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Chapter 8: An Introduction to Probability and Statistics
This material is covered in the book: Erwin Kreyszig, Advanced Engineering Mathematics (9th
edition) Chapter 24 (not including sections 4 and 9). (In the 8th edition this was Chapter 22 and
the text of that chapter is almost identical in the two editions. In the 7th edition the relevant parts
are Chapter 23 sections 1, 2, and 4-7, and Chapter 24 section 4.)

8.1 Probability. The simplest kinds of probabilities to understand are reflected in everyday ideas
like these:

(i) if you toss a coin, the probability that it will turn up heads is 1/2 (sometimes we might say
50% but our probabilities will be fractions between 0 and 1);

(ii) if you roll a die, the probability that side 1 (one dot) will turn up is 1/6;

(iii) if you own one raffle ticket in a raffle where 8000 tickets were sold, the probability that
your ticket will win (or be drawn first) is 1/8000.

All of these examples are based on a fairness assumption and are to some extent idealizations
of the real world. This subject is relatively easy in theory, but becomes much more tricky if you
want to find a theory that accurately reflects some real world situation. Our goal is to stick to
simple situations where the theory can be used directly.

In all 3 examples above there is a random experiment involved, where the result is not entirely
predictable. Even “predictable” scientific experiments are rarely entirely predictable and will
usually have some randomness (caused by extraneous effects on the experimental apparatus or
inaccuracies in measurements or other such factors). Thus scientific experiments are frequently
treated as random experiments also.

For our theoretical framework for these random experiments, we want to concentrate on a
few key ideas.

A All the possible outcomes of the experiment (in one trial). We think mathematically of the set
of all possible outcomes and we refer to this by the technical term the sample space for the
experiment. We may denote the sample space by S often.

B Some interesting sets of outcomes, or subsets of the sample space. These are called events.
So an event is a subset E ⊂ S.

An example might be that in a game with dice, we want to toss a die and get an odd number.
So we would be interested in the event E = {1, 3, 5} in the sample space for rolling a die,
which we take to be S = {1, 2, 3, 4, 5, 6}.

We sometimes use the term simple event for the events with just one element. Thus in the dice
case the simple events are {1}, {2}, . . . , {6}.
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C The third term to explain is probability. We will deal now only with the case of a finite sample
space and return later to the case of an infinite sample space.

Infinite sample spaces are possible if the experiment involves measuring a numerical quantity
or counting something where there is no special limit on the number. Take for example the
experiment of measuring the time (in seconds, say) taken for 100 oscillations of a given pen-
dulum. In principle the result could be any positive number and each mathematically precise
number will have zero probability. (There may be a positive probability of a measurement
between 200.0 and 200.1 but there will be zero probability of getting exactly 200.00... as the
measurement.)

A counting example with a sample space {0, 1, 2, 3, . . .} might be recording the number of
gamma rays hitting a specific detector in 1 second. If the gamma rays are from some radioac-
tive source there will be a certain probability for each number 0, 1, 2, . . ..

In the case where the sample space S = {s1, s2, . . . , sn} is finite, we suppose there is a
probability pi attached to each outcome si in such a way that each pi is in the range 0 ≤ pi ≤ 1
and the sum of all the probabilities is 1. (So

∑n
i=1 pi = 1.)

Then we compute the probability of any event E ⊂ S as the sum of the probabilities for the
outcomes in E. So, if E = {s1, s5, s7}, then the probability of E is p1 + p5 + p7.

We write P (E) for the probability of an event E and we sometimes write P (si) for pi, the
probability of the outcome si.

If we take the example of the die, we are using S = {1, 2, 3, 4, 5, 6} and each outcome has
probability 1/6. So, for the event E = {1, 3, 5} we get probability P (E) = P (1) + P (3) +
P (5) = 1/6 + 1/6 + 1/6 = 3/6 = 1/2.

That was an example where each of the possible outcomes is equally probable, and in exam-
ples of this type calculating probabilities for events comes down to counting. You count the
total number of outcomes and the reciprocal of that is the probability of each outcome. To
find the probability of an event you count the number of outcomes in the event and multiply
by that reciprocal (or equivalently divide by the total number of outcomes). We will not be
dealing with examples of this type except as simple illustrations. Instead we will deal with the
general theory and that deals with situations where the individual outcomes are not necessarily
equally probable. A weighted coin or die are simple examples of this type.

You can easily see that for an infinite sample space we cannot assign the same positive proba-
bility to each of the infinitely many outcomes in such a way that they add to 1. Or, we cannot
work out sensible probabilities by just dividing by infinity.

In general we get a probability P (E) for each event E ⊂ S in such a way that the following
rules hold:

(i) 0 ≤ P (E) ≤ 1 for each E ⊂ S;

(ii) P (∅) = 0 and P (S) = 1;
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(iii) if E ⊂ S and F ⊂ S are two events with E ∩ F = ∅, then P (E ∪ F ) = P (E) + P (F ).
(We call E and F mutually exclusive events if E ∩ F = ∅.)
A Venn diagram may help to imagine what this third property says.

When formulated in this way, the idea of a probability works for the case of infinite sample
spaces, which we come to soon.

8.2 Theoretical Means. The term mean (also called expectation sometimes) is another word for
average, in this context a long-run average.

If you roll a die 5000 times you would expect that each of the 6 numbers on the die will show
up about 5000/6 times. Of course this would not happen exactly (5000 is not divisible by 6, but
even if it was we would not expect each number to show up exactly as often as every other, only
roughly as often). So if we were to write down the 5000 numbers that showed up and tot them
up we would get roughly

5000

6
×1 +

5000

6
×2 +

5000

6
×3 +

5000

6
×4 +

5000

6
×5 +

5000

6
×6

So if we take the average number that turned up (the result of the tot divided by the total
number 5000) we get

average =
1

5000

(
5000

6
×1 +

5000

6
×2 +

5000

6
×3 +

5000

6
×4 +

5000

6
×5 +

5000

6
×6

)
=

1

6
×1 +

1

6
×2 +

1

6
×3 +

1

6
×4 +

1

6
×5 +

1

6
×6

=
1

6

(
6×7

2

)
=

1

6
(21) =

7

2

This mean of 7
2

is obviously not a number that will ever show up on the die. It is the long
run average of the numbers that show up. If we actually rolled the die 5000 times and did the
tot of the numbers we got and divided that by 5000 we would not be likely to get exactly 7

2
, but

we should get something close to that. If we rolled the die even more than 5000 times (10000 or
100000 times, say) we could expect our average to come out closer to 7

2
.

Looking beyond this particular example to a more general experiment, we can realize that
we can only average numerical quantities. If we tossed a coin 5000 times we would get a list of
heads and tails as our 5000 outcomes and it would not make any sense to average them. In the
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raffle example, we could rerun the draw lots of times and average the ticket numbers that show
up, but this would not make a lot of sense.

With the coin experiment, suppose we had a game that involved you winning 50c if heads
came up and losing 75c if tails came up. Then it would make sense to figure out your average
winnings on each toss of the coin. Similarly, with the raffle, suppose there was just one prize
of e1000 and each ticket cost 25c. That means that if your ticket wins then you end up gaining
e999.75 and if any other ticket wins your gain is e-0.25. Figuring out your average (or mean)
gain in the long run gives you an idea what to expect.

This idea of a numerical quantity associated with the result of a random experiment (eg the
amount you win, which is something that depends on the numbers on your tickets plus the result
of the draw) is a basic one and we have a technical term for it. A real-valued function X : S → R
on the sample space S is called a random variable. The mean of such a random variable is

p1X(s1) + p2X(s2) + · · ·+ pnX(sn) = P (s1)X(s1) + P (s2)X(s2) + · · ·+ P (sn)X(sn)

We can see that this is a simple formula (multiply the probability of each outcome by the
value of the random variable if that is the outcome and add them up) and it can be motivated
in the same way as we did the calculation above with rolling the die that lead to the long run
average 7

2
.

If we did our experiment a large number N times, we would expect that each outcome si

should happen about piN times (the proportion dictated by the probability). If we wrote down
the values X(s) for the random variable each time and totted them up, we should get roughly

p1NX(s1) + p2NX(s2) + · · ·+ pnNX(sn)

and dividing by N to get an average, we would find that the average should be about the mean.

8.3 Definition. If we have a random experiment with sample space S = {s1, s2, . . . , sn} and a
random variable X : S → R, then the mean of X is

mean = µ = P (s1)X(s1) + P (s2)X(s2) + · · ·+ P (sn)X(sn) =
n∑

i=1

P (si)X(si).

The variance of the random variable X is

σ2 = P (s1)(X(s1)− µ)2 + P (s2)(X(s2)− µ)2 + · · ·+ P (sn)(X(sn)− µ)2

The square root σ of the variance is called the standard deviation of the random variable.
The variance is the mean square deviation of the random variable from its mean and the

variance is large if the values of the random variable are often far away from the mean (often
means often in the long run or with high probability). The standard deviation is the root mean
square deviation and is easier to think about because it is in the same units as the quantity X . It
has to do with the amount of scatter or spread in the values of X . If σ is rather small, then there
is a good chance that the value of X will be near the mean, but if σ is very big that is not so.
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Suppose we take the example of the die, sample space S = {1, 2, 3, 4, 5, 6}, each outcome
has probability 1/6 and the random variable X : S → R which has the 6 values X(1) = 1,
X(2) = −1, X(3) = 2, X(4) = 2, X(5) = −1 and X(6) = 1. Then the mean is

µ = P (1)X(1) + P (2)X(2) + · · ·+ P (6)X(6)

=
1

6
(1) +

1

6
(−1) +

1

6
(2) +

1

6
(2) +

1

6
(−1) +

1

6
(1)

=
2

3

and the variance is

σ2 = P (1)(X(1)− µ)2 + P (2)(X(2)− µ)2 + · · ·+ P (6)(X(6)− µ)2

=
1

6
((1− 2/3)2 + (−1− 2/3)2 + (2− 2/3)2 + (2− 2/3)2 +

(−1− 2/3)2 + (1− 2/3)2)

= 14/9 ∼= 1.555...

Thus σ =
√

14/9 ∼= 1.247219 is the standard deviation in this example.

8.4 Sample means and expectations. Suppose we perform a real experiment several times and
get measurements X1, X2, . . . , Xn. We believe there is a sample space and some probabilities
behind this experiment, but we are not sure how to work out the probabilities explicitly. We can
try to work things out form the data at our disposal. The sample mean is

sample mean = average = m =
X1 + X2 + · · ·+ Xn

n
.

It gives us an estimate of what the theoretical mean would be if we could work out the
appropriate probabilities.

The sample variance is not quite an average. It is

1

n− 1
((X1 −m)2 + (X2 −m)2 + . . . + (Xn −m)2))

The n−1 gives a better idea of what the real theoretical variance is than you would get if you
replaced the 1

n−1
factor by 1

n
. (We are not in a position to explain why that is so. However, if n is

big there is not such a big difference between 1
n−1

and 1
n

. If n is small enough for the difference
to matter much, then there probably is not enough data to be able to draw conclusions.)

8.5 Conditional probabilities. Suppose we have some (partial) information about the result
of a random experiment. Specifically, suppose we know that the outcome is in a subset A of
the sample space S (or that the event A has occurred). What effect should that have on the
probabilities?

With conditional probabilities we assume that the relative likelihood of the outcomes within
A remain as they were before we had any information, but have to be scaled up to give a total
probability of 1.
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The conditional probability of an event B given that event A has occurred is defined to be

P (B|A) =
P (A ∩B)

P (A)

For example, suppose we have a biased die where the 6 possible outcomes S = {1, 2, 3, 4, 5, 6}
have probabilities

1

12
,

1

12
,

3

12
,

3

12
,

2

12
,

2

12

(in that order) and we see that at least 2 dots are visible after it has been rolled. That means we
know that A = {2, 3, 4, 5, 6} has occurred. As

P (A) =
1

12
+

3

12
+

3

12
+

2

12
+

2

12
=

11

12

we then reassign probabilities to the remaining possible outcomes by dividing by 11/12. That
will leave probabilities

1

11
,

3

11
,

3

11
,

2

11
,

2

11

for the outcomes 2, 3, 4, 5, 6. If we compute P (B|A) for B = {1, 2, 3} we get the revised
probability for B ∩ A = {2, 3} (since we know 1 has not happened). In summary, in this
example,

P (B|A) =
P (A ∩B)

P (A)
=

1
12

+ 3
12

11
12

=
4

11

An important concept is the idea of independent events, which means events A, B ⊂ S with
P (B|A) = P (B). This is the same as

P (A ∩B) = P (A)P (B)

To get an example, imagine we have 20 balls in a hat of which 10 are blue and 10 are red.
Suppose half (5) of the red ones and 5 of the blue have a white dot on them and the others have
no dot. If a ball is drawn out at random (so each ball has the same probability 1/20 of being
drawn), you should be easily able to check that the events A = a red ball and B = a ball with a
dot are independent.

8.6 The binomial distributions. Suppose we have a coin with probability p of turning up heads
and probability q = 1 − p of turning up tails (here 0 ≤ p ≤ 1). Our experiment will now be to
toss the coin a certain number n of times and record the number of times heads shows up. To
the outcome will be a count between 0 and n, or the sample space will be S = {0, 1, 2, . . . , n}.
What probabilities should we assign to the points in this sample space?

The idea of independent events comes in here because we assume in our analysis that each
of the n times we toss the coin is independent. Thus a heads to start with does not make it any
more or less likely that the second toss will show heads. We can then analyse that the probability
of heads (= H , say for short) on the first toss should be p, whereas the probability of T = tails
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should be q. And that is true each time we toss the coin. So the probability of the first 3 tosses
showing up HTH in that order is

P (H)P (T )P (H) = pqp = p2q

Now if n = 3, this is not the same as the probability of counting exactly 2 heads because there
are two other ways to get that: THH and HHT . Each by themselves have probability p2q but
the probability of exactly 2 heads in 3 tosses is 3p2q. For n = 3, the outcomes S = {0, 1, 2, 3}
(numbers of heads) have probabilities

q3, 3q2p, 3qp2, p3

in that order. These add up to 1 because by the binomial theorem for n = 3

q3 + 3q2p + 3qp2 + p3 = (q + p)3 = (1− p + p)3 = 1

In general (for any n) the appropriate probabilities in S = {0, 1, 2, . . . , n} are given by

P (i) =

(
n
i

)
piqn−i

where
(

n
i

)
denotes the binomial coefficient(

n
i

)
=

n!

i!(n− i)!

We could check using the binomial theorem that this is a valid assignment of probabilities
(they are ≥ 0 and add up to 1). A counting argument is needed to relate these probabilities to the
probabilities we mentioned for the number of heads.

8.7 Properties of the binomial distributions. The binomial distribution (for the number of
‘successes’ in n independent trials where the probability of success is p on each trial) has mean

µ = np

and variance
σ2 = npq

We will not verify (or prove) these but the formula for the mean is

µ =
n∑

i=0

P (i)i =
n∑

i=0

i

(
n
i

)
piqn−i =

n∑
i=1

i
n!

i!(n− i)!
piqn−i

in this case and it is not so hard to simplify this to get np. The variance is
n∑

i=0

P (i)(i− µ)2

which is slightly more tricky to simplify to npq.
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Example A fair die is rolled 4 times. Find the probability of obtaining at least 3 sixes.
This exactly fits the scenario for the binomial distribution with n = 4 independent trials of

the experiment of rolling the die, if we regard ‘success’ as rolling a 6. Then p = 1/6 and the
probability we want is

P (3) + P (4) =

(
4
3

)
p3q4−3 +

(
4
4

)
p4q4−4 = 4

(
1

6

)3
5

6
+

(
1

6

)4

=
21

64
=

7

432

8.8 The Poisson distribution. This can be obtained as a limiting case of the binomial distribu-
tions where n → ∞ but p is adjusted so that µ = np = constant. The sample space in this case
is S = {0, 1, 2, . . .} (which is infinite) and

P (n) =
µn

n!
e−µ

The number µ is a parameter in the Poisson distribution, which means there are many Poisson
distributions — one for each choice of µ > 0.

Using our knowledge of power series we can check that this is a valid assignment of proba-
bilities (that is that they are ≥ 0 and sum to 1).

∞∑
n=0

P (n) =
∞∑

n=0

µn

n!
e−µ = e−µ

∞∑
n=0

µn

n!
= e−µeµ = 1

It was observed in 1910 that the Poisson distribution provides a good model for the (random)
number of alpha particles emitted per second in a radioactive process.

The mean of a Poisson distribution is

∞∑
n=0

nP (n) =
∞∑

n=1

n
µn

n!
e−µ

=
∞∑

n=1

µn

(n− 1)!
e−µ

= µe−µ

∞∑
n=1

µn−1

(n− 1)!

= µe−µeµ

= µ

and so there is no confusion in using the symbol µ for the parameter in the Poisson distribution.
The variance also turns out to be σ2 = µ.

Example. If the number of alpha particles detected per second by a particular detector obeys
a Poisson distribution with mean µ = 0.4, what is the probability that at most 2 particles are
detected in a given second?
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The answer is P (0) + P (1) + P (2) where P (n) is given by

P (n) =
(0.4)n

n!
e−0.4

In other words

e−0.4 + (0.4)e−0.4 +
(0.4)2

2
e−0.4 = 0.99207

8.9 Continuous probability densities. We now move on to look into the question of what hap-
pens when we have infinite sample spaces where each individual outcome has zero probability.
We have seen one type of example already (experiments resulting in numerical measurements).
For another example, consider a factory that fills 1 litre cartons of milk. Each carton produced
will have somewhere near 1 litre of milk in it, but there is no chance of getting exactly 1 litre of
milk into the carton in a mathematically precise sense of infinite precision. You might get 1.0
litres within 0.01 litres, but you cannot expect exactly 1 litre. Due to inherent inaccuracies in the
machines, we can regard the amount of milk that goes into each carton as the value of a random
variable with a continuous range of possible values and where each individual value will have
probability zero.

We work with a probability density function, which is a function f(x) with the characteristic
property that the probability that we will get a value in the range [x, x+ dx) is f(x) dx (when dx
is very small or infinitesimally small). In summary

P ([x, x + dx)) = f(x) dx

From the probability density function we can work out the probability of a result in a given
range [a, b] by integration.

P ([a, b]) =

∫ b

a

f(x) dx

Since we want our probabilities to be always between 0 and 1 and we want the total probabil-
ity to be 1, we need our probability density function to be always nonnegative and have integral
1 over the entire range of values. Thus any function with the two properties

(i) f : R → [0,∞)

(ii)
∫∞
−∞ f(x) dx = 1 (that is an improper integral)

can be a probability density function

8.10 Normal probability density. One of the types of probability density functions that is most
often used in practice is the normal probability density function. Actually there is a whole lot
of different ones. There are two parameters µ ∈ R and σ > 0 that we get to choose to suit our
problem and the normal density with mean µ and standard deviation σ is

f(x) =
1

σ
√

2π
e−

1
2(

x−µ
σ )

2
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A good case to consider is the case µ = 0 and σ = 1, which is called the standard normal
density function. It is

f(x) =
1√
2π

e−
1
2
x2

8.11 Probability distribution functions. We use probability density functions to work out prob-
abilities

P ([a, b]) =

∫ b

a

f(x) dx

and we can work these out if we know the values of

F (b) = P ((−∞, b]) =

∫ b

−∞
f(x) dx

because
P ((−∞, b]) = P ((−∞, a)) + P ([a, b])

and so
P ([a, b]) = P ((−∞, b])− P ((−∞, a)) = F (b)− F (a)

The probability distribution function associated with a probability density f(x) is the function

F (x) =

∫ x

−∞
f(t) dt

In the case of the standard normal, these integrals cannot be worked out explicitly except
by using numerical integration and the values of the standard normal distribution function are
tabulated in the log tables (look at page 36).

Here is a picture for the standard normal distribution F (1) as the area under the curve corre-
sponding to the standard normal density function.
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You will see that the tables only work for x > 0, but there is a symmetry to the picture that
tells you that (for the standard normal case) F (0) = P ((−∞, 0]) = 1/2 and

F (−x) = P ((−∞,−x]) = P ([x,∞)) = 1− P ((−∞, x]) = 1− F (x).

From these rules plus the tables you can figure out all the values.

8.12 Mean and variance for continuous distributions. We will not go into this in any detail,
but you can define the mean for a continuous random variable with density f(x) to be

mean = µ =

∫ ∞

−∞
xf(x) dx

(if the integral converges). You can also define the variance to be

variance = σ2 =

∫ ∞

−∞
(x− µ)2f(x) dx

(again only when the integral converges).
One fortunate thing is that the mean and variance for a normal density with parameters µ and

σ do turn out to be mean = µ and variance = σ2. We will not check this out, but it is not so
hard to do it. You can see that it would be confusing to call the parameters µ and σ if this did not
work out.

8.13 Relating normals to standard normals. Say

F (x) =

∫ x

−∞

1

σ
√

2π
e−

1
2(

t−µ
σ )

2

dt

is the normal distribution function with mean µ and variance σ and

Φ(x) =

∫ x

−∞

1√
2π

e−
1
2
t2 dt

is the standard normal distribution. One can show by a simple change of variables u = (t−µ)/σ
that there is a relationship

F (x) = Φ

(
x− µ

σ

)
between the two distribution functions.

In this way we can relate all normal distribution functions to the standard normal that is
tabulated in the log tables.

8.14 Example. Suppose a production line is producing cans of mineral water where the volume
of water in each can produced can be thought of as (approximately) obeying a normal distribu-
tion with mean 500ml and standard deviation 0.5ml. What percentage of the cans will have more
than 499ml in them?
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We have
P (> 499 in a can) = 1− P (< 499) = 1− F (499)

where F (x) is the normal distribution function with mean µ = 500 and standard deviation σ =
0.5. From the previous idea of relating normals to standard normals, we can say

1− F (499) = 1− Φ

(
499− µ

σ

)
= 1− Φ(

499− 500

0.5
) = 1− Φ(−2).

From the symmetry properties of the standard normal distribution, we then have

1− F (499) = 1− Φ(−2)

= 1− P (standard normal < −2)

= P (standard normal > −2)

= P (standard normal < 2)

and from the tables this is 0.9772.
This is the proportion of cans that will have more than 499ml. Expressing the answer as a

percentage we get 97.72%.

Richard M. Timoney April 27, 2007


