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Operator space

Banach space E together with norms ‖ · ‖n induced on matrix
spaces Mn(E ) (n = 1, 2, . . .) from an isometric embedding

E
φ
↪→ B(H) and

Mn(E )
φ(n)

↪→ Mn(B(H)) ≡ B(Hn) : (xi ,j)
n
i ,j=1 7→ (φ(xi ,j)

n
i ,j=1

For T : E → F linear, E and F operator spaces, T is completely
contractive if

‖T (n)(x)‖n ≤ ‖x‖n (x ∈ Mn(E ), n ≥ 1).

T is completely isometric if equality holds.
We call E Hilbertian if E is isometric to a Hilbert space.
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Algebra?

An operator space E is called injective if E -valued complete
contractions extend.
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// E

Theorem. E = B(H) is an injective operator space.

For each (concrete) operator space E ⊆ B(H), there exist
minimal injective I (E ) with E ⊆ I (E ) ⊆ B(H).

E ↪→ I (E ) is called an injective envelope of E .

I (E ) is a unique minimal containing injective operator space
up to commuting diagrams.

I (E ) always has a ternary algebraic structure (TRO, ternary
ring of operators).

T ⊂ B(H) is called a (concrete) TRO if

x , y , z ∈ T ⇒ [x , y , z ]
def
= xy∗z ∈ T .
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Triple envelope

Theorem. TRO morphisms are complete contractions, hence TRO
isomorphisms are complete isometries.
Conversely, surjective complete isometries between TROs are TRO
isomorphisms.
Corollary. An abstract TRO (i.e. a Banach space T with a
ternary operation [·, ·, ·] that arises from an isometry onto a
concrete TRO) has a canonical operator space structure.

Given an (abstract) operator space E , its triple envelope is T (E ) =
the TRO generated by E inside I (E ). [Hamana]
Universal property: ‘smallest’ TRO generated by completely
isometric embeddings E ↪→ B(H) (in a sense of quotient TRO
morphism)
Like E ↪→ I (E ), E ↪→ T (E ) is unique up to diagram chasing.
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Hilbertian operator spaces

Many different examples.
Row Hilbert space

M1,d(C) ⊆ Md(C) ∼= B(`d
2 )

and column Hilbert space

Md ,1(C) ⊆ Md(C) ∼= B(`d
2 )

are TROs and injective operator spaces (but not completely
isometric for any 2 ≤ d ≤ ∞).

These are the only Hilbertian TROs.
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JC ∗-triples

A (concrete) JC ∗-triple is a closed E ⊆ B(H) such that

a, b, c ∈ E ⇒ {a, b, c} def
=

1

2
([a, b, c] + [c , b, a]) ∈ E

Surjective linear isometries between JC ∗-triples are isomorphisms
of the triple product structure (and conversely).
An abstract JC ∗-triple (E , {·, ·, ·}) is a Banach space E and a triple
product (a, b, c) ∈ E × E × E 7→ {a, b, c} ∈ E on it that arises
from some isometric embedding of E as a concrete JC ∗-triple.
Examples.

Row and column Hilbert space are the ‘same’ as JC ∗-triples
(but not as operator spaces).

E = {x ⊕ x t : x ∈ M1,d(C)} ⊂ Md ⊕Md ⊂ M2d

is a Hilbertian JC ∗-triple but not a TRO.
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An abstract JC ∗-triple (E , {·, ·, ·}) is a Banach space E and a triple
product (a, b, c) ∈ E × E × E 7→ {a, b, c} ∈ E on it that arises
from some isometric embedding of E as a concrete JC ∗-triple.
Examples.

Row and column Hilbert space are the ‘same’ as JC ∗-triples
(but not as operator spaces).
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JC ∗-triples linked to TROs

Theorem. Given an abstract JC ∗-triple E , there exists a universal
(largest) TRO T ∗(E ) generated by E .

More precisely, there exists an isometric embedding E
αE
↪→ T ∗(E )

into a TRO T ∗(E ) with the universal property

T ∗(E )

π̃

""F
F

F
F

E

αE

OO

π
// T

where π : E → T is any given triple morphism
(i.e. π{a, b, c} = {π(a), π(b), π(c)})
with values in a TRO T , and π̃ : T ∗(E ) → T is a TRO morphism
(meaning π̃[x , y , z ] = [π̃(x), π̃(y), π̃(z)]),
π̃ unique given π.
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Operator space structures of a JC ∗-triple

Definition. Given a JC ∗-triple E , a JC -operator space structure
on E is an operator space structure induced by an isometric
embedding π : E → B(H) onto a concrete JC ∗-triple
π(E ) ⊆ B(H).
Corollary. For each JC -operator space structure on E , there exists
a TRO ideal I ⊂ T ∗(E ) with I ∩ αE (E ) = {0} such that E is
completely isometric to EI , the operator space structure on E
determined by the isometric embedding E → T ∗(E )/I
(x 7→ αE (x) + I)

T ∗(E )

π̃

$$H
H

H
H

H

E

αE

OO

π
// B(H)

Take I = ker π̃. (We call such I operator space ideals of T ∗(E )).
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Hilbertian JC -operator spaces

Theorem. (reformulation of results of Neal & Russo) If E is a
d-dimensional Hilbert space (d < ∞),

T ∗(E ) =
d⊕

r=1

B(ΛrE ,Λr−1E ),

with αE (x) = a(x̄)
Here a(y) denotes an annihilation operator on antisymmetric Fock
space B(F−(E )), adjoint of creation operator c(y) given by
c(y)(ω) = y ∧ ω.
Corollary. There are 2d − 1 operator space ideals in T ∗(E ), given
by

I(S) =
⊕
r∈S

B(ΛrE ,Λr−1E )

with S ( {1, 2, . . . , d}.
Theorem. All 2d − 1 choices of operator space ideal I give
distinct operator space structures EI and
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Hilbertian JC -operator spaces (2)

I (EI(S)) = T (EI(S)) =
⊕
r /∈S

B(ΛrE ,Λr−1E )

Proposition. (follows via Lemma of Le Merdy, Ricard, Roydor) E
Hilbertian JC -operator space of dimension d ⇒ E is a
homogeneous operator space. Thus all hyperplanes are completely
isometric.
Proposition If E = EI(S) for S ( {1, 2, . . . , d} and F is a
hyperplane in E , then F = FI(σ) where σ ( {1, 2, . . . , d − 1} is
σ = {r : r , r + 1 ∈ S}.
Corollary If E ⊂ G are Hilbertian JC -operator spaces, with
dim G ≥ 2d − 1, d = dim E , then E = EI(S) for
S = [i + 1, d − j ] ∩ N.
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Envelopes for Hilbertian JC -operator spaces

Let E ⊂ B(H) be an infinite-dimensional Hilbertian JC ∗-subtriple
and operator space.

Then T ∗(E ) is the TRO generated by {a(x) : x ∈ E} (inside
B(F−(E )))

Either there exists i , j ≥ 0 with i + j > 0 such that
d-dimensional subspaces F of E have F = F[i+1,d−j] whenever
d > i + j or E = E{0} (so TRO(E ) = T ∗(E )).

If j = 0, E is completely isometric to the subspace of
B(ΛiE ,Λi−1E ) given by the restrictions of annihilation
operators.

Moreover I (E ) = B(ΛiE ,Λi−1E ) (which is much bigger than
T (E ) if i > 1).

For i = 0, I (E ) is B(Λj−1E ,ΛjE ).

For min(i , j) > 0, I (E ) is B(ΛiE ,Λi−1E )⊕ B(Λj−1E ,ΛjE ).

Question: identify I (E{0})?
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