

(c) [5 points] Give the definition of a Lebesgue measurable set F ⊂ R and show that

F ⊂ R is Lebesgue measurable if and only if m∗(S) ≥ m∗(S ∩ F ) + m∗(S \ F )

holds for all S ⊆ R.

Solution: (in the notes)

Definition 3. We say that a subset F ⊂ R is Lebesgue measurable (or mea-

surable with respect to the outer measure m∗) if for every subset S ⊂ R,

m∗(S) = m∗(S ∩ F ) +m∗(S ∩ F c).

We denote the collection of Lebesgue measurable sets by L .

Proof. If F ⊂ R is Lebesgue measurable, then we have equality m∗(S) =

m∗(S ∩ F ) +m∗(S ∩ F c) for each S ⊂ R, and so we have ≥.

By subadditivity of m∗, we always know

m∗(S) ≤ m∗(S ∩ F ) +m∗(S ∩ F c).

So, conversely, if we assume m∗(S) ≥ m∗(S ∩ F ) +m∗(S ∩ F c), we must have

m∗(S) = m∗(S ∩ F ) +m∗(S ∩ F c) (for each S ⊂ R).
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(d) [5 points] Prove (from the definition) that the complement of a Lebesgue measur-

able subset of R is again Lebesgue measurable.

Show that Q is a Lebesgue measurable set (in R).

Solution: (First part in the notes.)

Proof. Assume F ⊂ R is Lebesgue measurable.

For any S ⊆ R, m∗(S ∩ F c) + m∗(S ∩ (F c)c) = m∗(S ∩ F c) + m∗(S ∩ F ) =

m∗(S ∩ F ) +m∗(S ∩ F c) = m∗(S) by measurability of F .

So F c is Lebesgue measurable.

We know m∗(Q) = 0 (as Q is countable and m∗ is countably subadditive, we can

use the second part of (b) to get this).

So, if S ⊆ R, (using monotonicity of m∗)

m∗(S ∩Q) +m∗(S ∩Qc) ≤ m∗(Q) +m∗(S) = 0 +m∗(S) = m∗(S).

By (c), F = Q is Lebesgue measurable.
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3. (a) [5 points] Define Lebesgue measurability for a function f : R→ R.

Prove that if f, g : R→ R are two Lebesgue measurable functions, then their sum

f + g must be Lebesgue measurable.

Solution: (in the notes)

Definition 1. A function f : R → R is called Lebesgue measurable (or mea-

surable with respect to the measurable space (R,L )) if for each a ∈ R

{x ∈ R : f(x) ≤ a} = f−1((−∞, a]) ∈ L .

Proof. Fix a ∈ R and we aim to show that {x ∈ R : f(x) + g(x) ≤ a} ∈ L .

Taking the complement, this would follow from {x ∈ R : f(x)+g(x) > a} ∈ L .

For any x where f(x) + g(x) > a then f(x) > a− g(x) and there is a rational

q ∈ Q so that f(x) > q > a− g(x). Then g(x) > a− q. So

x ∈ Sq = f−1((q,∞)) ∩ g−1((a− q,∞))

for some q ∈ Q. On the other hand if f(x) > q and g(x) > a − q, then

f(x) + g(x) > a, from which we conclude that

{x ∈ R : f(x) + g(x) > a} =
⋃
q∈Q

Sq.

By the results that f measurable, B Borel implies f−1(B) measurable, (to-

gether with the fact that L is an algebra) Sq ∈ L for each q and hence

{x ∈ R : f(x)+g(x) > a} ∈ L (because it is countable union of sets Sq ∈ L ).

(b) [5 points] Prove that if f : R→ R is a function, then

Σf = {E ⊆ R : f−1(E) ∈ L }

is a σ-algebra of subsets of R. (L denotes the Lebesgue measurable sets.)

Solution: (in the notes)

Proof. That is quite easy to verify.
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(i) f−1(∅) = ∅ ∈ L ⇒ ∅ ∈ Σf

(ii) E ∈ Σf ⇒ f−1(E) ∈ L ⇒ f−1(Ec) = (f−1(E))c ∈ L ⇒ Ec ∈ Σf

(iii) E1, E2, . . . ∈ Σf ⇒ f−1(En) ∈ L for n = 1, 2, . . .. From this we have⋃∞
n=1 f

−1(En) ∈ L and so

f−1

(
∞⋃
n=1

En

)
=
∞⋃
n=1

f−1(En) ∈ L ⇒
∞⋃
n=1

En ∈ Σf

(c) [5 points] Explain what a simple function (on R) means, the standard form for such

a function, when such a function is Lebesgue measurable, and give the definition

of the integral of a non-negative measurable simple function.

Solution: (in the notes)

Definition 2. A function f : R → R is called a simple function if the range

f(R) is a finite set.

Proposition 3. Each simple function f : R→ R has a representation

f =
n∑
i=1

aiχEi

as a linear combination of finitely many characteristic functions of disjoint sets

E1, E2, . . . , En with coefficients a1, a2, . . . , an ∈ R.

Moreover we can assume a1, a2, . . . , an are distinct values, that the Ej are all

nonempty and that
⋃n
j=1 Ej = R. With these assumptions the representation

is called the standard representation and is unique apart from the order of the

sum.

A simple function is Lebesgue measurable if and only if the sets Ej in the

standard representation are all in L .

Definition 4. If f : R→ [0,∞) is a nonnegative measurable simple function,

with standard representation f =
∑n

j=1 ajχEj , then we define∫
R
f dµ =

n∑
j=1

ajµ(Ej)
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(where µ(Ej) means the Lebesgue measure of Ej). (Note that the integral

makes sense in [0,∞].)

For E ∈ L , we define ∫
E

f dµ =

∫
R
χEf dµ

(noting that χEf is also a nonnegative measurable simple function).

(d) [5 points] Explain how the (Lebesgue) integral
∫
R f dµ is defined for a nonnegative

Lebesgue measurable f : R→ [0,∞] and give a proof that∫
R
αf dµ = α

∫
R
f dµ

holds for such f and α ≥ 0.

Solution: (from the notes)

Definition 5. For f : R→ [0,∞] a Lebesgue measurable function, we define∫
R
f dµ = sup

{∫
R
s dµ : s : R→ [0,∞) a measurable simple function with s ≤ f

}
Proof. We know there is a monotone increasing sequence (fn)∞n=1 of measurable

simple functions that converges pointwise to f . By the Monotone Convergence

Theorem we know that
∫
R f dµ = limn→∞

∫
R fn dµ. But also (αfn)∞n=1 is a

sequence of measurable simple functions that converges pointwise to αf and

so we also have
∫
R αf dµ = limn→∞

∫
R αfn dµ. Now from the corresponding

result for simple (non-negative) functions we have

α

∫
R
f dµ = lim

n→∞
α

∫
R
fn dµ = lim

n→∞

∫
R
αfn dµ =

∫
R
αf dµ
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4. (a) [5 points] If f : R→ [0,∞) is a measurable simple function, prove that λf : L →

[0,∞] defined by

λf (E) =

∫
R
fχE dµ

is a measure on L . (L denotes the Lebesgue measurable sets.)

Solution: (in the notes)

Proof. We know we can write f in the form f =
∑n

j=1 ajχEj with aj ≥ 0 and

Ej ∈ L (1 ≤ j ≤ n). So

χEf =
n∑
j=1

ajχEχEj =
n∑
j=1

ajχE∩Ej

and

λf (E) =

∫
E

f dµ =

∫
R
χEf dµ =

n∑
j=1

ajµ(E ∩ Ej)

We can check easily that µEj(E) = µ(E ∩ Ej) defines a measure on L and it

follows from an earlier result (example) in the notes that λf =
∑n

j=1 ajµEj is

a measure (as a linear combination with nonnegative coefficients of measures).

(b) [5 points] State and prove the Monotone Convergence Theorem.

Solution: (in the notes)

Theorem 1 (Monotone Convergence Theorem). If fn : R→ [0,∞] is a mono-

tone increasing sequence of (Lebesgue) measurable functions with pointwise

limit f , then ∫
R
f dµ = lim

n→∞

∫
R
fn dµ

Proof. Notice that f(x) = limn→∞ fn(x) ∈ [0,∞] is guaranteed to exist as the

sequence (fn(x))∞n=1 is monotone increasing. Moreover f is measurable and so∫
R f dµ is defined.

From fn ≤ fn+1 we have fj(x) ≤ limn→∞ fn(x) = f(x) for each j. Hence∫
R fj dµ ≤

∫
R f dµ for each j. Also

∫
R fn dµ ≤

∫
R fn+1 dµ and so the sequence of
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integrals
∫
R fn dµ is monotone increasing. That means limn→∞

∫
R fn dµ makes

sense in [0,∞]. We have

lim
n→∞

∫
R
fn dµ = sup

n≥1

∫
R
fn dµ ≤

∫
R
f dµ.

It remains to prove the reverse inequality.

Fix a simple function s : R→ R with s(x) ≤ f(x) for all x ∈ R. We will show

limn→∞
∫
R fn dµ ≥

∫
R s dµ and that will be enough because of the way

∫
R f dµ

is defined.

To show this, fix α ∈ (0, 1) and consider

En,α = {x ∈ R : fn(x) ≥ αs(x)}

Notice that ∫
En,α

αs dµ ≤
∫
En,α

fn dµ ≤
∫
R
fn dµ (1)

Because fn+1 ≥ fn we know En,α ⊂ En+1,α. For s(x) = 0, x ∈ En,α and for

s(x) > 0, limn→∞ fn(x) = f(x) ≥ s(x) > αs(x) implies x ∈ En,α when n is

large enough. So
⋃∞
n=1 En,α = R and a property of the measure λαs tells us

that∫
R
αs dµ = λαs(R) = λαs

(
∞⋃
n=1

En,α

)
= lim

n→∞
λαs(En,α) ≤ lim

n→∞

∫
R
fn dµ

(using (1) at the last step). That gives us

α

∫
R
s dµ =

∫
R
αs dµ ≤ lim

n→∞

∫
R
fn dµ.

As that is true for each α ∈ (0, 1), it follows that
∫
R s dµ ≤ limn→∞

∫
R fn dµ,

and so∫
R
f dµ = sup

{∫
R
s dµ : s simple measureable, s ≤ f

}
≤ lim

n→∞

∫
R
fn dµ,

completing the proof.

(c) [5 points] For f =
∞∑
n=1

(−1)n+1

2n
χ[n,n+1), calculate f+, f−, show that f is integrable

and calculate
∫
R f dµ (giving a justification for the calculation).
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Solution: (This was on a tutorial sheet, more or less exactly.)

f+(x) = max(f(x), 0) is nonzero on the intervals [n, n+1) with n odd. (f(x) < 0

on [n, n+ 1) if n is even and f(x) = 0 for x < 1.) So

f+(x) =
∞∑
k=1

1

22k−1
χ[2k−1,2k)

For f−(x) = max(−f(x), 0), it is nonzero on [2k, 2k + 1) (n = 2k even.) So

f−(x) =
∞∑
k=1

1

22k
χ[2k,2k+1)

By use of the Monotone convergence theorem, we have∫
R
f+ dµ = lim

n→∞

∫
R

n∑
k=1

1

22k−1
χ[2k−1,2k) dµ

= lim
n→∞

n∑
k=1

1

22k−1

∫
R
χ[2k−1,2k) dµ

=
∞∑
k=1

1

22k−1

=
1

2

1

1− 1/4
=

8

3

By a similar argument again∫
R
f− dµ =

∞∑
k=1

1

22k
=

1

4

1

1− 1/4
=

1

3

As f+ and f− are both (measurable and) integrable (ie have finite integrals), so

is f = f+ − f− integrable (the definition of f being integrable) and∫
R
f dµ =

∫
R
f+ dµ−

∫
R
f− dµ =

8

3
− 1

3
=

7

3

(d) [5 points] State the Lebesgue dominated convergence theorem and its corollary

that allows one to establish continuity of functions defined by integrals

F (t) =

∫
R
f(x, t) dµ(x)

that depend on a real parameter t.

Solution: (in the notes)
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Theorem 2 (Lebesgue dominated convergence theorem). Suppose fn : R →

[−∞,∞] are (Lebesgue) measurable functions such that the pointwise limit

f(x) = limn→∞ fn(x) exists. Assume there is an integrable g : R→ [0,∞] with

|fn(x)| ≤ g(x) for each x ∈ R. Then f is integrable as is fn for each n, and

lim
n→∞

∫
R
fn dµ =

∫
R

lim
n→∞

fn dµ =

∫
R
f dµ

Theorem 3 (Continuity of integrals). Assume f : R × R → R is such that

x 7→ f [t](x) = f(x, t) is measurable for each t ∈ R and t 7→ f(x, t) is continuous

for each x ∈ R. Assume also that there is an integrable g : R → R with

|f(x, t)| ≤ g(x) for each x, t ∈ R. Then the function f [t] is integrable for each

t and the function F : R→ R defined by

F (t) =

∫
R
f [t] dµ =

∫
R
f(x, t) dµ(x)

is continuous.
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