Some Hilbertian Operator spaces

Richard M. Timoney

Trinity College Dublin

June 8, FAV 2010

Joint work with L. Bunce continuing earlier work with B. Feely

$$M_n(E) \stackrel{\phi^{(n)}}{\hookrightarrow} M_n(\mathcal{B}(H)) \equiv \mathcal{B}(H^n) : (x_{i,j})_{i,j=1}^n \mapsto (\phi(x_{i,j})_{i,j=1}^n)$$

For $T: E \rightarrow F$ linear, E and F operator spaces, T is completely contractive if

$$\|T^{(n)}(x)\|_n \le \|x\|_n \qquad (x \in M_n(E), n \ge 1).$$

$$M_n(E) \stackrel{\phi^{(n)}}{\hookrightarrow} M_n(\mathcal{B}(H)) \equiv \mathcal{B}(H^n) : (x_{i,j})_{i,j=1}^n \mapsto (\phi(x_{i,j})_{i,j=1}^n)$$

For $T: E \rightarrow F$ linear, E and F operator spaces, T is completely contractive if

$$||T^{(n)}(x)||_n \le ||x||_n \qquad (x \in M_n(E), n \ge 1).$$

$$M_n(E) \stackrel{\phi^{(n)}}{\hookrightarrow} M_n(\mathcal{B}(H)) \equiv \mathcal{B}(H^n) : (x_{i,j})_{i,j=1}^n \mapsto (\phi(x_{i,j})_{i,j=1}^n)$$

For $T: E \rightarrow F$ linear, E and F operator spaces, T is completely contractive if

$$||T^{(n)}(x)||_n \le ||x||_n \qquad (x \in M_n(E), n \ge 1).$$

$$M_n(E) \stackrel{\phi^{(n)}}{\hookrightarrow} M_n(\mathcal{B}(H)) \equiv \mathcal{B}(H^n) : (x_{i,j})_{i,j=1}^n \mapsto (\phi(x_{i,j})_{i,j=1}^n)$$

For $T: E \to F$ linear, E and F operator spaces, T is completely contractive if

$$||T^{(n)}(x)||_n \le ||x||_n \qquad (x \in M_n(E), n \ge 1).$$

$$M_n(E) \stackrel{\phi^{(n)}}{\hookrightarrow} M_n(\mathcal{B}(H)) \equiv \mathcal{B}(H^n) : (x_{i,j})_{i,j=1}^n \mapsto (\phi(x_{i,j})_{i,j=1}^n)$$

For $T: E \to F$ linear, E and F operator spaces, T is completely contractive if

$$||T^{(n)}(x)||_n \le ||x||_n \qquad (x \in M_n(E), n \ge 1).$$

$$M_n(E) \stackrel{\phi^{(n)}}{\hookrightarrow} M_n(\mathcal{B}(H)) \equiv \mathcal{B}(H^n) : (x_{i,j})_{i,j=1}^n \mapsto (\phi(x_{i,j})_{i,j=1}^n)$$

For $T: E \rightarrow F$ linear, E and F operator spaces, T is completely contractive if

$$||T^{(n)}(x)||_n \le ||x||_n \qquad (x \in M_n(E), n \ge 1).$$

An operator space E is called injective if E-valued complete contractions extend.

Theorem. $E = \mathcal{B}(H)$ is an injective operator space.

- For each (concrete) operator space E ⊆ B(H), there exist minimal injective I(E) with E ⊆ I(E) ⊆ B(H).
- $E \hookrightarrow I(E)$ is called an injective envelope of E.
- *I*(*E*) is a unique minimal containing injective operator space up to commuting diagrams.
- *I*(*E*) always has a ternary algebraic structure (TRO, ternary ring of operators).

An operator space E is called injective if E-valued complete contractions extend.

Theorem. $E = \mathcal{B}(H)$ is an injective operator space.

- For each (concrete) operator space E ⊆ B(H), there exist minimal injective I(E) with E ⊆ I(E) ⊆ B(H).
- $E \hookrightarrow I(E)$ is called an injective envelope of E.
- *I*(*E*) is a unique minimal containing injective operator space up to commuting diagrams.
- *I*(*E*) always has a ternary algebraic structure (TRO, ternary ring of operators).

An operator space E is called injective if E-valued complete contractions extend.

Theorem. $E = \mathcal{B}(H)$ is an injective operator space.

- For each (concrete) operator space E ⊆ B(H), there exist minimal injective I(E) with E ⊆ I(E) ⊆ B(H).
- $E \hookrightarrow I(E)$ is called an injective envelope of E.
- *I*(*E*) is a unique minimal containing injective operator space up to commuting diagrams.
- *I*(*E*) always has a ternary algebraic structure (TRO, ternary ring of operators).

An operator space E is called injective if E-valued complete contractions extend.

Theorem. $E = \mathcal{B}(H)$ is an injective operator space.

- For each (concrete) operator space E ⊆ B(H), there exist minimal injective I(E) with E ⊆ I(E) ⊆ B(H).
- $E \hookrightarrow I(E)$ is called an injective envelope of E.
- *I*(*E*) is a unique minimal containing injective operator space up to commuting diagrams.
- *I*(*E*) always has a ternary algebraic structure (TRO, ternary ring of operators).

An operator space E is called injective if E-valued complete contractions extend.

Theorem. $E = \mathcal{B}(H)$ is an injective operator space.

- For each (concrete) operator space E ⊆ B(H), there exist minimal injective I(E) with E ⊆ I(E) ⊆ B(H).
- $E \hookrightarrow I(E)$ is called an injective envelope of E.
- *I*(*E*) is a unique minimal containing injective operator space up to commuting diagrams.
- *I*(*E*) always has a ternary algebraic structure (TRO, ternary ring of operators).

An operator space E is called injective if E-valued complete contractions extend.

Theorem. $E = \mathcal{B}(H)$ is an injective operator space.

- For each (concrete) operator space E ⊆ B(H), there exist minimal injective I(E) with E ⊆ I(E) ⊆ B(H).
- $E \hookrightarrow I(E)$ is called an injective envelope of E.
- *I*(*E*) is a unique minimal containing injective operator space up to commuting diagrams.
- *I*(*E*) always has a ternary algebraic structure (TRO, ternary ring of operators).

An operator space E is called injective if E-valued complete contractions extend.

Theorem. $E = \mathcal{B}(H)$ is an injective operator space.

- For each (concrete) operator space E ⊆ B(H), there exist minimal injective I(E) with E ⊆ I(E) ⊆ B(H).
- $E \hookrightarrow I(E)$ is called an injective envelope of E.
- *I*(*E*) is a unique minimal containing injective operator space up to commuting diagrams.
- *I*(*E*) always has a ternary algebraic structure (TRO, ternary ring of operators).

An operator space E is called injective if E-valued complete contractions extend.

Theorem. $E = \mathcal{B}(H)$ is an injective operator space.

- For each (concrete) operator space E ⊆ B(H), there exist minimal injective I(E) with E ⊆ I(E) ⊆ B(H).
- $E \hookrightarrow I(E)$ is called an injective envelope of E.
- *I*(*E*) is a unique minimal containing injective operator space up to commuting diagrams.
- *I*(*E*) always has a ternary algebraic structure (TRO, ternary ring of operators).

$$T \subset \mathcal{B}(H)$$
 is called a (concrete) TRO if
 $x, y, z \in T \Rightarrow [x, y, z] \stackrel{def}{=} xy^*z \in T.$

- Conversely, surjective complete isometries between TROs are TRO isomorphisms.
- **Corollary.** An abstract TRO (*i.e.* a Banach space T with a ternary operation $[\cdot, \cdot, \cdot]$ that arises from an isometry onto a concrete TRO) has a canonical operator space structure.

Given an (abstract) operator space E, its triple envelope is $\mathcal{T}(E) =$ the TRO generated by E inside I(E). [Hamana] Universal property: 'smallest' TRO generated by completely isometric embeddings $E \hookrightarrow \mathcal{B}(H)$ (in a sense of quotient TRO morphism) Like $E \hookrightarrow I(E)$, $E \hookrightarrow \mathcal{T}(E)$ is unique up to diagram chasing.

→ 3 → < 3</p>

Conversely, surjective complete isometries between TROs are TRO isomorphisms.

Corollary. An abstract TRO (*i.e.* a Banach space T with a ternary operation $[\cdot, \cdot, \cdot]$ that arises from an isometry onto a concrete TRO) has a canonical operator space structure.

Given an (abstract) operator space E, its triple envelope is $\mathcal{T}(E) =$ the TRO generated by E inside I(E). [Hamana] Universal property: 'smallest' TRO generated by completely isometric embeddings $E \hookrightarrow \mathcal{B}(H)$ (in a sense of quotient TRO morphism) Like $E \hookrightarrow I(E)$, $E \hookrightarrow \mathcal{T}(E)$ is unique up to diagram chasing.

A B > A B >

Conversely, surjective complete isometries between TROs are TRO isomorphisms.

Corollary. An abstract TRO (*i.e.* a Banach space T with a ternary operation $[\cdot, \cdot, \cdot]$ that arises from an isometry onto a concrete TRO) has a canonical operator space structure.

Given an (abstract) operator space E, its triple envelope is $\mathcal{T}(E) =$ the TRO generated by E inside I(E). [Hamana] Universal property: 'smallest' TRO generated by completely isometric embeddings $E \hookrightarrow \mathcal{B}(H)$ (in a sense of quotient TRO morphism) Like $E \hookrightarrow I(E)$, $E \hookrightarrow \mathcal{T}(E)$ is unique up to diagram chasing.

A B > A B >

- Conversely, surjective complete isometries between TROs are TRO isomorphisms.
- **Corollary.** An abstract TRO (*i.e.* a Banach space T with a ternary operation $[\cdot, \cdot, \cdot]$ that arises from an isometry onto a concrete TRO) has a canonical operator space structure.

Given an (abstract) operator space E, its triple envelope is $\mathcal{T}(E) =$ the TRO generated by E inside I(E). [Hamana] Universal property: 'smallest' TRO generated by completely isometric embeddings $E \hookrightarrow \mathcal{B}(H)$ (in a sense of quotient TRO morphism) Like $E \hookrightarrow I(E), E \hookrightarrow \mathcal{T}(E)$ is unique up to diagram chasing.

- - E + - E +

- Conversely, surjective complete isometries between TROs are TRO isomorphisms.
- **Corollary.** An abstract TRO (*i.e.* a Banach space T with a ternary operation $[\cdot, \cdot, \cdot]$ that arises from an isometry onto a concrete TRO) has a canonical operator space structure.

Given an (abstract) operator space E, its triple envelope is $\mathcal{T}(E) =$ the TRO generated by E inside I(E). [Hamana] Universal property: 'smallest' TRO generated by completely isometric embeddings $E \hookrightarrow \mathcal{B}(H)$ (in a sense of quotient TRO morphism) Like $E \hookrightarrow I(E)$, $E \hookrightarrow \mathcal{T}(E)$ is unique up to diagram chasing.

A B > A B >

Conversely, surjective complete isometries between TROs are TRO isomorphisms.

Corollary. An abstract TRO (*i.e.* a Banach space T with a ternary operation $[\cdot, \cdot, \cdot]$ that arises from an isometry onto a concrete TRO) has a canonical operator space structure.

Given an (abstract) operator space E, its triple envelope is $\mathcal{T}(E) =$ the TRO generated by E inside I(E). [Hamana] Universal property: 'smallest' TRO generated by completely isometric embeddings $E \hookrightarrow \mathcal{B}(H)$ (in a sense of quotient TRO morphism) Like $E \hookrightarrow I(E)$, $E \hookrightarrow \mathcal{T}(E)$ is unique up to diagram chasing.

A B > A B >

Conversely, surjective complete isometries between TROs are TRO isomorphisms.

Corollary. An abstract TRO (*i.e.* a Banach space T with a ternary operation $[\cdot, \cdot, \cdot]$ that arises from an isometry onto a concrete TRO) has a canonical operator space structure.

Given an (abstract) operator space E, its triple envelope is $\mathcal{T}(E) =$ the TRO generated by E inside I(E). [Hamana] Universal property: 'smallest' TRO generated by completely isometric embeddings $E \hookrightarrow \mathcal{B}(H)$ (in a sense of quotient TRO morphism) Like $E \hookrightarrow I(E)$. $E \hookrightarrow \mathcal{T}(E)$ is unique up to diagram chasing

A B + A B +

Conversely, surjective complete isometries between TROs are TRO isomorphisms.

Corollary. An abstract TRO (*i.e.* a Banach space T with a ternary operation $[\cdot, \cdot, \cdot]$ that arises from an isometry onto a concrete TRO) has a canonical operator space structure.

Given an (abstract) operator space E, its triple envelope is $\mathcal{T}(E) =$ the TRO generated by E inside I(E). [Hamana] Universal property: 'smallest' TRO generated by completely isometric embeddings $E \hookrightarrow \mathcal{B}(H)$ (in a sense of quotient TRO morphism) Like $E \hookrightarrow I(E)$. $E \hookrightarrow \mathcal{T}(E)$ is unique up to diagram chasing

A B + A B +

Conversely, surjective complete isometries between TROs are TRO isomorphisms.

Corollary. An abstract TRO (*i.e.* a Banach space T with a ternary operation $[\cdot, \cdot, \cdot]$ that arises from an isometry onto a concrete TRO) has a canonical operator space structure.

Given an (abstract) operator space E, its triple envelope is $\mathcal{T}(E) =$ the TRO generated by E inside I(E). [Hamana] Universal property: 'smallest' TRO generated by completely isometric embeddings $E \hookrightarrow \mathcal{B}(H)$ (in a sense of quotient TRO morphism) Like $E \hookrightarrow I(E)$, $E \hookrightarrow \mathcal{T}(E)$ is unique up to diagram chasing.

(*) *) *) *)

Conversely, surjective complete isometries between TROs are TRO isomorphisms.

Corollary. An abstract TRO (*i.e.* a Banach space T with a ternary operation $[\cdot, \cdot, \cdot]$ that arises from an isometry onto a concrete TRO) has a canonical operator space structure.

Given an (abstract) operator space E, its triple envelope is $\mathcal{T}(E) =$ the TRO generated by E inside I(E). [Hamana] Universal property: 'smallest' TRO generated by completely isometric embeddings $E \hookrightarrow \mathcal{B}(H)$ (in a sense of quotient TRO morphism)

Like $E \hookrightarrow I(E)$, $E \hookrightarrow \mathcal{T}(E)$ is unique up to diagram chasing.

(*) *) *) *)

Conversely, surjective complete isometries between TROs are TRO isomorphisms.

Corollary. An abstract TRO (*i.e.* a Banach space T with a ternary operation $[\cdot, \cdot, \cdot]$ that arises from an isometry onto a concrete TRO) has a canonical operator space structure.

Given an (abstract) operator space E, its triple envelope is $\mathcal{T}(E) =$ the TRO generated by E inside I(E). [Hamana] Universal property: 'smallest' TRO generated by completely isometric embeddings $E \hookrightarrow \mathcal{B}(H)$ (in a sense of quotient TRO morphism)

Like $E \hookrightarrow I(E)$, $E \hookrightarrow T(E)$ is unique up to diagram chasing.

(*) *) *) *)

Many different examples.

Row Hilbert space

$$M_{1,d}(\mathbb{C}) \subseteq M_d(\mathbb{C}) \cong \mathcal{B}(\ell_2^d)$$

and column Hilbert space

$$M_{d,1}(\mathbb{C}) \subseteq M_d(\mathbb{C}) \cong \mathcal{B}(\ell_2^d)$$

are TROs and injective operator spaces (but not completely isometric for any $2 \le d \le \infty$).

$$M_{1,d}(\mathbb{C}) \subseteq M_d(\mathbb{C}) \cong \mathcal{B}(\ell_2^d)$$

and column Hilbert space

$$M_{d,1}(\mathbb{C}) \subseteq M_d(\mathbb{C}) \cong \mathcal{B}(\ell_2^d)$$

are TROs and injective operator spaces (but not completely isometric for any $2 \le d \le \infty$).

$$M_{1,d}(\mathbb{C}) \subseteq M_d(\mathbb{C}) \cong \mathcal{B}(\ell_2^d)$$

and column Hilbert space

$$M_{d,1}(\mathbb{C}) \subseteq M_d(\mathbb{C}) \cong \mathcal{B}(\ell_2^d)$$

are TROs and injective operator spaces (but not completely isometric for any $2 \le d \le \infty$).

$$M_{1,d}(\mathbb{C}) \subseteq M_d(\mathbb{C}) \cong \mathcal{B}(\ell_2^d)$$

and column Hilbert space

$$M_{d,1}(\mathbb{C}) \subseteq M_d(\mathbb{C}) \cong \mathcal{B}(\ell_2^d)$$

are TROs and injective operator spaces (but not completely isometric for any $2 \le d \le \infty$).

$$M_{1,d}(\mathbb{C}) \subseteq M_d(\mathbb{C}) \cong \mathcal{B}(\ell_2^d)$$

and column Hilbert space

$$M_{d,1}(\mathbb{C}) \subseteq M_d(\mathbb{C}) \cong \mathcal{B}(\ell_2^d)$$

are TROs and injective operator spaces (but not completely isometric for any $2 \le d \le \infty$).

$$M_{1,d}(\mathbb{C}) \subseteq M_d(\mathbb{C}) \cong \mathcal{B}(\ell_2^d)$$

and column Hilbert space

$$M_{d,1}(\mathbb{C}) \subseteq M_d(\mathbb{C}) \cong \mathcal{B}(\ell_2^d)$$

are TROs and injective operator spaces (but not completely isometric for any $2 \le d \le \infty$).

A (concrete) JC^* -triple is a closed $E \subseteq B(H)$ such that

$$a, b, c \in E \Rightarrow \{a, b, c\} \stackrel{def}{=} \frac{1}{2}([a, b, c] + [c, b, a]) \in E$$

Surjective linear isometries between JC^* -triples are isomorphisms of the triple product structure (and conversely). An abstract JC^* -triple $(E, \{\cdot, \cdot, \cdot\})$ is a Banach space E and a triple product $(a, b, c) \in E \times E \times E \mapsto \{a, b, c\} \in E$ on it that arises from some isometric embedding of E as a concrete JC^* -triple. **Examples.**

- Row and column Hilbert space are the 'same' as *JC**-triples (but not as operator spaces).
 - $E = \{ x \oplus x^t : x \in M_{1,d}(\mathbb{C}) \} \subset M_d \oplus M_d \subset M_{2d}$

A (concrete) JC^* -triple is a closed $E \subseteq \mathcal{B}(H)$ such that

$$a,b,c\in E\Rightarrow \{a,b,c\}\stackrel{def}{=}rac{1}{2}([a,b,c]+[c,b,a])\in E$$

Surjective linear isometries between JC^* -triples are isomorphisms of the triple product structure (and conversely). An abstract JC^* -triple $(E, \{\cdot, \cdot, \cdot\})$ is a Banach space E and a triple product $(a, b, c) \in E \times E \times E \mapsto \{a, b, c\} \in E$ on it that arises from some isometric embedding of E as a concrete JC^* -triple. **Examples.**

- Row and column Hilbert space are the 'same' as *JC**-triples (but not as operator spaces).
 - $E = \{ x \oplus x^t : x \in M_{1,d}(\mathbb{C}) \} \subset M_d \oplus M_d \subset M_{2d}$

A (concrete) JC^* -triple is a closed $E \subseteq \mathcal{B}(H)$ such that

$$a,b,c\in E\Rightarrow \{a,b,c\}\stackrel{def}{=}rac{1}{2}([a,b,c]+[c,b,a])\in E$$

Surjective linear isometries between JC^* -triples are isomorphisms of the triple product structure (and conversely).

An abstract JC^* -triple $(E, \{\cdot, \cdot, \cdot\})$ is a Banach space E and a triple product $(a, b, c) \in E \times E \times E \mapsto \{a, b, c\} \in E$ on it that arises from some isometric embedding of E as a concrete JC^* -triple. **Examples.**

• Row and column Hilbert space are the 'same' as *JC**-triples (but not as operator spaces).

 $E = \{ x \oplus x^t : x \in M_{1,d}(\mathbb{C}) \} \subset M_d \oplus M_d \subset M_{2d}$

A (concrete) JC^* -triple is a closed $E \subseteq \mathcal{B}(H)$ such that

$$a,b,c\in E\Rightarrow \{a,b,c\}\stackrel{def}{=}rac{1}{2}([a,b,c]+[c,b,a])\in E$$

Surjective linear isometries between JC^* -triples are isomorphisms of the triple product structure (and conversely).

An abstract JC^* -triple $(E, \{\cdot, \cdot, \cdot\})$ is a Banach space E and a triple product $(a, b, c) \in E \times E \times E \mapsto \{a, b, c\} \in E$ on it that arises from some isometric embedding of E as a concrete JC^* -triple. **Examples.**

• Row and column Hilbert space are the 'same' as *JC**-triples (but not as operator spaces).

 $E = \{ x \oplus x^t : x \in M_{1,d}(\mathbb{C}) \} \subset M_d \oplus M_d \subset M_{2d}$

*JC**-triples

A (concrete) JC^* -triple is a closed $E \subseteq \mathcal{B}(H)$ such that

$$a,b,c\in E\Rightarrow \{a,b,c\}\stackrel{def}{=}rac{1}{2}([a,b,c]+[c,b,a])\in E$$

Surjective linear isometries between JC^* -triples are isomorphisms of the triple product structure (and conversely). An abstract JC^* -triple $(E, \{\cdot, \cdot, \cdot\})$ is a Banach space E and a triple product $(a, b, c) \in E \times E \times E \mapsto \{a, b, c\} \in E$ on it that arises from some isometric embedding of E as a concrete JC^* -triple. Examples.

• Row and column Hilbert space are the 'same' as *JC**-triples (but not as operator spaces).

 $E = \{x \oplus x^t : x \in M_{1,d}(\mathbb{C})\} \subset M_d \oplus M_d \subset M_{2d}$

JC^* -triples

A (concrete) JC^* -triple is a closed $E \subseteq B(H)$ such that

$$a,b,c\in E\Rightarrow \{a,b,c\}\stackrel{def}{=}rac{1}{2}([a,b,c]+[c,b,a])\in E$$

Surjective linear isometries between JC^* -triples are isomorphisms of the triple product structure (and conversely). An abstract JC^* -triple $(E, \{\cdot, \cdot, \cdot\})$ is a Banach space E and a triple product $(a, b, c) \in E \times E \times E \mapsto \{a, b, c\} \in E$ on it that arises from some isometric embedding of E as a concrete JC^* -triple. **Examples.**

• Row and column Hilbert space are the 'same' as *JC**-triples (but not as operator spaces).

 $E = \{x \oplus x^t : x \in M_{1,d}(\mathbb{C})\} \subset M_d \oplus M_d \subset M_{2d}$

JC^* -triples

A (concrete) JC^* -triple is a closed $E \subseteq B(H)$ such that

$$a,b,c\in E\Rightarrow \{a,b,c\}\stackrel{def}{=}rac{1}{2}([a,b,c]+[c,b,a])\in E$$

Surjective linear isometries between JC^* -triples are isomorphisms of the triple product structure (and conversely). An abstract JC^* -triple $(E, \{\cdot, \cdot, \cdot\})$ is a Banach space E and a triple product $(a, b, c) \in E \times E \times E \mapsto \{a, b, c\} \in E$ on it that arises from some isometric embedding of E as a concrete JC^* -triple. **Examples.**

• Row and column Hilbert space are the 'same' as *JC**-triples (but not as operator spaces).

 $E = \{x \oplus x^t : x \in M_{1,d}(\mathbb{C})\} \subset M_d \oplus M_d \subset M_{2d}$

JC^* -triples

A (concrete) JC^* -triple is a closed $E \subseteq B(H)$ such that

$$a,b,c\in E\Rightarrow \{a,b,c\}\stackrel{def}{=}rac{1}{2}([a,b,c]+[c,b,a])\in E$$

Surjective linear isometries between JC^* -triples are isomorphisms of the triple product structure (and conversely). An abstract JC^* -triple $(E, \{\cdot, \cdot, \cdot\})$ is a Banach space E and a triple product $(a, b, c) \in E \times E \times E \mapsto \{a, b, c\} \in E$ on it that arises from some isometric embedding of E as a concrete JC^* -triple. **Examples.**

• Row and column Hilbert space are the 'same' as *JC**-triples (but not as operator spaces).

 $E = \{x \oplus x^t : x \in M_{1,d}(\mathbb{C})\} \subset M_d \oplus M_d \subset M_{2d}$

JC*-triples

A (concrete) JC^* -triple is a closed $E \subseteq \mathcal{B}(H)$ such that

$$a, b, c \in E \Rightarrow \{a, b, c\} \stackrel{def}{=} rac{1}{2}([a, b, c] + [c, b, a]) \in E$$

Surjective linear isometries between JC^* -triples are isomorphisms of the triple product structure (and conversely). An abstract JC^* -triple $(E, \{\cdot, \cdot, \cdot\})$ is a Banach space E and a triple product $(a, b, c) \in E \times E \times E \mapsto \{a, b, c\} \in E$ on it that arises from some isometric embedding of E as a concrete JC^* -triple. **Examples.**

- Row and column Hilbert space are the 'same' as *JC**-triples (but not as operator spaces).
- ٩

$$E = \{x \oplus x^t : x \in M_{1,d}(\mathbb{C})\} \subset M_d \oplus M_d \subset M_{2d}$$

Theorem. Given an abstract JC^* -triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \stackrel{\alpha_E}{\hookrightarrow} T^*(E)$ into a TRO $T^*(E)$ with the universal property

where $\pi: E \to T$ is any given triple morphism (*i.e.* $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\})$ with values in a TRO *T*, and $\tilde{\pi}: T^*(E) \to T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)])$, $\tilde{\pi}$ unique given π .

Theorem. Given an abstract JC^* -triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \xrightarrow{\alpha_E} T^*(E)$ into a TRO $T^*(E)$ with the universal property

where $\pi: E \to T$ is any given triple morphism (*i.e.* $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\})$ with values in a TRO *T*, and $\tilde{\pi}: T^*(E) \to T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)])$, $\tilde{\pi}$ unique given π .

Theorem. Given an abstract JC^* -triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \stackrel{\alpha_E}{\hookrightarrow} T^*(E)$ into a TRO $T^*(E)$ with the universal property

where $\pi: E \to T$ is any given triple morphism (*i.e.* $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\})$ with values in a TRO *T*, and $\tilde{\pi}: T^*(E) \to T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)])$, $\tilde{\pi}$ unique given π .

Theorem. Given an abstract JC^* -triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \stackrel{\alpha_E}{\hookrightarrow} T^*(E)$ into a TRO $T^*(E)$ with the universal property

where $\pi: E \to T$ is any given triple morphism (*i.e.* $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO *T*, and $\tilde{\pi}: T^*(E) \to T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$), $\tilde{\pi}$ unique given π .

Theorem. Given an abstract JC^* -triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \stackrel{\alpha_E}{\hookrightarrow} T^*(E)$ into a TRO $T^*(E)$ with the universal property

where $\pi: E \to T$ is any given triple morphism (*i.e.* $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO T, and $\tilde{\pi}: T^*(E) \to T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$), $\tilde{\pi}$ unique given π .

Theorem. Given an abstract JC^* -triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \stackrel{\alpha_E}{\hookrightarrow} T^*(E)$ into a TRO $T^*(E)$ with the universal property

where $\pi: E \to T$ is any given triple morphism (*i.e.* $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO *T*, and $\tilde{\pi}: T^*(E) \to T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$), $\tilde{\pi}$ unique given π .

Theorem. Given an abstract JC^* -triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \stackrel{\alpha_E}{\hookrightarrow} T^*(E)$ into a TRO $T^*(E)$ with the universal property

where $\pi: E \to T$ is any given triple morphism (*i.e.* $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO *T*, and $\tilde{\pi}: T^*(E) \to T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$), $\tilde{\pi}$ unique given π .

伺 ト イ ヨ ト イ ヨ ト

Theorem. Given an abstract JC^* -triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \stackrel{\alpha_E}{\hookrightarrow} T^*(E)$ into a TRO $T^*(E)$ with the universal property

where $\pi: E \to T$ is any given triple morphism (*i.e.* $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO *T*, and $\tilde{\pi}: T^*(E) \to T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$). $\tilde{\pi}$ unique given π .

伺 ト イ ヨ ト イ ヨ ト

Theorem. Given an abstract JC^* -triple E, there exists a universal (largest) TRO $T^*(E)$ generated by E.

More precisely, there exists an isometric embedding $E \stackrel{\alpha_E}{\hookrightarrow} T^*(E)$ into a TRO $T^*(E)$ with the universal property

where $\pi: E \to T$ is any given triple morphism (*i.e.* $\pi\{a, b, c\} = \{\pi(a), \pi(b), \pi(c)\}$) with values in a TRO *T*, and $\tilde{\pi}: T^*(E) \to T$ is a TRO morphism (meaning $\tilde{\pi}[x, y, z] = [\tilde{\pi}(x), \tilde{\pi}(y), \tilde{\pi}(z)]$), $\tilde{\pi}$ unique given π .

伺 ト イ ヨ ト イ ヨ ト

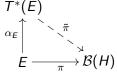
Definition. Given a JC^* -triple E, a JC-operator space structure on E is an operator space structure induced by an isometric embedding $\pi: E \to \mathcal{B}(H)$ onto a concrete JC^* -triple $\pi(E) \subseteq \mathcal{B}(H)$.

Corollary. For each *JC*-operator space structure on *E*, there exists a TRO ideal $\mathcal{I} \subset T^*(E)$ with $\mathcal{I} \cap \alpha_E(E) = \{0\}$ such that *E* is completely isometric to $E_{\mathcal{I}}$, the operator space structure on *E* determined by the isometric embedding $E \to T^*(E)/\mathcal{I}$ $(x \mapsto \alpha_E(x) + \mathcal{I})$

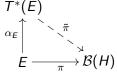
Take $\mathcal{I} = \ker \tilde{\pi}$. (We call such \mathcal{I} operator space ideals of $T^*(E)$)

Take $\mathcal{I} = \ker \tilde{\pi}$. (We call such \mathcal{I} operator space ideals of $T^*(E)$)

Take $\mathcal{I} = \ker \tilde{\pi}$. (We call such \mathcal{I} operator space ideals of $T^*(E)$)



Take $\mathcal{I} = \ker \tilde{\pi}$. (We call such \mathcal{I} operator space ideals of $\mathcal{T}^*(E)$).



Take $\mathcal{I} = \ker \tilde{\pi}$. (We call such \mathcal{I} operator space ideals of $T^*(E)$).

Theorem. (reformulation of results of Neal & Russo) If *E* is a *d*-dimensional Hilbert space $(d < \infty)$,

$$T^*(E) = \bigoplus_{r=1}^d \mathcal{B}(\Lambda^r E, \Lambda^{r-1} E),$$

with $\alpha_E(x) = a(\bar{x})$

Here a(y) denotes an annihilation operator on antisymmetric Fock space $\mathcal{B}(\mathscr{F}_{-}(E))$, adjoint of creation operator c(y) given by $c(y)(\omega) = y \wedge \omega$. **Corollary.** There are $2^d - 1$ operator space ideals in $T^*(E)$, given by

$$\mathcal{I}(S) = \bigoplus_{r \in S} \mathcal{B}(\Lambda^r E, \Lambda^{r-1} E)$$

with $S \subsetneq \{1, 2, ..., d\}$. **Theorem.** All $2^d - 1$ choices of operator space ideal \mathcal{I} give distinct operator space structures $E_{\mathcal{I}}$ and

Theorem. (reformulation of results of Neal & Russo) If *E* is a *d*-dimensional Hilbert space $(d < \infty)$,

$$T^*(E) = \bigoplus_{r=1}^d \mathcal{B}(\Lambda^r E, \Lambda^{r-1} E),$$

with $\alpha_E(x) = a(\bar{x})$ Here a(y) denotes an annihilation operator on antisymmetric Fock space $\mathcal{B}(\mathscr{F}_{-}(E))$, adjoint of creation operator c(y) given by $c(y)(\omega) = y \wedge \omega$. Corollary. There are $2^d - 1$ operator space ideals in $T^*(E)$, given by

$$\mathcal{I}(S) = \bigoplus_{r \in S} \mathcal{B}(\Lambda^r E, \Lambda^{r-1} E)$$

Theorem. (reformulation of results of Neal & Russo) If *E* is a *d*-dimensional Hilbert space $(d < \infty)$,

$$T^*(E) = \bigoplus_{r=1}^d \mathcal{B}(\Lambda^r E, \Lambda^{r-1} E),$$

with $\alpha_E(x) = a(\bar{x})$

Here a(y) denotes an annihilation operator on antisymmetric Fock space $\mathcal{B}(\mathscr{F}_{-}(E))$, adjoint of creation operator c(y) given by $c(y)(\omega) = y \wedge \omega$. **Corollary.** There are $2^d - 1$ operator space ideals in $T^*(E)$, given by

$$\mathcal{I}(S) = \bigoplus_{r \in S} \mathcal{B}(\Lambda^r E, \Lambda^{r-1} E)$$

Theorem. (reformulation of results of Neal & Russo) If *E* is a *d*-dimensional Hilbert space $(d < \infty)$,

$$T^*(E) = \bigoplus_{r=1}^d \mathcal{B}(\Lambda^r E, \Lambda^{r-1} E),$$

with $\alpha_E(x) = a(\bar{x})$

Here a(y) denotes an annihilation operator on antisymmetric Fock space $\mathcal{B}(\mathscr{F}_{-}(E))$, adjoint of creation operator c(y) given by $c(y)(\omega) = y \wedge \omega$. **Corollary.** There are $2^d - 1$ operator space ideals in $T^*(E)$, given by

$$\mathcal{I}(S) = \bigoplus_{r \in S} \mathcal{B}(\Lambda^{r} E, \Lambda^{r-1} E)$$

with $S \subsetneq \{1, 2, ..., d\}$. **Theorem.** All $2^d - 1$ choices of operator space ideal \mathcal{I} give distinct operator space structures $E_{\mathcal{I}}$ and

$I(E_{\mathcal{I}(S)}) = \mathcal{T}(E_{\mathcal{I}(S)}) = \bigoplus_{r \notin S} \mathcal{B}(\Lambda^{r} E, \Lambda^{r-1} E)$

Proposition. (follows via Lemma of Le Merdy, Ricard, Roydor) *E* Hilbertian *JC*-operator space of dimension $d \Rightarrow E$ is a homogeneous operator space. Thus all hyperplanes are completely isometric.

$$I(E_{\mathcal{I}(S)}) = \mathcal{T}(E_{\mathcal{I}(S)}) = \bigoplus_{r \notin S} \mathcal{B}(\Lambda^r E, \Lambda^{r-1} E)$$

Proposition. (follows via Lemma of Le Merdy, Ricard, Roydor) *E* Hilbertian *JC*-operator space of dimension $d \Rightarrow E$ is a

homogeneous operator space. Thus all hyperplanes are completely isometric.

$$I(E_{\mathcal{I}(S)}) = \mathcal{T}(E_{\mathcal{I}(S)}) = \bigoplus_{r \notin S} \mathcal{B}(\Lambda^r E, \Lambda^{r-1} E)$$

Proposition. (follows via Lemma of Le Merdy, Ricard, Roydor) *E* Hilbertian *JC*-operator space of dimension $d \Rightarrow E$ is a homogeneous operator space. Thus all hyperplanes are completely isometric.

$$I(E_{\mathcal{I}(S)}) = \mathcal{T}(E_{\mathcal{I}(S)}) = \bigoplus_{r \notin S} \mathcal{B}(\Lambda^{r} E, \Lambda^{r-1} E)$$

Proposition. (follows via Lemma of Le Merdy, Ricard, Roydor) *E* Hilbertian *JC*-operator space of dimension $d \Rightarrow E$ is a homogeneous operator space. Thus all hyperplanes are completely isometric.

$$I(E_{\mathcal{I}(S)}) = \mathcal{T}(E_{\mathcal{I}(S)}) = \bigoplus_{r \notin S} \mathcal{B}(\Lambda^r E, \Lambda^{r-1} E)$$

Proposition. (follows via Lemma of Le Merdy, Ricard, Roydor) *E* Hilbertian *JC*-operator space of dimension $d \Rightarrow E$ is a homogeneous operator space. Thus all hyperplanes are completely isometric.

Let $E \subset \mathcal{B}(H)$ be an infinite-dimensional Hilbertian JC^* -subtriple and operator space.

- Then $T^*(E)$ is the TRO generated by $\{a(x) : x \in E\}$ (inside $\mathcal{B}(\mathscr{F}_{-}(E)))$
- Either there exists i, j ≥ 0 with i + j > 0 such that d-dimensional subspaces F of E have F = F_[i+1,d-j] whenever d > i + j or E = E_{{0}} (so TRO(E) = T*(E)).
- If j = 0, E is completely isometric to the subspace of $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ given by the restrictions of annihilation operators.
- Moreover $I(E) = \mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ (which is much bigger than $\mathcal{T}(E)$ if i > 1).
- For i = 0, I(E) is $\mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.
- For min(i,j) > 0, I(E) is $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E) \oplus \mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.

Let $E \subset \mathcal{B}(H)$ be an infinite-dimensional Hilbertian JC^* -subtriple and operator space.

- Then $T^*(E)$ is the TRO generated by $\{a(x) : x \in E\}$ (inside $\mathcal{B}(\mathscr{F}_{-}(E)))$
- Either there exists $i, j \ge 0$ with i + j > 0 such that d-dimensional subspaces F of E have $F = F_{[i+1,d-j]}$ whenever d > i + j or $E = E_{\{0\}}$ (so TRO(E) = $T^*(E)$).
- If j = 0, E is completely isometric to the subspace of $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ given by the restrictions of annihilation operators.
- Moreover $I(E) = \mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ (which is much bigger than $\mathcal{T}(E)$ if i > 1).
- For i = 0, I(E) is $\mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.
- For min(i,j) > 0, I(E) is $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E) \oplus \mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.

Let $E \subset \mathcal{B}(H)$ be an infinite-dimensional Hilbertian JC^* -subtriple and operator space.

- Then T^{*}(E) is the TRO generated by {a(x) : x ∈ E} (inside B(𝔅_−(E)))
- Either there exists $i, j \ge 0$ with i + j > 0 such that d-dimensional subspaces F of E have $F = F_{[i+1,d-j]}$ whenever d > i + j or $E = E_{\{0\}}$ (so $\text{TRO}(E) = \mathcal{T}^*(E)$).
- If j = 0, E is completely isometric to the subspace of $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ given by the restrictions of annihilation operators.
- Moreover $I(E) = \mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ (which is much bigger than $\mathcal{T}(E)$ if i > 1).
- For i = 0, I(E) is $\mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.
- For min(i,j) > 0, I(E) is $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E) \oplus \mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.

Let $E \subset \mathcal{B}(H)$ be an infinite-dimensional Hilbertian JC^* -subtriple and operator space.

- Then $T^*(E)$ is the TRO generated by $\{a(x) : x \in E\}$ (inside $\mathcal{B}(\mathscr{F}_{-}(E)))$
- Either there exists $i, j \ge 0$ with i + j > 0 such that *d*-dimensional subspaces *F* of *E* have $F = F_{[i+1,d-j]}$ whenever d > i + j or $E = E_{\{0\}}$ (so TRO(*E*) = $T^*(E)$).
- If j = 0, E is completely isometric to the subspace of $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ given by the restrictions of annihilation operators.
- Moreover $I(E) = \mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ (which is much bigger than $\mathcal{T}(E)$ if i > 1).
- For i = 0, I(E) is $\mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.
- For min(i,j) > 0, I(E) is $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E) \oplus \mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.

Let $E \subset \mathcal{B}(H)$ be an infinite-dimensional Hilbertian JC^* -subtriple and operator space.

- Then $T^*(E)$ is the TRO generated by $\{a(x) : x \in E\}$ (inside $\mathcal{B}(\mathscr{F}_{-}(E)))$
- Either there exists $i, j \ge 0$ with i + j > 0 such that d-dimensional subspaces F of E have $F = F_{[i+1,d-j]}$ whenever d > i + j or $E = E_{\{0\}}$ (so TRO(E) = $T^*(E)$).
- If j = 0, E is completely isometric to the subspace of $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ given by the restrictions of annihilation operators.
- Moreover $I(E) = \mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ (which is much bigger than $\mathcal{T}(E)$ if i > 1).
- For i = 0, I(E) is $\mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.
- For min(i,j) > 0, I(E) is $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E) \oplus \mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.

Let $E \subset \mathcal{B}(H)$ be an infinite-dimensional Hilbertian JC^* -subtriple and operator space.

- Then T^{*}(E) is the TRO generated by {a(x) : x ∈ E} (inside B(𝔅_−(E)))
- Either there exists $i, j \ge 0$ with i + j > 0 such that d-dimensional subspaces F of E have $F = F_{[i+1,d-j]}$ whenever d > i + j or $E = E_{\{0\}}$ (so TRO(E) = $T^*(E)$).
- If j = 0, E is completely isometric to the subspace of $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ given by the restrictions of annihilation operators.
- Moreover $I(E) = \mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ (which is much bigger than $\mathcal{T}(E)$ if i > 1).
- For i = 0, I(E) is $\mathcal{B}(N^{j-1}E, N^{j}E)$.
- For min(i,j) > 0, I(E) is $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E) \oplus \mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.

Let $E \subset \mathcal{B}(H)$ be an infinite-dimensional Hilbertian JC^* -subtriple and operator space.

- Then T^{*}(E) is the TRO generated by {a(x) : x ∈ E} (inside B(𝔅_−(E)))
- Either there exists $i, j \ge 0$ with i + j > 0 such that d-dimensional subspaces F of E have $F = F_{[i+1,d-j]}$ whenever d > i + j or $E = E_{\{0\}}$ (so TRO(E) = $T^*(E)$).
- If j = 0, E is completely isometric to the subspace of $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ given by the restrictions of annihilation operators.
- Moreover $I(E) = \mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ (which is much bigger than $\mathcal{T}(E)$ if i > 1).
- For i = 0, I(E) is $\mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.
- For min(i,j) > 0, I(E) is $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E) \oplus \mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.

Let $E \subset \mathcal{B}(H)$ be an infinite-dimensional Hilbertian JC^* -subtriple and operator space.

- Then $T^*(E)$ is the TRO generated by $\{a(x) : x \in E\}$ (inside $\mathcal{B}(\mathscr{F}_{-}(E)))$
- Either there exists $i, j \ge 0$ with i + j > 0 such that d-dimensional subspaces F of E have $F = F_{[i+1,d-j]}$ whenever d > i + j or $E = E_{\{0\}}$ (so TRO(E) = $T^*(E)$).
- If j = 0, E is completely isometric to the subspace of $\mathcal{B}(\Lambda^i E, \Lambda^{i-1} E)$ given by the restrictions of annihilation operators.
- Moreover $I(E) = \mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E)$ (which is much bigger than $\mathcal{T}(E)$ if i > 1).
- For i = 0, I(E) is $\mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.
- For min(i,j) > 0, I(E) is $\mathcal{B}(\Lambda^{i}E, \Lambda^{i-1}E) \oplus \mathcal{B}(\Lambda^{j-1}E, \Lambda^{j}E)$.